DOI Number : 10.5614/itbj.eng.sci.2012.44.3.5
Hits : 5

Miscibility Development Computation in Enhanced Oil Recovery by Flare Gas Flooding

Tjokorde Walmiki Samadhi1, Utjok W.R. Siagian2, Angga P. Budiono1

1Chemical Engineering Program at Institut Teknologi Bandung, Jalan Ganesha 10 Bandung, Jawa Barat 40132, Indonesia
2Petroleum Engineering Program at InstitutTeknologi Bandung, Jalan Ganesha 10 Bandung, Jawa Barat 40132, Indonesia
E-mail: twsamadhi@che.itb.ac.id


Abstract. The use of flare gas as injection gas in miscible gas flooding enhanced oil recovery (MGF-EOR) presents a potential synergy between oil production improvement and greenhouse gases emission mitigation. This work is a preliminary evaluation of the feasibility of miscible flare gas injection based on phase behavior computations of a model oil (43%n-C5H12 : 57%n-C16H34) and a model flare gas (91%CH4 : 9%C2H6). The computations employed the multiple mixing-cell model with Peng-Robinson and PC-SAFT equations of state, and compared the minimum miscibility pressure (MMP) value in the cases of flare gas injection and CO2 injection. For CO2 injection, both equations of state produced MMP values close to the measured value of 10.55 MPa. Flare gas injection MMP values were predicted to be 3.6-4.5 times those of CO2 injection. This very high MMP implies high gas compression costs, and may compromise the integrity of the reservoir. Subsequent studies shall explore the gas-oil miscibility behavior of mixtures of flare gas with intermediate hydrocarbon gases and CO2, in order to identify a suitable approach for rendering flare gas feasible as an injection gas in MGF-EOR.

Keywords: miscible gas flooding; MMP; PC-SAFT; multiple mixing cell; EOR.

Download Article
 
Bahasa Indonesia | English
 
 
 

Notification:

Begin on 10 October 2014 this website is no longer activated for article process in Journal of Mathematical and Fundamental Sciences, Journal of Engineering and Technological Sciences, Journal of ICT Research and Applications and Journal of Visual Art and Design. The next process will be proceeded under new website at http://journals.itb.ac.id.

For detail information please contact us to: journal@lppm.itb.ac.id.

 
       
       
       ITB Journal Visitor Number #9340575       
       Jl. Tamansari 64, Bandung 40116, Indonesia Visitor IP Address #       
       Tel : +62-22-250 1759 ext. 121 2011 Institut Teknologi Bandung       
       Fax : +62-22-250 4010, +62-22-251 1215 XHTML + CSS + RSS       
       E-mail : journal@lppm.itb.ac.id or proceedings@lppm.itb.ac.id Developed by AVE