Vortex-induced Vibration of a Flexible Free-hanging Circular Cantilever
R. W. Prastianto1, K. Otsuka2 & Y. Ikeda2
1Department of Ocean Engineering, Institut Teknologi Sepuluh Nopember (ITS), Surabaya, Indonesia
2Department of Marine System Engineering, Osaka Prefecture University, Japan
Abstract. An experimental investigation on time-dependent motion of a flexible free-hanging circular cantilever subjected to uniform cross-flows has been carried out. The free-end condition cantilever has a 34.4 aspect ratio and a low mass ratio of about 1.24. The cylinder freely oscillates in both inline and transverse to the flow. Reynolds number varied from 10,800 to 37,800. The “jump phenomenon” was also found in the inline motion of the cylinder that agrees well with an existing comparable work, even occurred at lower flow velocity, Ur, due to distinct conditions of the test. At high flow velocities, the 3rd higher harmonic frequencies of the cylinder transverse response became predominant that produce quite different motion characteristics compared to the other existing comparable works with 2-dimensional bottom-end condition, even same in bidirectional motion aspect. Generally, the results suggested that the flexible free-hanging cantilever generate different vortex wake mode than either, a uniform (a short-rigid flexibly-mounted cylinder) or a linear amplitude variation along the span case (a pivoted cylinder).
Begin on 10 October 2014 this website is no longer activated for article process in Journal of Mathematical and Fundamental Sciences, Journal of Engineering and Technological Sciences,
Journal of ICT Research and Applications and Journal of Visual Art and Design. The next process will be proceeded under new website at http://journals.itb.ac.id.