

18

J. ICT Res. Appl., Vol. 8, No. 1, 2014, 18-30

Received September 13th 2013, Revised March 13th, 2014, Accepted for publication March 28th, 2014.
Copyright © 2014 Published by ITB Journal Publisher, ISSN: 2337-5787, DOI: 10.5614/itbj.ict.res.appl.2014.8.1.2

ACAFD: Secure and Scalable Access Control with Assured
File Deletion for Outsourced Data in Cloud

Sudha Senthilkumar1* & Madhu Viswanatham2

 1School of Information Technology and Engineering,
VIT University, Katpadi, Vellore, Tamil Nadu 632014, India

2 School of Computer Science and Engineering,
 VIT University, Katpadi, Vellore, Tamil Nadu 632014, India

 *E-mail: sudha.s@vit.ac.in

Abstract. Cloud storage has emerged as a popular paradigm to outsource data to
third party and share it with the collaborators. While this new paradigm enables
users to outsource their sensitive data and reduces data management costs, it
brings forth the new challenges to the user to keep their data secure. Data storage
security and access control in the cloud is one of the challenging ongoing
research works to alleviate the data leakage problem from unauthorized users.
Existing solutions that use pure cryptographic techniques suffers from heavy
computation work with respect to key management and key distribution.
Attribute based encryption is an alternative solution that map the user access
structure with the data file attributes to control the data access. However any of
the existing schemes doesn’t address the access control with assured deletion of
the files upon revocation of user access. This article addresses this open issue
using a trusted authority that manages the access control list and takes care of
key management and key distribution and file deletion upon user revocation. The
prototype of model has been presented and analyzed the security features over
existing scheme.

Keywords: access control; access control list; assured file deletion; cloud computing;
cloud storage; data owner; trusted authority.

1 Introduction

Cloud computing brings new level of efficiency and economy to deliver an IT
resources on demand as a service over the internet. It introduces the new
operational and business models for the enterprise to pay for the resources as
they use, by which it relieve the enterprise burden to invest and manage their
own IT infrastructure. Apart from enterprises, individuals can also use cloud
services to store their large volume of data in third-party cloud servers so as to
relieve the users from managing their own servers for data management. Cloud
storage (Zip cloud [1], Amazon S3 [2], MyAsiaCloud [3], Googledrive [4])
offers an infinite storage space for clients to store their sensitive data. However,
it imposes the data security challenges when the users or enterprises outsource
their sensitive data to third-party cloud servers.

 Secure and Scalable AC with Assured File Deletion 19

As data owners move their data on untrusted cloud servers, it brings forth the
high demand and concern for data confidentiality [5]. In addition to data
confidentiality and privacy breach, the untrusted servers could use the data for
their financial benefit and brings the huge amount of economic loss for the
owners. In December 2010, first major data breach happened in Microsoft and it
announced that data contained within its Business Productivity Online Suite
(BPOS) has been downloaded by unauthorized users [6]. Another example is
AT&T, Apple data leak protection issues in cloud breaches 100,000 of email
addresses of iPad user’s public [7].

There are several research work carried out to provide secure access control
mechanism to protect cloud outsourced data. A direct approach is to use
cryptographic techniques onto sensitive data and disclose encryption keys only
to authorized users. However distributing and protecting the encryption keys
from the unauthorized users create another security issue. A number of methods
[8]-[10] have been recently proposed to accomplish flexible and fine-grained
access control in cloud. Unfortunately these methods do not address the file
deletion upon data owner request to revoke file access from the cloud user.
Cloud storage provider may not totally expunge all backup file copies from its
storage servers and it may disclose the data to malicious users if encryption
keys are obtained by malicious attacks. Tang, et al. [11] addresses the file
assured deletion upon revocation of user access, which focuses only the file
assured deletion and do not consider the fine-grained access control.

In this paper, this open issue has been addressed for access control and file
assured deletion and propose an ACAFD a secure, scalable access control with
assured file deletion for cloud computing. ACAFD uses the trusted authority to
decouple the access control maintenance, key management and key distribution
activity from the cloud service provider. Data owner submit the access control
details for the file it upload in the cloud and obtain the RSA public keys from
the trusted authority. Further the data owner encrypts the file with a symmetric
key and encrypts the symmetric key with session key and stores it in the Cloud
Service Provider (CSP). Disclosing access details to CSP may create possibility
to change the access rights when the CSP collude with any malicious users.

