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Abstract. The precise conversion of arbitrary text into its corresponding 
phoneme sequence (grapheme-to-phoneme or G2P conversion) is implemented 
in speech synthesis and recognition, pronunciation learning software, spoken 
term detection and spoken document retrieval systems. Because the quality of 
this module plays an important role in the performance of such systems and 
many problems regarding G2P conversion have been reported, we propose a 
novel two-stage model-based approach, which is implemented using an existing 
weighted finite-state transducer-based G2P conversion framework, to improve 
the performance of the G2P conversion model. The first-stage model is built for 
automatic conversion of words to phonemes, while the second-stage model 
utilizes the input graphemes and output phonemes obtained from the first stage 
to determine the best final output phoneme sequence. Additionally, we designed 
new grapheme generation rules, which enable extra detail for the vowel and 
consonant graphemes appearing within a word. When compared with previous 
approaches, the evaluation results indicate that our approach using rules focusing 
on the vowel graphemes slightly improved the accuracy of the out-of-vocabulary 
dataset and consistently increased the accuracy of the in-vocabulary dataset. 

Keywords: grapheme generation rules (GGR); combined grapheme-phoneme 
information; two-stage model; grapheme-to-phoneme (G2P); automatic text-to-
phonetic transcription. 

1 0BIntroduction 
Over the years, literate man has usually used the written word for directly 
accessing textual information stored in a computer system, but not speech 
documents, because access to speech documents requires knowledge relating to 
the process of word reading instead of the orthographic representation of the 
words. The use of the phonetic transcription of words has also been used in 
systems concerning the field of natural language processing, such as 
pronunciation learning software, automatic labeling software for speech 
recognition, and text-to-speech systems. Therefore, the quality of the conversion 
of arbitrary text into its corresponding phoneme sequence has a strong influence 
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on the performance of speech synthesis systems and on the search results of 
spoken term detection systems.  

Theoretically, the phonetic transcription of a word can be generated using 
available pronunciation dictionaries for in-vocabulary (IV) words or predicted 
through a data-driven grapheme-to-phoneme (G2P) conversion for out-of-
vocabulary (OOV) words. In order to solve the problems concerning G2P 
conversion, many approaches (briefly described in Section 2) have been 
proposed. Recently, the weighted finite-state transducer (WFST)-based G2P 
conversion method [1] achieved good word accuracy by utilizing a standard 
joint N-gram model and investigating N-best rescoring with a recurrent neural 
network language model. However, our two-stage architecture for G2P 
conversion [2], proposed in 2011, showed the advantage of using phonemic 
rather than graphemic information to predict the best final output phoneme 
sequence corresponding to the input word. In addition, our recent paper [3] 
demonstrated that this two-stage G2P conversion using neural networks is good 
at identifying single phonemes in a word, but lacks the knowledge for detecting 
the whole word. As a result, it provides higher phoneme accuracy but lower 
word accuracy than WFST-based G2P conversion.  

Therefore, in this paper, we utilize the existing WFST-based approach to 
implement a novel two-stage architecture-based G2P conversion. This work 
investigates a new strategy in which we combine both graphemic and phonemic 
information as the input sequence for the G2P conversion. Moreover, several 
new grapheme generation rules for transforming each input word into different 
representations of grapheme sequences are also introduced in this paper, which 
enable the addition of extra detail to the vowel and consonant graphemes 
appearing in a word. In this study, a grapheme could be a single letter or a 
combination of letters. Most of these rules focusing on the vowel graphemes 
and can achieve a small but consistent improvement on previous approaches. 

The remainder of this paper is organized as follows: in Section 2, we present 
methods proposed by other researchers to solve the problems concerning G2P 
conversion. We introduce several newly invented grapheme generation rules in 
Section 3. Then, we describe the novel two-stage model for G2P conversion in 
Section 4 and provide the evaluation results in Section 5. The discussion and 
conclusion are in Section 6 and 7, respectively. 

2 Related Work 
A set of context-dependent rewrite rules [4], proposed by Chomsky and Halle in 
1968, was used in the development of a traditional rule-based approach for 
automatic translation of text into a string of phonemes. Because of the 
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complexities of English pronunciation rules, many interesting data-driven 
approaches to automatic phonemic transcription have been proposed.  

