DOI Number : 10.5614/itbj.sci.2005.37.1.5
Hits : 7

Identifikasi dan Klasifikasi Sinyal EEG terhadap Rangsangan Suara dengan Ekstraksi Wavelet dan Spektral Daya

Esmeralda C. Djamal1, Harijono A. Tjokronegoro2

1Mahasiswa Program S3 Departemen Teknik Fisika ITB,

email: alda@students.tf.itb.ac.id

2Departemen Teknik Fisika ITB,
email:
hanegoro@indo.net.id


Abstract.

In this research the development of identification and classification technique of three wave components of EEG signal, named alpha, beta and theta, is considered. The technique is combination of wavelet transform and power spectral analysis. Wavelet transform was used to extract the wave components so it reduces the data without loss of the information. The wavelet transform also reduces the aspects of non-stationary of the EEG signal. The EEG’s wave classification was based on the appearance of the wave, synchronization between symmetric hemispheres, and the wave energy dominance, in its frequency region. The EEG signals used in this research were obtained from 5 individually-independent subjects after 2.5 minutes sound stimulation. 10 sounds of music and 2 natural sounds were used as sound stimulation in this research. Then, 16 channels of EEG signals, obtained from every individual subject after a sound stimulation, were analyzed. The technique shows that the sound stimulation increases the appearance of the alpha wave by 75% and decreases beta and theta waves by 48% and 56%, respectively. Furthermore, the sound stimulations were used in the research to increase the synchronization balance between symmetric channels by 75%. In addition, this research shows that the signal extraction using wavelet packet provided small deviation and reduced non-stationary aspects, so that it improves the power spectral analysis used in the technique.



Keywords: wavelet extraction; power spectral; detection and identification of EEG signal; sound stimulation.

Download Article
 
Bahasa Indonesia | English
 
 
 

Notification:

Begin on 10 October 2014 this website is no longer activated for article process in Journal of Mathematical and Fundamental Sciences, Journal of Engineering and Technological Sciences, Journal of ICT Research and Applications and Journal of Visual Art and Design. The next process will be proceeded under new website at http://journals.itb.ac.id.

For detail information please contact us to: journal@lppm.itb.ac.id.

 
       
       
       ITB Journal Visitor Number #26600133       
       Jl. Tamansari 64, Bandung 40116, Indonesia Visitor IP Address #       
       Tel : +62-22-250 1759 ext. 121 © 2011 Institut Teknologi Bandung       
       Fax : +62-22-250 4010, +62-22-251 1215 XHTML + CSS + RSS       
       E-mail : journal@lppm.itb.ac.id or proceedings@lppm.itb.ac.id Developed by AVE