The remainder of the paper is organized as follows. In Section 2 related research
work has been reviewed. Section 3 presents system models and assumptions.
Section 4 represents algorithms of proposed scheme. In Section 5, ACAFD has
been analyzed with existing scheme. Finally Section 7 concludes the paper and
presents the future research direction.

20 Sudha Senthilkumar & Madhu Viswanatham

2 Related Work

There are several research work carried out to address the access control issues
in cloud computing. Yu, et al. [8] proposed a scheme to achieve secure, scalable
and fine grained access control in cloud computing. They combined the
techniques of Attribute-Based Encryption (ABE), Proxy re-encryption [12] and
lazy re-encryption [13] to achieve the data access control on untrusted cloud-
servers. Each data file can be related with attribute set. A user access structure is
defined using a unique logical expression over these attributes, which indicate
the user access level to access that file. Unique public keys are defined for each
attributes. Data files are encrypted using the public keys associated with that
attributes. Users are able to decrypt the file with secret key defined for their
access structure, by which it allow the file decryption if and only if data file
attribute match with the user access structure. However deriving a unique
logical expression using attribute set for each data file will create heavy
computation overhead for data owner. Besides, re-encryption of data file upon
revocation of user access requires updating the secret keys of all user except the
revoked one, becomes an issue if the number of users are large.

Wan, et al. [9] proposed a scheme that supports the hierarchical user structure to
achieve scalable and fine-grained access control. They extend the ciphertext –
policy attribute based encryption with the hierarchical user structure. Data
owners who encrypt the file specify an access structure for the ciphertext. The
users can decrypt the ciphertext with the decryption keys, only if the attributes
specified in the key structure satisfy the access structure given by the data
owner. Computation complexity varies depending upon the depth of key
structure and access tree structure. Hence, the decryption is performed at the
data consumer, it impact the scalability of the overall system.

Hota, et al. [10] proposed a capability-based access control to guarantee
confidentiality, integrity and authentication in cloud outsourced data. Data
owner create the capability list and update in cloud service provider. The
encrypted data files and capability list are stored in cloud service provider.
Based on the user request for file access, the CSP will verify the capability list
and send the encrypted data file to the user. Hence the symmetric keys are
known only between the data owner and data user, the CSP will not know
anything about the data file. However, it may create the possibility for the CSP
to change the access control information incase if it colludes with the malicious
users.

Yun, et al. [14] proposed a cryptographic file system to provide integrity and
confidentiality guarantee for outsourced data. It performs the encryption based
on universal-hash based MAC tree scheme. Goh, et al. [15] proposed a secure

 Secure and Scalable AC with Assured File Deletion 21

file system for remote untrusted storage called SiRiUS. It divides the file into
two parts, file data and meta data file. The file data contains the encrypted and
signed contents while meta data file includes the access control details. The file
data encrypted using the file encryption key and signed using file signature key.
The meta data file contains several encrypted key blocks that represent number
of users access to that file. Each key block is encrypted with respective user
master encryption key (MEK) that includes file encryption key (FEK) for read
users and both file encryption key (FEK) and file signature key (FSK) for read
and write privilege users. In addition, the first key block in meta data file
encrypted using owner’s master encryption key (MEK) and entire meta data
file signed using owner’s master signature key (MSK). In order to ensure
freshness guarantees the timestamp is included in meta data file. However, there
is no provision to ensure freshness guarantees for data file in SiRiUS that make
data file are prone to replay attacks.

Tang, et al. [11] proposed a scheme that enables file assured deletion once the
user access is revoked. The data file that is uploaded to the cloud is associated
with the access policy.

The control keys are created and maintained by the key manager and it is
associated to each policy. The data file will be encrypted with a data key and
data key further encrypted using a control key corresponding to that file access
policy. Once the access policy revoked, the corresponding control keys are
deleted from the key manager. Hence, the main design objective of this scheme
is to ensure file assured deletion, there is no strategy used for fine-grained
access control. So our main objective in this paper is to provide the framework
that incorporates both secure and scalable access control with assured file
deletion.

3 System Model and Assumptions

3.1 System Model

As shown in Figure 1, the cloud computing system in our model consists of the
following entities: Data owner (DO), Data Consumer (DC), Cloud Service
Provider (CSP), Trusted authority (TA), Group Manager (GM), Group Member
(GMem).

