DOI Number : 10.5614/itbj.eng.sci.2004.36.1.2
Hits : 9

Filtered-X Radial Basis Function Neural Networks for Active Noise Control

Bambang Riyanto1, Lazuardi Anggono1, Kenko Uchida2

1Dept. Electrical Eng., Institut Teknologi Bandung,

Jalan Ganesha 10, Bandung, Indonesia

 2Dept. Electrical Eng., Waseda University, Tokyo, Japan 

E-mail :

Abstract. This paper presents active control of acoustic noise using radial basis function (RBF) networks and its digital signal processor (DSP) real-time implementation. The neural control system consists of two stages: first, identification (modeling) of secondary path of the active noise control using RBF networks and its learning algorithm, and secondly neural control of primary path based on neural model obtained in the first stage. A tapped delay line is introduced in front of controller neural, and another tapped delay line is inserted between controller neural networks and model neural networks. A new algorithm referred to as Filtered X-RBF is proposed to account for secondary path effects of the control system arising in active noise control. The resulting algorithm turns out to be the filtered-X version of the standard RBF learning algorithm. We address centralized and decentralized controller configurations and their DSP implementation is carried out. Effectiveness of the neural controller is demonstrated by applying the algorithm to active noise control within a 3 dimension enclosure to generate quiet zones around error microphones. Results of the real-time experiments show that 10-23 dB noise attenuation is produced with moderate transient response.

Keywords: Active Noise Control; Adaptive Nonlinear Control; DSP; Radial Basis Function Networks.

Download Article
Bahasa Indonesia | English


Begin on 10 October 2014 this website is no longer activated for article process in Journal of Mathematical and Fundamental Sciences, Journal of Engineering and Technological Sciences, Journal of ICT Research and Applications and Journal of Visual Art and Design. The next process will be proceeded under new website at

For detail information please contact us to:

       ITB Journal Visitor Number #14831212       
       Jl. Tamansari 64, Bandung 40116, Indonesia Visitor IP Address #       
       Tel : +62-22-250 1759 ext. 121 2011 Institut Teknologi Bandung       
       Fax : +62-22-250 4010, +62-22-251 1215 XHTML + CSS + RSS       
       E-mail : or Developed by AVE