The complicated relations between letters and phonemes, especially in the case 
of a language with less regular spelling like English, do not allow the 
implementation of a one-to-one mapping technique between letters and 
phonemes for G2P conversion. Thus, a many-to-one mapping technique 
between letters and phonemes has been integrated in a number of previous 
approaches. For example, a very well-known data-driven approach using back-
propagation neural networks implemented in the NETtalk system was proposed 
in 1987 [5]. The production of compact rule sets using the Default & Refine 
algorithm was proposed by Davel and Barnard in 2008 for designing an 
accurate and efficient pronunciation prediction mechanism for speech 
processing systems [6]. Furthermore, many other approaches, based on the 
hidden Markov model [7], inference of rewriting rules [8], pronunciation by 
analogy [9] and neural networks [10],[11], have also been proposed for dealing 
with the problems in G2P conversion. However, the integration of a many-to-
one mapping technique in those approaches proved unsatisfactory because there 
is no strict correspondence between letters and phonemes [12].  

As a consequence, various many-to-many mapping techniques between letters 
and phonemes have been proposed subsequently, in order to improve the 
accuracy of G2P conversion. For example, Rama et al. treated the letter-to-
sound conversion problems as a phrase-based statistical machine translation 
problem [13]. The hidden Markov model (HMM)-based approach with context-
sensitive observations for G2P conversion [14], proposed by Ogbureke et al., 
obtained a word accuracy of 79.79% on the Unilex corpora containing the UK 
English words, but only a maximum of 57.85% for the CMUDict corpus [15] 
due to the large number of loan words and a few remarkable errors. On the other 
hand, the two-stage neural network (NN)-based approach for G2P conversion 
[3] uses both grapheme and phoneme context information to predict the best 
final output phoneme sequence corresponding to the input word, which could 
take the performance of the single-stage neural network-based approach for 
G2P conversion to a higher level. This technique also inspired a letter-to-sound 
conversion technique using coupled hidden Markov models for lexicon 
compression [16]. The joint sequence model [17], proposed by Bisani and Ney, 
is one of the most popular approaches in G2P conversion. The recent WFST-
based G2P conversion [1], implemented in the Phonetisaurus toolkit1, achieved 
good word accuracy compared to other approaches.  

                                                 
1 Phonetiaurus toolkit: https://code.google.com/p/phonetisaurus/ 
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Table 1 List of the selected grapheme generation rules. 

 
Rule Description 

( Word  Grapheme Sequence ) 

GGR1  𝑔𝑖  𝑔𝑖 
Ex: “OKEECHOBEE”  O  K  E  E  C  H  O  B  E  E 

GGR2  𝑔𝑖  𝑔𝑖  𝑔𝑖+1 
Ex: “OKEECHOBEE”  OK  KE  EE  EC  CH  HO  OB  BE  EE  E_ 
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 GGR3 𝑣1 … 𝑣𝑛  𝑣1𝑣2   𝑣2𝑣3 …   𝑣𝑛−1𝑣𝑛    𝑣𝑛 

Ex: “OKEECHOBEE”  O  K  EE  E  C  H  O  B  EE  E 

GGR4 

If (n >1): 𝑣1 … 𝑣𝑛𝑐𝑛+1  𝑣1𝑣2   𝑣2𝑣3 …  𝑣𝑛−1𝑣𝑛  𝑣𝑛𝑐𝑛+1 𝑐𝑛+1 
𝑣1 …𝑣𝑛       𝑣1𝑣2   𝑣2𝑣3 …  𝑣𝑛−1𝑣𝑛   𝑣𝑛  

If (n = 1):       𝑔𝑖  𝑔𝑖 
Ex: “OKEECHOBEE”  O  K  EE  EC  C  H  O  B  EE  E 

GGR5 
If (n > 1): 

𝑣1 … 𝑣𝑛𝑐𝑛+1  𝑣1𝑣2   𝑣2𝑣3 …  𝑣𝑛−1𝑣𝑛  𝑣𝑛𝑐𝑛+1 𝑐𝑛+1 
𝑣1 … 𝑣𝑛      𝑣1𝑣2   𝑣2𝑣3 …  𝑣𝑛−1𝑣𝑛  𝑣𝑛 _ 

If (n = 1):       𝑔𝑖  𝑔𝑖 
Ex: “OKEECHOBEE”  O  K  EE  EC  C  H  O  B  EE  E_ 

GGR6 
If (n >1): 