The DO creates the Access Control List (ACL) for the data file to be uploaded
into the CSP and submit it to the TA in secure manner. In case of group access
for the file, the DO submit the single ACL entry in TA to support scalability.
The GM is the top-level entity that authorizes the DC who belongs to the
groups. The TA is the trusted node that manages the ACL list and provides the

22 Sudha Senthilkumar & Madhu Viswanatham

RSA public key based on the DO request. The DO encrypt the data file with the
symmetric key and upload it in the CSP. The DC should get the certificate from
the TA to access the data file resides in the CSP. Similar to [10] the DO and DC
comes online only if it needs to upload and download the file in CSP. The TA,
CSP and GM are always online. The DO can be a project manager in an
organization who upload the project related document in a CSP or can be
university teachers who upload the course material into the CSP. DC can be
employees in an organization or the students who access the course materials in
a university. The DO can upload the files that can be read by individual
employee in an organization or it can be related to the group of employees.

Figure 1 System Model.

3.2 Security Model

In this model, the CSP is assumed as untrusted entity that may collude with the
malicious users to change the access control information, even to harm the file
contents stored in the cloud. The TA is the trusted entity that resides within the
DO domain to be responsible for key and access control management. TA
ensures that the master key which is used to encrypt the file key will be
removed in case of user revocation of file access. Also this scheme assumes that
each party is already preloaded with other parties public key using an existing
PKI infrastructure.

 Secure and Scalable AC with Assured File Deletion 23

4 Algorithms of Proposed Scheme

In this section, the data structures and algorithm of ACAFD scheme has been
described. Table 1 show the acronym used in our algorithm along with its
definition.

Table 1 Glossary.

Acronym Definition
Kpriv_owner private key of owner
Kpub_owner public key of owner
Kpriv_Gmem private key of group member
Kpub_Gmem public key of group member

Kpriv_CSP private key of service provider
Kpub_CSP public key of service provider
f i ith File
HMAC Hash algorithm
FID File ID
OwnerID Owner identifier
AR Access Rights
ei, ni RSA public key of ith user
SK Symmetric Key for file encryption
Si secret key
Ri Random number

4.1 File Upload

The DO creates the access control lists that consist of File Identifier, User
Identifier, and Access Rights and File creation time and expiration time. In case
of group access instead of user identifier the owner create the Access control list
with the group identifier. The ACL lists are encrypted using the owner’s private
key first and then encrypted using TA public key and transferred to the TA. The
over encryption [16] ensures the authentication and confidentiality between the
DO and TA. TA decrypts the ACL List using the public key of data owner and
its own private key and stores it in its database. TA generates the RSA public
key e, n for the specified file id and sends it to the DO with the X.509
certificate. DO generate the random symmetric key SK for encrypting the file
using the AES encryption algorithm. DO compute the hash value HMAC for
the file to be uploaded and encrypt the file and HMAC using symmetric key.
Along with the encrypted file, DO send the FID, OwnerID, si

ei(modni) to the CSP.
The creation time and expiration time in the ACL ensures the freshness of the
ACL list and automatic user revocation of file access. The Figure 2 shows the
file upload procedures.

24 Sudha Senthilkumar & Madhu Viswanatham

Figure 2 File uploads procedure.

Algorithm for file uploads:
Step 1: Preparing a ACL List in DO and send it to TA
 DO -> TA

1.1 For each file fi create ACL

 ACL <- Epub_TA(EKpriv_owner(FID,UID,AR,Creation_Time, Exp_ time))
Step 2: Obtain RSA public key from TA
 TA - > DO
 Receive certificate (ei, ni)
Step 3: upload File to CSP
 DO -> CSP
 3.1 generate random symmetric key SK
 3.2 encrypt the file and HMAC using SK
 Esk(F,HMAC)
 3.2 Encrypt SK using si

 Esi (SK)
 3.3 Send the encrypted file along with FID,ownerID and key details to CSP

 CSP < - EKpriv_owner(Epub_CSP((FID,ownerID), si eimodni , Esi
(SK),Esk(F,HMAC)))

 3.4 CSP decrypts the file upload message and stores the files along with the file
details in its database.

 CSP <- DKpub_owner(Dpriv_CSP((FID,ownerID), si eimodni , Esi
(SK),Esk(F,HMAC)))

