DOI Number : 10.5614/itbj.eng.sci.2011.43.3.1
Hits : 9

Comparing Models GRM, Refraction Tomography and Neural Network to Analyze Shallow Landslide

Armstrong F. Sompotan1, Linus A. Pasasa2 & Rachmat Sule3

1Department of Physics, Manado State University
Jl. Kampus FMIPA UNIMA di Tondano, 95618, Indonesia
2Physics of Complex System, Institute of Technology Bandung
3Department of Geophysical Engineering, Institute of Technology Bandung
Jl. Ganesha 10 Bandung, 40132, Indonesia
E-mail: armstrong.itb@gmail.com


Abstract. Detailed investigations of landslides are essential to understand fundamental landslide mechanisms. Seismic refraction method has been proven as a useful geophysical tool for investigating shallow landslides. The objective of this study is to introduce a new workflow using neural network in analyzing seismic refraction data and to compare the result with some methods; that are general reciprocal method (GRM) and refraction tomography. The GRM is effective when the velocity structure is relatively simple and refractors are gently dipping. Refraction tomography is capable of modeling the complex velocity structures of landslides. Neural network is found to be more potential in application especially in time consuming and complicated numerical methods. Neural network seem to have the ability to establish a relationship between an input and output space for mapping seismic velocity. Therefore, we made a preliminary attempt to evaluate the applicability of neural network to determine velocity and elevation of subsurface synthetic models corresponding to arrival times. The training and testing process of the neural network is successfully accomplished using the synthetic data. Furthermore, we evaluated the neural network using observed data. The result of the evaluation indicates that the neural network can compute velocity and elevation corresponding to arrival times. The similarity of those models shows the success of neural network as a new alternative in seismic refraction data interpretation.

Keywords: GRM; neural network; refraction tomography; shallow landslide.

Download Article
 
Bahasa Indonesia | English
 
 
 

Notification:

Begin on 10 October 2014 this website is no longer activated for article process in Journal of Mathematical and Fundamental Sciences, Journal of Engineering and Technological Sciences, Journal of ICT Research and Applications and Journal of Visual Art and Design. The next process will be proceeded under new website at http://journals.itb.ac.id.

For detail information please contact us to: journal@lppm.itb.ac.id.

 
       
       
       ITB Journal Visitor Number #26509032       
       Jl. Tamansari 64, Bandung 40116, Indonesia Visitor IP Address #       
       Tel : +62-22-250 1759 ext. 121 © 2011 Institut Teknologi Bandung       
       Fax : +62-22-250 4010, +62-22-251 1215 XHTML + CSS + RSS       
       E-mail : journal@lppm.itb.ac.id or proceedings@lppm.itb.ac.id Developed by AVE