[𝑐0]𝑣1 …𝑣𝑛𝑐𝑛+1  [𝑐0𝑣1  ]𝑣1𝑣2 …  𝑣𝑛−1𝑣𝑛  𝑣𝑛𝑐𝑛+1  𝑐𝑛+1 
[𝑐0]𝑣1 … 𝑣𝑛        [𝑐0𝑣1  ]𝑣1𝑣2 …  𝑣𝑛−1𝑣𝑛  𝑣𝑛 _ 

If (n = 1):       𝑔𝑖  𝑔𝑖 
Ex: “OKEECHOBEE”  O  KE  EE  EC  C  H  O  BE  EE  E_ 
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GGR7 
𝑐1 … 𝑐𝑛  𝑐1𝑐2   𝑐2𝑐3 …   𝑐𝑛−1𝑐𝑛    𝑐𝑛  

Ex: “OKEECHOBEE”  A  PP  PL  L  I  C  A  T  I  O  N 

GGR8 

If (n >1): 𝑐1 … 𝑐𝑛𝑣𝑛+1  𝑐1𝑐2   𝑐2𝑐3 …  𝑐𝑛−1𝑐𝑛  𝑐𝑛𝑣𝑛+1 𝑣𝑛+1 
𝑐1 … 𝑐𝑛        𝑐1𝑐2   𝑐2𝑐3 …   𝑐𝑛−1𝑐𝑛    𝑐𝑛 

If (n = 1):       𝑔𝑖  𝑔𝑖 
Ex: “APPLICATION”  A  PP  PL  LI  I  C  A  T  I  O  N 

GGR9 
If (n > 1): 

𝑐1 … 𝑐𝑛𝑣𝑛+1  𝑐1𝑐2   𝑐2𝑐3 …  𝑐𝑛−1𝑐𝑛  𝑐𝑛𝑣𝑛+1 𝑣𝑛+1 
𝑐1 … 𝑐𝑛        𝑐1𝑐2   𝑐2𝑐3 …   𝑐𝑛−1𝑐𝑛    𝑐𝑛 _ 

If (n = 1):       𝑔𝑖  𝑔𝑖 
Ex: “APPLICATIONS”  A  PP  PL  LI  I  C  A  T  I  O  NS S_ 

GGR10 
If (n >1): 

[𝑣0]𝑐1 … 𝑐𝑛𝑣𝑛+1  [𝑣0𝑐1  ]𝑐1𝑐2   𝑐2𝑐3 …  𝑐𝑛−1𝑐𝑛  𝑐𝑛𝑣𝑛+1 𝑣𝑛+1 
[𝑣0]𝑐1 … 𝑐𝑛         [𝑣0𝑐1  ]𝑐1𝑐2 …  𝑐𝑛−1𝑐𝑛  𝑐𝑛 _ 

If (n = 1):       𝑔𝑖  𝑔𝑖 
Ex: “APPLICATIONS”  AP  PP  PL  LI  I  C  A  T  I  ON  NS S_ 

 GGR11                                          GGR3 + GGR7  
Ex: “APPLICATION”  A  PP  PL  L  I  C  A  T  IO  O  N 

𝑔𝑖 = {𝑐𝑖 , 𝑣𝑖};      ‘   ’ = End of word;   ‘_’ = Empty consonant grapheme;   [  ] = Optional parameter 

3 New Grapheme Generation Rule (GGR) 
The G2P conversion model is usually built as a one-stage architecture for use in 
predicting phonemes corresponding to input text, especially with OOV words. 
To improve the model’s performance, this research integrated various newly 
invented grapheme generation rules into the model. 
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The grapheme side does not carry sufficient information or knowledge relating 
to the phonological interaction [18]. In order to make the graphemic information 
more sensitive in the G2P conversion, this work designed new rules with 
respect to the concept of context-dependent models, particularly for generating 
different grapheme sequences out of the same input word. Theoretically, for 
each grapheme of a given word, we concatenate it with the graphemes on its left 
and right contexts. However, in this paper, only the right context information is 
involved in the rule-making process because we prefer a compact representation 
for the new grapheme symbols, each of which consists of one or two 
alphabetical letters (e.g., “A” or “AU”). 