 Secure and Scalable AC with Assured File Deletion 25

4.2 File Download

The DC send the request for file access to TA with the unique file id, user id
and access right request along with the timestamp of request and nonce. The file
access request will be encrypted using the consumer private key and TA public
key for the purpose of authentication and confidentiality. The TA decrypts the
request using its own private key and then with consumer public key. If DC
belongs to the group, he should be authorized from GM before it can request for
file access. The file access request for the group member will be encrypted
using the group member private key along with (GID, AR) that is encrypted
with group manager private key. The entire file request is over encrypted using
TA public key for authentication and confidentiality purpose. Timestamp and
Nonce in the file access request are used to eliminate the replay attacks that may
occur between the communicating parties [17].

Figure 3 File Download.

Based on the file access request, TA checks ACL list to verify the authenticity
of DC. In case of valid user the TA provide file access certificate to DC that are
encrypted with CSP public key. The DC forwards the certificate to the CSP in
order to download the file from CSP. The CSP decrypts the certificate with its
private key and then fetch the file based on the certificate and send encrypted
file and key details to the DC. Based on the blinded RSA [4] DC generates the
random parameter R, compute R eimodni and include with Si eimodni. Now DC

26 Sudha Senthilkumar & Madhu Viswanatham

passes the Si eimodni R eimodni to the TA to obtain the secret key in secure manner.
The TA then computes (Si

eimodni Ri
eimodni)dimodni which is equal to ((SiRi) eimodni)

dimodni. DC will obtain the ((SiRi)
 eimodni) dimodni from TA which is equal to SiRi.

Now DC can remove Ri from SiRi and obtain Si, and decrypt Si(SK) to obtain
symmetric key SK. Further DC can decrypt the file fi, HMAC using symmetric
key SK [9]. The Figure 3 describes the file download procedures.

Algorithm for file downloads:
Step 1: DC or GMem send the request for file access to TA
 TA <- (Epub_TA(EKpriv_DC(FID,UID,AR,Timestamp, Nonce))) or
 TA <- (Epub_TA(EKpriv_GMem(FID,UID,AR,Timestamp, Nonce),
EKpriv_GM(GID,AR)))
Step 2: TA provide the certificate for file access to DC
 DC <- (Epub_CSP(FID, AR,Timestamp, Nonce))
Step 3: DC will forward the certificate to CSP
 CSP <- (Epub_CSP(FID, AR,Timestamp, Nonce))
Step 4: CSP fetch the files based on the File ID and send to DC
 DC <- EKpub_DC(Epriv_CSP (FID, ownerID), Si

eimodni , ESi (SK),Esk(F,HMAC)))
Step 5: DC decrypt the message and apply blind component R to secret key Si

eimodni Ri
eimodni and send to TA to request secret key
 5.1 DC <- DKpriv_DC(Dpub_CSP (FID, ownerID), Si

eimodni , ESi (SK),Esk(F,HMAC)))
 5.2 TA<- (Si

eimodni Ri
eimodni)

Step 6: TA compute ((SiRi)
 eimodni) dimodni and pass it to DC DC <- (((SiRi)

 eimodni)

dimodni) => SiRi
Step 7: DC remove Ri from SiRi and obtain Si, decrypt symmetric key SK with Si, using
SK it will decrypt the file and obtain HMAC and verify the integrity with newly
computed HMAC.
 DSi(SK), Dsk(F,HMAC)

File Deletion: When a user leave the organization, the DO should ensure their
access control is revoked from the TA. The TA delete RSA private key of
corresponding file once the access control is removed from its database.
Without the RSA private key di, it is impossible to obtain Si and without Si it is
not possible to know the SK to decrypt the file fi. This meets our main design
objective of assured file deletion once the user file access is revoked from CSP.
In case of group user revocation, the TA keeps the RSA private key di until the
entire users in the groups are revoked. However the user ID in the group is
removed by the group manager.

5 Security Analysis

In this section, the security properties of ACAFD scheme have been analyzed
and then discussed the performance analysis of ACAFD scheme in each
operation.

