DOI Number : 10.5614/j.eng.technol.sci.2014.46.4.8
Hits : 4

A New Approach to Blending and Loading Problem of Molten Aluminum

Li Jianhua* & Wei Xing

School of Mechanical & Electronical Engineering, Lanzhou University of Technology,
287 Langongping Rd, Qilihe, Lanzhou 730050, China
Email: li_jh@vip.sina.com


Abstract. The problems of blending electrolyzer and multi-constraint optimization of electrolytic aluminum scheduling in the electrolytic aluminum production process were addressed. Based on a mathematical model analysis, a novel hybrid optimization algorithm is proposed for optimization of blending together the molten aluminum in different electrolytic cells. An affinity degree function was designed to represent the path of aluminum scheduling. The mutation operators were designed to implement the transformation of electrolyzer combination and change the route of loading. A typical optimization example from an aluminum plant in northwest China is given in this paper, the results of which demonstrate the effectiveness of the proposed method.

Keywords: blending electrolyzer; chaos clone algorithm; distance of collecting path; electrolytic cell; process scheduling.

Download Article
 
Bahasa Indonesia | English
 
 
 

Notification:

Begin on 10 October 2014 this website is no longer activated for article process in Journal of Mathematical and Fundamental Sciences, Journal of Engineering and Technological Sciences, Journal of ICT Research and Applications and Journal of Visual Art and Design. The next process will be proceeded under new website at http://journals.itb.ac.id.

For detail information please contact us to: journal@lppm.itb.ac.id.

 
       
       
       ITB Journal Visitor Number #26506967       
       Jl. Tamansari 64, Bandung 40116, Indonesia Visitor IP Address #       
       Tel : +62-22-250 1759 ext. 121 © 2011 Institut Teknologi Bandung       
       Fax : +62-22-250 4010, +62-22-251 1215 XHTML + CSS + RSS       
       E-mail : journal@lppm.itb.ac.id or proceedings@lppm.itb.ac.id Developed by AVE