Because the interaction between vowels in a word has a strong impact on the 
spelling process, most of the rules written in this paper were carefully designed 
to add extra sensitive information to each vowel grapheme appearing in a word. 
For a few connecting graphemes many rules are possible, but only the rules 
more related to the vowel graphemes (as listed in Table 1) are taken into 
account. However, in order to compare the impacts of the vowel and the 
consonant grapheme in the automatic conversion of a word into its phonetic 
transcription, we also propose some other rules that mainly focus on the 
consonant graphemes. As a result, Table 1 shows that most of the newly 
generated grapheme sequences can make the G2P conversion system easily 
identify not only the pattern of each vowel but also that of each consonant in a 
given word. In this table, the parameter gi refers to the grapheme in index i, 
while ci and vi represent the consonant and vowel graphemes in index i, 
respectively. Moreover, the parameter n represents the number of vowels. 

The first rule (GGR1) represents a unigram model used by most researchers [1]-
[11,[13],[14],[16], but it appears not to provide sufficient information 
concerning each vowel or consonant grapheme. The second rule (GGR2) 
represents a bigram model, which seems to add too much information to each 
grapheme because it always combines the consonant grapheme with the vowel 
grapheme. The other four rules (GGR3, GGR4, GGR5 and GGR6) are designed 
specifically for adding the information missing in the first rule. For example, 
the third rule (GGR3) can distinguish the separated vowel – the vowel V that 
appears in the CVC pattern – from the vowels at the front part of the connecting 
vowels, i.e. the vowels V1, V2,…, Vn-1 of the V1…Vn pattern. In addition to 
GGR3, the other three remaining rules (GGR4, GGR5 and GGR6) are capable 
of distinguishing between the front vowels V1, V2,…, Vn-1 and the last vowel 
Vn of the V1…VnCn+1 pattern. The use of the empty grapheme “_” in GGR5 
and GGR6 permits the recognition of the difference between the last vowel Vn 
of the C0V1…VnCn+1 pattern and that located at the end of word – the vowel 
Vn of the C0V1…Vn   pattern. Moreover, GGR6 adds more information to the 
consonant next to the connected vowels (e.g., the graphemes “KE” and “BE”). 
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In addition, the rules GGR7, GGR8, GGR8-1, GGR9, GGR9-1 and GGR10 are 
proposed for adding extra detail to the consonant graphemes appearing in the 
given word, which are designed with respect to GGR3, GGR4, GGR4-1, GGR5, 
GGR5-1 and GGR6, respectively. Furthermore, another rule that combines 
GGR3 with GGR7 (GGR11) was created to enable the addition of extra detail 
for both vowel and consonant graphemes appearing within a word. 

4 Two-Stage Model for G2P Conversion 
The architecture of the two-stage model-based approach was first proposed in 
2011 to address the problem of phoneme conflicts in G2P conversion [2]. This 
architecture was basically implemented by connecting two different multilayer 
neural networks in sequence, which improves the accuracy of the ordinary one-
stage neural network-based G2P conversion [10, 11]. However, the evaluation 
results in our recent paper [3] demonstrated that the two-stage model using the 
Fast Artificial Neural Network (FANN) Library2 lacks some knowledge for 
detecting the whole word, so it provides lower word accuracy but higher 
phoneme accuracy than the WFST-based G2P conversion available in the 
Phonetisaurus toolkit. Therefore, we used the existing WFST-based approach to 
employ a novel two-stage model-based approach. 

4.1 Prediction using Combined Grapheme-Phoneme (G-P) 
Information 

The phoneme prediction method, in which only the phonemic information is 
used as input to select the best final output phoneme, was first presented in our 
previous papers [2],[3]. Its paradigm (Graphemes  Phonemes  Phonemes) 
shows that this method first converts the input word into phonemic information; 
then, all the related phonemic information is combined and used to predict the 
exact output phonemes of the G2P conversion model. 

Because only the phonemic information is used in our previous method, we 
recognized that all of the words producing the same phoneme sequence (or 
pronunciation) during training in the first-stage are merged together before the 
second stage. For instance, the words “KOLL,” “KOLLE,” “CAUL,” and 
“KAHLE” all generated the same phoneme sequence /K AA L/ at the first-
stage, so only one sample /K AA L/  /K AA L/ was used at the second stage. 
Furthermore, some wrong phoneme sequences may be obtained by accident 
because it is virtually impossible to obtain a perfectly trained first-stage model. 
Therefore, some training data could be incorrectly merged or ignored by the 
                                                 
2 FANN Library: http://leenissen.dk/fann/wp/ 
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second-stage model. For example, the word “COALE” wrongly generates /K 
AA L/ as its output, while its correct phoneme sequence is /K OW L/. 
Therefore, it is ignored by the second-stage model. Such a problem reduces the 
number of training data at the second-stage and negatively affects the 
performance of the model. 