 Secure and Scalable AC with Assured File Deletion 27

Confidentiality and Integrity: The proposed ACAFD scheme discloses only
the encrypted file details into the CSP, other details like access control
information and key management are maintained by the trusted entity TA. This
ensures that our scheme prevent the CSP to collude with malicious user’s to
change the access rights. Also the message exchange between all the
communicating parties uses over encryption, which ensures the authentication
and confidentiality of this scheme. Increasing key length using over encryption
makes brute-force attack is very difficult. The key exchange between DO and
DC are securely performed using blinded RSA method [11].

To ensure the integrity of the file, the DO compute the HMAC for the outsource
file and then the file, HMAC is uploaded into CSP. After fetching a file, the DC
computes the HMAC from the decrypted file and compares it with HMAC that
is provided with the DO. If both match, the DC can assure the integrity of the
file.

Freshness Guarantees: In order to ensure the freshness of access control
information, the DO include the creation_time and expiration time Exp_time
with the ACL list. In case of ACL list update for the specific file, the DO can
update the creation_time and as well as expiration time. This will allow TA to
perform timely revocation of user access [18] and help TA to prevent the access
control rollback attacks.

Key Management: The key distributions and key maintenance are the
responsibility of trusted entity TA which reduces the burden for DO to
distribute the keys to authorized users. Also the TA removes the RSA private
key of the files based upon the user revocation for specific file access. As per
our design it is not possible to obtain the symmetric key without the RSA
private key of that file. Hence the file cannot be recovered by anyone else. This
implies the assured file deletion once the user access for the file is revoked.

Access Control Management: The DO is disclosing the access control details
to the TA in a secured manner. It also makes a single entry for the group
members to access the same file that is authorized by the GM. This supports the
scalability to avoid the multiple entries for same file access. Also to make the
TA more reliable, we can expand the TA with quorum of TA as mentioned in
[14],[19]. As per this scheme, only files and key details have been disclosed in
encrypted form which needs to be uploaded into CSP. Other than that the CSP
will not know any information related to access details of the files. This
prevents the CSP to collude with malicious users to change the access control
information [8].

28 Sudha Senthilkumar & Madhu Viswanatham

6 Performance Analysis

New File Creation: To create a new file, the DO needs to update the ACL
entry in TA, and should obtain RSA public key information from the TA. After
this DO can generate the random symmetric key by which they can encrypt the
data file. Further, symmetric key are encrypted using a secret key and secret key
are raised to the power eimodni to transmit key securely. Here the complexity of
file creation involves size of data file, the type of symmetric key algorithm
used, algorithm used for encrypting a symmetric key and secret key raised to the
power of eimodni. Assume T1 is a total time required to encrypt a file fi, encrypt
symmetric key SK using Si and raise a secret key to the power eimodni . T2 is
the transmission time to upload the file in CSP and T3 is the decryption time at
CSP then time complexity for new file creation is O(N) where N = T1+T2+T3.

Efficient File Access: DC can request for file access to the TA. TA verifies the
authority of the DC and if DC is valid user, it prepares the certificate and sends
it to DC. DC forwards the certificate to CSP to obtain the file information.
According to the TA certificate, CSP obtain the file details from its database
and transmit to DC. Further DC request TA to obtain secret key using blinded
RSA and then decrypt the files. Assume if T1 is the total time required to
prepare file access request and transmit, time required to receive the certificate
and time required to forward the certificate. T2 is the file transmission time
from CSP to TA and T3 is the request for secret key and reply and T4 is the
decryption time at DC then time complexity is O(N) where N = T1+T2+T3+T4.

Efficient User Revocation: To deal with efficient user revocation, we have
included the expiration time in each ACL entry by which the TA can perform
automatic user revocation. Once the DO request the removal of use access
rights, the TA remove the specific ACL entry from its database. So the time
complexity to revoke the use access is O(1).

File Deletion: After deletion of ACL entry, the TA deletes the RSA private key
of that user associated with that file. Without the RSA private key, the data file
in CSP is no more accessible by any users. This fulfills the file assured deletion
of our ACAFD scheme. The time complexity for file deletion is O(1).

7 Conclusion and Future Work

In this paper ACAFD prototype has been presented, which provides the secure
access control with assured file deletion. This scheme seamlessly integrates set
of cryptographic file operations to secure the files outsourced to cloud. Further
this scheme empowers the DO to upload the file into CSP without disclosing the
access control information in CSP. This scheme not only provides the efficient

 Secure and Scalable AC with Assured File Deletion 29

access to the file, but also achieves the efficient user revocation, file deletion
and freshness guarantees in access control. The theoretical security and
performance analyzes have been discussed which provides the insight into
security–performance trade-off of this scheme when it is deployed into cloud.

