Hits : 15
Expanding Super Edge-Magic Graphs
E. T. Baskoro11, Y. M. Cholily1,2
1 Department of Mathematics, Institut Teknologi Bandung
Jl. Ganesa 10 Bandung 40132, Indonesia
Emails : {ebaskoro,yus}@dns.math.itb.ac.id
2 Department of Mathematics, Universitas Muhammadiyah Malang
Jl. Tlogomas 246 Malang 65144, Indonesia
Email : yus@umm.ac.id
Abstract. For a graph G, with the vertex set V(G) and the edge set E(G) an edge-magic total labeling is a bijection f from V(G) È E(G) to the set of integers {1,2,…,|V(G)|+|E(G)|} with the property that f(u)+f(v)+f(uv)=k for each uvÎE(G) and for a fixed integer k. An edge-magic total labeling f is called super edge-magic total labeling if f(V(G))={1,2,…, |V(G)|} and f(E(G))={|V(G)|+1, |V(G)|+2,…, |V(G)|+ |E(G)|}. In this paper we construct the expanded super edge-magic total graphs from cycles Cn, generalized Petersen graphs and generalized prisms.
Keywords: Edge-magic; super edge-magic; magic-sum.
Download Article
|