In order to address this problem, we propose a new phoneme prediction method 
in which the input graphemes and output phonemes obtained from the first stage 
are combined and used as the new input sequence to determine the best final 
output phoneme sequence corresponding to the input word. Therefore, our 
newly proposed method consists of two steps: 

1. First step : Graphemes  Phonemes 
2. Second step : Combined G-P pairs  Phonemes 

4.2 Architecture of the Proposed Model 
On the basis of the new phoneme prediction method presented in the previous 
section, the novel two-stage G2P conversion architecture is built using two 
main modules (i.e. first-stage and second-stage models) in sequence. 

4.2.1 First-Stage Model 
The first-stage model, implemented based on the original WFST-based G2P 
conversion presented in [1] and available in the Phonetisaurus toolkit, is used 
for the automatic conversion of a word to its corresponding phoneme sequence. 
As can be seen in Figure 1, this model is trained with pairs of words and their 
phoneme sequences and each input word must first be generated into a 
grapheme sequence by using any grapheme generation rule from Table 1. In this 
context, each grapheme is represented by a single letter (e.g. “A”) or a 
combination of letters (e.g. “OA”), depending on the rule selected, and they are 
separated from one another by an empty space. Because it is virtually 
impossible to acquire a perfectly trained model, some unexpected errors will be 
produced at this stage. 

For example, after training three words with almost the same pronunciation 
(e.g., “KOLL”/K AA L/, “KOLLE”/K AA L/, and “COALE”/K OW L/), 
Figure 1 demonstrates that the word “COALE” generates “C OA A L E” as its 
grapheme sequence and then produces /K AA L/ as its output phoneme 
sequence with one error phoneme /AA/. Supposing that the other two words 
produce correct phoneme sequences, these three words all output the same 
phoneme sequence, /K AA L/. 
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Figure 1 Architecture of the novel two-stage model-based G2P conversion. 

4.2.2 14BSecond-Stage Model 
The second-stage model is built similarly to the first-stage model, with the 
exception that it combines both the input grapheme and the output phoneme 
sequences obtained from the first stage and utilizes that combined sequence as a 
new input to determine the best final output phoneme sequence corresponding 
to the original input word. In this paper, that new input sequence is called “a 
sequence of combined G-P pairs” hereafter. As both the graphemic information 
and the preliminary phonemic information have already been obtained before 
the final phoneme prediction, some errors occurring at the output level of the 
first-stage model can be fixed at the second stage. Therefore, our novel two-
stage model for G2P conversion seems to provide a better performance. 



 New GGRs for Two-Stage Model-based G2P Conversion 165 
 

According to Figure 1, this conversion requires two additional sub-modules for 
utilizing the grapheme and phoneme sequences of the first-stage model as input 
for the second-stage model. The first sub-module is created using the m2m-
aligner software3 for aligning the grapheme and phoneme sequences. The 
second sub-module automatically transforms the aligned data into a new 
sequence of combined G-P pairs to be used as input for the second stage; we 
also implemented a default option to ignore all the G-P pairs in which the 
grapheme is mapped to an empty phoneme (i.e., /_ /). 

For the previous example, three aligned sequences such as “|K|O|L|L| 
|K|AA|L|_|,” “|K|O|L|L|E| |K|AA|L|_|_|,” and “|C|OA|A|L|E| |K|AA|L|_|_|” 
are generated after the alignment process. After passing all of them through the 
second sub-module, three sequences of combined G-P pairs are made, which 
include two unique sequences “K.K O.AA L.L” and another sequence “C.K 
OA.AA L.L”. Hence, only two new training data (e.g., “K.K O.AA L.L” /K 
AA L/ and “C.K OA.AA L.L” /K OW L/) are created. Finally, the error 
phoneme /AA/ can be fixed at the second-stage. 

5 Evaluation 
In this section, we first describe the data preparation. Then, we present different 
proposed test sets including two baseline approaches and sixteen other 
approaches. The performance metrics are explained after that, which is followed 
by the experimental results of all the proposed test sets.  