In future extension, this ACAFD scheme will be implemented into real public
cloud like Amazon S3 or Microsoft Azure to prove the security of this scheme.
Further the quorum scheme into the TA will be implemented to enhance the
reliability of the TA in case of access control and key management.
Enhancement into this current design involves including the trusted third party
auditor service to assess the cloud service risks.

References

[1] ZipCloud, http://www.zipcloud.com (1 November 2013).
[2] Amazon Simple Storage Service, http://aws.amazon.com/s3 (1 November

2013).
[3] MyAsiaCloud, http://www.myasiacloud.com/ (1 September 2013).
[4] GoogleDrive, https://drive.google.com (1 September 2013).
[5] di Vimercati, S.D.C., Foresti, S., Jajodia, S., Paraboschi, S. & Samarati,

P., A Data Outsourcing Architecture Combining Cryptography and
Access Control, Proc. ACM Workshop on Computer Security
Architecture (CSAW’07), USA, Nov 2007.

[6] Thomas, K., Microsoft Cloud Data Breach Heralds Things to Come, PC
World, http://www.pcworld.com/article/214775/microsoft_cloud_data_
breach_sign_of_future.html (1 November 2013).

[7] Deltcheva, R., Apple, AT&T Data Leak Protection Issues Latest in Cloud
Failures, http://www.messagingarchitects.com/resources/security-compli
ance-news/email-security/apple-att-data-leak-protection-issues-latest-in-
cloud-failures19836720.html (1 November 2013).

[8] Yu, S., Wang, C., Ren, K. & Lou, W., Achieving Secure, Scalable, and
Fine-grained Data Access Control in Cloud Computing, in Proc. IEEE
INFOCOM 2010, San Diego, CA, pp. 534-542, 2010.

[9] Wan, Z., Liu, J. & Deng, R.H., HASBE: A Hierarchical Attribute-Based
Solution for Flexible and Scalable Access Control in Cloud Computing,
In Proc. IEEE Transcations on Information Forensics and Security, 7(2),
April 2012.

[10] Hota, C., Sanka, S., Rajarajan, M. & Nair, S.K., Capability-based
Cryptographic Data Access Control in Cloud Computing, International
Journal of Advanced Networking and Applications, 3(3), pp. 1152-1161,
2011.

30 Sudha Senthilkumar & Madhu Viswanatham

[11] Tang, Y., Lee, P.P.C, Lui, J.C.S. & Perlman, R., FADE: Secure Overlay
Cloud Storage with File Assured Deletion, IEEE Transcations
Dependable on Secure Computing, 9(6), 2012.

[12] Blaze, M., Bleumer, G. & Strauss, M., Divertible Protocols and Atomic
Proxy Cryptography, in Proc. of EUROCRYPT ’98, 1998.

[13] Kallahalla, M., Riedel, E., Swaminathan, R., Wang, Q. & Fu, K.,
Scalable Secure File Sharing on Untrusted Storage, in Proc. of FAST
’03, 2003.

[14] Yun, A., Shi, C. & Kim, Y., On Protecting Integrity and Confidentiality
of Cryptographic File System for Outsourced Storage, In ACM Cloud
Computing Security Workshop (CCSW), Chicago, Illinois, USA, Nov.
2009

[15] Goh, E., Shacham, H., Modadugu, N. & Boneh, D., Sirius: Securing
Remote Untrusted Storage, Proc. Network and Distributed Systems
Security Symposium (NDSS’03), San Diego, California, USA, pp. 131-
145, 2003

[16] di Vimercati, S.D.C., Foresti, S., Jajodia, S., Samarati, P. & Paraboschi,
S., Over-encryption: Management of Access Control Evoluation on
Outsourced Data, Proc. 33rd International Conference on Very Large
Databases (VLDB’07), Vienna, Austria, pp. 123-134, 2007

[17] William Stallings, Cryptography and Network Security, Prentice Hall
Upper Saddle River, N.J., 2006.

[18] Perlman, R., File System Design with Assured Delete, In ISOC NDSS,
2007.

[19] Shamir, A., How to Share a Secret, Communication of the ACM, 22(11),
pp. 612-613, Nov 1979.