5.1 Data Preparation 
The performance of our proposed approach was evaluated against two baseline 
approaches. We conducted experiments on the American English words-based 
pronunciation dictionary (CMUDict corpus [15]) used in our previous papers 
[2],[3], except that each word and its phoneme sequence used in this paper were 
unaligned (i.e. absence of the empty grapheme ‘_’ and empty phoneme /_ /). 
Thus, the training dataset contained a total of 100,713 IV words, while the 
testing dataset contained 11,188 OOV words. Although we used the same 
CMUDict corpus as [1],[17], the selected words in our datasets were different 
from those used in [1],[17]. The dataset preparation is fully described in our 
previous paper [2]. 

After the data analysis, the grapheme “X” is sometimes mapped to three 
phonemes /EH K S/ (e.g., “VISX”/V IH S EH K S/). To this end, we replaced 

                                                 
3 m2m-aligner software: https://code.google.com/p/m2m-aligner/ 
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the connected phonemes /K S/ and /K SH/ with two other phonemes /X/ and 
/XH/, respectively, for words where “X” produces /K S/ and /K SH/. 

5.2 Proposed Test Sets 
In this research, we designed and separately utilized eighteen different test sets, 
as listed in Table 2. According to [9], the WFST-based approach proved to 
outperform other well-established approaches such as Sequitur [17], direcTL+ 
[19], therefore we chose only the WFST-based approach to represent our 
baseline approach. As a result, we first propose two baseline approaches (i.e. 
Baseline1 & Baseline1-0) using GRR1, which refers to the original WFST-
based approach [1]. 

Table 2 Configurations of the eighteen proposed test sets. 

Proposed test set 
Configuration 

G-P mapping /K S//X/; /K SH//XH/ Grapheme Generation Rule 

Baseline 1  2-2 No GGR1 
Baseline 1-0  1-2 No GGR1 
Approach 1 2-2 Yes GGR1 
Approach 1-0 1-2 Yes GGR1 
Approach 2 1-2 No GGR2 
Approach 3 1-2 No GGR3 
Approach 4 1-2 No GGR5 
Approach 4-1 1-2 No GRR4 
Approach 5 1-2 Yes GRR5 
Approach 5-1 1-2 Yes GRR4 
Approach 6 1-2 No GRR6 
Approach 7 1-2 No GGR7 
Approach 8 1-2 No GGR9 
Approach 8-1 1-2 No GGR8 
Approach 9 1-2 Yes GGR9 
Approach 9-1 1-2 Yes GGR8 
Approach 10 1-2 No GGR10 
Approach 11 1-2 No GGR11 

Next, two similar approaches (Approach1 and Approach1-0) were designed 
with respect to both baseline approaches, with the exception that they were 
evaluated using the datasets where the connecting phonemes /K S/ and /K SH/ 
were manually replaced by /X/ and /XH/, respectively. 

In order to show the effect of our proposed grapheme generation rules on the 
performance of the G2P conversion, especially on the word accuracy of the 



 New GGRs for Two-Stage Model-based G2P Conversion 167 
 

OOV dataset, we designed the remaining approaches (as listed in Table 2) by 
assigning each of them different rules and configurations. 

In the Phonetisaurus toolkit, the relationship between graphemes and phonemes 
can be many-to-many, but the best results were obtained when it was set to (1-
2) or (2-2) [1]. Otherwise, whenever new grapheme generation rules (except for 
GRR1) were applied, our experimental results showed that the relationship (1-2) 
provided the best results. Therefore, in Table 2, we show only the approaches 
where the relationship (1-2) was used. 

5.3 Performance Measuring Metrics 
We evaluated the performance of the approaches listed in Table 2 in terms of 
phoneme accuracy (PAcc) and word accuracy (WAcc) using the NIST Sclite 
scoring toolkit4. The calculation of PAcc and WAcc are written as follows: 

 PAcc   = 1 - PER  = 1 - ((Sph + Dph + Iph) / Nph) (1) 

 WAcc = 1 - WER = 1 - (Sw / Nw) (2) 

where PER and WER are known as phoneme error rate and word error rate, 
respectively; Sph, Dph, Iph and Nph are the number of phoneme substitutions, 
phoneme deletions, phoneme insertions, and total phonemes in the reference, 
respectively. Since only isolated words were used in our experiments, the value 
of WER was exactly equal to the number of word substitutions (Sw) divided by 
the total number of words in the reference (Nw). Because this research was more 
aimed at the WAcc result, we only report results related to this goal. 

5.4 Experimental Results 
The approaches listed in Table 2 used the CMUDict corpus to evaluate the 
model’s performance. Since the selected words in both training and testing 
datasets were different from those used in [1],[17], the accuracy of the baseline 
approaches presented in this paper was lower than that shown in both 
previously mentioned papers.  In terms of word accuracy (WAcc) of the OOV 
dataset, Figure 2 and Figure 3 indicate that most of the approaches using rules 
related to the vowel graphemes (i.e. Approach3, Approach4, Approach4-1, 
Approach5 and Approach5-1) provided better performance than those using 
rules related to the consonant graphemes (i.e. Approach2, Approach6, 
Approach7, Approach8, Approach8-1, Approach9, Approach9-1, Approach10 
and Approach11); they also provided a slightly higher word accuracy than both 
baseline approaches at the first stage; however, there was no improvement 

                                                 
4 NIST Sclite scoring toolkit: http://www.nist.gov/speech/tools/ 
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between the one-stage and two-stage architecture. Conversely, in terms of the 
WAcc of the IV dataset, all approaches provided almost the same results 
(98.19% ~ 98.39%) when built as a one-stage model, but they improved when 
implemented as a two-stage model. 

 

 
 
 
 
 
 
 
 
 
 

Figure 2 WAcc of different proposed test sets measured based on OOV dataset. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 WAcc of different proposed test sets measured based on IV dataset. 
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MAX (WAcc_IV)      = (8,589 + 37,503 + 31,989 + 15,126 + 4,950 + 1,573) words /100,713 words = 99.02% 
MAX (WAcc_OOV) = (  864  +   3,215  +  2,519  +   1,155 +   445   +  125  ) words /  11,188 words = 74.39% 

 

 
 
 
 
 
 
 
 
 
 
               (1) WAcc of Group V1                                 (2) WAcc of Group V2 
 
 
 
 
 
 
 
 
 
 
 
                (3)  WAcc of Group V3                                      (4) WAcc of Group V4 
 
 
 
 
 
 
 
 
 
 
 
                   (5) WAcc of Group V5                                    (6) WAcc of Group V6 

Figure 4 Results of the WAcc obtained from the two-stage model-based G2P 
conversion and separately measured based on different groups of OOV datasets. 

IV : 8,662 words 
OOV :    993 words 

IV : 37,754 words 
OOV :   4,168 words 

IV : 32,261 words 
OOV :   3,589 words 

IV : 15,324 words 
OOV :   1,693 words 

IV : 5,069 words 
OOV :    576 words 

IV : 1,643 words 
OOV :    169 words 
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Among the proposed approaches that use rules related to the vowel graphemes, 
Approach2, Approach6 and Approach11 provided lower word accuracy than the 
others, even including both baselines, so we excluded both of them from the 
next analysis process. Appraoch3 was also eliminated, because its word 
accuracy was lower than that of the other approaches, especially Approach4; 
moreover, GGR3 appeared less effective than the rule used in Approach4. The 
other approaches, such as Approach7, Approach8, Approach8-1, Approach9, 
Approach9-1, and Approach10, which use rules focusing on the consonant 
graphemes rather than the vowel graphemes, were also eliminated because they 
provided much poorer accuracy compared to the other approaches. 

Problems in spelling English words mostly occur when a word has many 
vowels. Therefore, in order to thoroughly analyze the experimental results, the 
words in both the training and the testing dataset were classified into six 
different groups (V1, V2, V3, V4, V5, and V6) depending on the total number of 
vowels found in each word. The group of words without vowels (V0) was 
merged with group V1, while group V6 included all the remaining groups (V7, 
V8, etc.). The IV and OOV data at the bottom part of Figure 4 show that V2 was 
the largest group, while V6 was the smallest. 

To understand the effects of a different number of vowels in a word and the 
effects of using different sizes of datasets in the training process, we conducted 
two different evaluations. First, we trained and evaluated each group of datasets 
(Vi = V1, V2, …, V6) separately. Second, we used the pre-trained model in Table 
2 (Vall = V1+…+V6) to evaluate each group of datasets (Vi) one by one. The 
evaluation results given by the different approaches are depicted in Figure 4. It 
shows that the highest values of WAcc for groups V1 and V2 (i.e. 87.01% and 
76.73%) were obtained using the Vi trained model, while those for the 
remaining groups were obtained using the Vall trained model. This demonstrates 
that the pronunciation rules in words with zero, one and two vowels are more 
consistent than those in words with more vowels. In addition, in the largest 
group V2, only 10% of the words consisted of VVC syllables. Based on these 
facts, we conducted another experiment, where we trained the model using a 
combined V1 V2 training dataset (i.e. V1+V2) and then evaluated each group V1 
and V2 separately. As a result, the WAcc of V2 increased from 76.73% to 
77.15%. 

We also conducted some experiments in which we kept the G-P pairs with the 
grapheme mapped to the empty phoneme (e.g. “A._” or “E._” as shown in 
Figure 1), however we did not report those results in this paper because there 
was not much difference between the absence and presence of the empty 
phoneme in the G-P combining method. 
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6 Discussion 
The experimental results in Figure 2, Figure 3 and Figure 4 clearly show that 
our newly proposed rules (GGR3, GGR4, and GGR5) were more effective than 
the rules representing unigram and bigram models (GGR1 and GGR2) since 
they could help improve the model’s performance. However, the results given 
by Approach6 allow us to assume that the strongest rule, such as in this case 
GGR6, does not always lead to the highest performance because it increases the 
complexity of the training datasets. In addition, the rules that are designed to 
enable extra detail for the consonant graphemes (i.e., GGR7, …, GGR11) were 
not helpful in tackling the problem concerning G2P conversion at all and also 
degraded the model’s performance.  

In the one-stage model-based G2P conversion, even though the most effective 
rules were applied, the WAcc of the IV datasets was very difficult to improve, 
since it was already very high (for Baseline1, WAcc= 98.39%). However, it 
could still be improved by adding the second stage. As a result, the two-stage 
model-based G2P conversion appears to keep almost the same WAcc for the 
OOV datasets and boosts the WAcc of the IV dataset (i.e. +0.2% ~ +0.3% in 
WAcc= 200~300 words difference). Therefore, we believe that our proposed 
approach also can improve the WAcc of the OOV dataset if we select the OOV 
words carefully, as other researchers have done [20]-[22]. According to an extra 
experiment, the newly prepared training and testing datasets (which consist of 
100,564 and 11,125 words, respectively) selected only words with grapheme-
phoneme pairs appearing at least four times in both datasets. The newly 
obtained results based on the one-stage architecture prove that our proposed 
approach using GGR5 (Approach4) outperformed the baseline approach 
(Baseline 1-0) (p < 0.05), while obtaining 73.89% and 73.54% as WAcc of the 
OOV dataset using Approach4 and Baseline 1-0, respectively. 

Figure 4 shows that the highest accuracy for each group of OOV datasets 
(V1…V6) was obtained using different approaches, which means that it appears 
to be very difficult to use only one approach to solve all the problems associated 
with G2P conversion. Therefore, this experiment demonstrates that at least five 
different approaches are required to reach the maximum value of WAcc related 
to the OOV datasets. After selecting only the trained models providing a 
maximum value of WAcc for each group of OOV datasets, we obtained 74.39% 
and 99.02% as the WAcc of the OOV and IV datasets, respectively. These 
results show that, if we are able to correctly pick the best output phonemes from 
several results given by different models, then this combined technique could 
outperform the baseline approaches (i.e. 0.94% = 108 words difference for the 
OOV dataset and 0.63% = 634 words difference for the IV datasets). 
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7 Conclusion 
It has been shown in this paper that using new grapheme generation rules that 
are designed to enable extra detail for vowel graphemes can improve the 
performance of G2P conversion. The new phoneme prediction method allows 
the second-stage model to learn the pronunciation rules more easily than the 
first-stage model because both the grapheme sequences and the preliminary 
phoneme sequences have already been identified at the input level. Moreover, 
we have shown that using a single-stage approach is not sufficient to deal with 
all the problems associated with G2P conversion, because each approach is 
designed using different technique to address different challenges and therefore, 
using various approaches proves very helpful in solving different specific 
problems. 

In the future, we plan to design more effective rules to reduce the complexity of 
pronunciation in both training and testing datasets. This can potentially boost 
the word accuracy of our proposed approach to a higher level. The method 
using pseudo-phonemes presented in [6] will also be helpful for further 
improvement of our approach. Furthermore, we will integrate a confusion 
network data structure [23] and the voting schemes implemented in the NIST 
Recognizer Output Voting Error Reduction (ROVER) system [24] into the 
proposed method. This integration will allow us to design an accurate 
architecture that is able to combine different approaches for tackling different 
problems concerning G2P conversion.  
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