J. ICT Res. Appl., Vol. 7, No. 1,2013, 15-35 15

Performance Analysis of a Reconfigurable Shared Memory
Multiprocessor System for Embedded Applications

Darcy Cook' & Ken Ferens’

1JCA Electronics, 18 King Edward St. E., Winnipeg, MBR3HON8 Canac
“Electrical and Comput Engineering, Room E2-390 Engineering mfation anc
Technology Comple, University of Manitoba, Winnipeg, MB R3%V6 Canad
Email: Ken.Ferens@ad.umanitoba.ca

Abstract. This paper presents a method to predict pelance of multiple
processor cores in a reconfigurable system for edd@ applications.
multiprocessor framework is developed with the tdg of reconfigurable
processors in a shared memory system optimizedtfean-oriented data an
signal processig applications. The framework features a disctiete Markov
based stochastic tool, which is used to analyze engigontention in the share
memory architecture, and to predict the performainerease (speed !
execution) when the number of processs varied. Performance predictions
variations of other system parameters, such asrdiit task allocations and t
numberof pipeline stages are possi as well. The results of the prediction ti
were verified by experimental results of a greereen application develope
and run on a Xilinx Virte-1l Pro FPGA with MicroBlaze soft processors.

Keywords. FGPA; multiprocessor system; reconfigurable proocessscheduling an
task partitioning; shared memory; soft core micropessol

1 Introduction

A custom multiprocessor development environment wopitdvide adde:
benefit to a developer by providing optional sedbte features, framework
and tools, such as: architectural frameworks fecsje classes of applicatior
predefined memory configurons; selection of the number of process
specification of task allocation; a performance prediction tools given a se
selected features. For instance, a framework farticular class of applicatiol
could be invoked from a menu item and autocally built with develope-
specified parameters. However, the choice of the parameterg mot be :
simple matter, because of the design t-offs to consider. Choosing a set
architectural parameters with consideration of eatin constraints may ni
yield the expected performance increase. Lackindigiiee tools, a developt
would need to build, run and test the sys to determine if it meets perk-
mance requirements. Indeed, this could be a ldagtive, and tedious proce
Such a developmergnvironment would benefit well by having design di

Received January 272013 RevisecMarch 26", 2013, Accepted for publication Aprif12013.
Copyright © 2013 Published by ITB Journal Publish86N: 233-5787, DOI 10.5614/itbj.ict.res.appl.20.7.1.2

16 Darcy Cook & Ken Ferens

performance prediction tools, which would completmiiie selectable features
and framework building tools.

An important parameter to consider in designingauaganultiprocessor systems
is the number of concurrent processors. For indlsipplications, one must
weigh the cost of adding processors to a designnsigaghe expected

improvement of execution times. One may conjectirat increasing the

number of concurrent processors will result in dashpplication execution
times. However, increasing the number of processorg& multiprocessor

system with global memory will result in an incredsprobability of memory

contention. More memory conflicts will result inniger processor waiting
times, more processor idle time, and longer taglicetton time. Indeed, adding
additional processors to a system may result irentesks executed in parallel,
but each of the tasks may take longer to execuias€juently, it is not always
clear whether adding more processors will result emough improved

performance to justify the cost of the additionadgessors. A prediction tool is
required. This paper proposes such a performareckqgtion tool.

The remainder of this paper is organized as follo®ection 2 discusses
motivation and previous work that has been dorthigrarea. Section 3 details
the proposed solution to the problem. Section 4paoes the predictions of the
proposed analysis method with experimental measmtsmobtained from a
multiprocessor system implemented within an FPG, with the waiting time
prediction of a simple analysis method. Also, setiohs of larger numbers of
processors were performed and compared. The proposdysis method agrees
with the experimental results. Finally, the conmus are given in Section 5.

2 M otivation and Related Work

Historically, architectural frameworks for multipmessor systems have been
developed to fit as many applications as possigleadcommodating widely
differing requirements. This is because the effartdeveloping application
specific architectures was prohibitive and not caffective. Current
developments in technologies, such as soft processghin FPGA, have
decreased the effort and cost of developing custwitiprocessor systems [1],
[2]-[4]. However, while the cost and effort havectEased, application specific
solutions are still not economically viable. A cammise is a multiprocessor
system that is tailored to a particular class abpgms, which is defined by a
common computing model. This can result in a softutithat is more
computationally efficient than a general solutiamd more flexible than an
application specific solution. Narrowing the anady®f a multiprocessing
system to consider only problems well-suited tcadipular computing model
can allow for better analysis results, since thenmpating model provides

Performance Analysis of a Multiprocessor System 17

additional information compared to general parghelcessing problems. This
paper develops a multiprocessor system framewarla fstream-oriented class
of embedded applications, with analytical perforo®prediction tools.

There have been several studies in the past thee bhaalyzed memory
interference in shared memory multiprocessor systéfowever, these studies
did not use a computing model to constrain the giesConsequently, the
analysis methods were applied to a wider rangeaslpms, but at the cost of a
less accurate analysis. Since the model of compwiias not considered in
these studies, assumptions could not be made aheutontents of global

shared memory, and therefore it had to be assulmzdthe global shared
memory must contain both data and instructionsthim case where global
memory contains data and instructions, a single Iglebal memory

multiprocessor system is inefficient because tle very high probability of

memory interference, which counteracts the beneffteexecuting tasks in

parallel. Therefore, in these studies more complekitectures were leveraged
to reduce memory interference, such as cache systamd multiprocessor
systems with multiple memories, either connected icrossbar network ([5]-
[9]), or with multiple buses ([2],[6],[10]).

Previous studies assumed that all processors reguascess to shared memory
with the same probability throughout all executi®herefore, memory requests
were often modeled as a Bernoulli process withxedfiprobability for discrete
time analysis ([5]-[7].[9].[11]), or as a Poissoropess with a fixed probability
for continuous time analysis [8]. This paper taliadifferent approach, because,
in the stream-oriented data and signal processingpating model, the shared
memory contains only data and not instructionss fheans that the probability
of requesting access to shared memory depends eorspicific task being
executed, since the function of a task will detewnihe frequency and size at
which data in shared memory needs to be accessehislipaper each task has
its own probability of accessing global memory. dsesult, a novel feature of
the multiprocessor framework presented in this papthat the probability of a
memory request is allowed to change for a partiquiacessor as the processor
switches from executing one task to another.

This paper also differs from previous work in hovemory service time is
modeled. Most of the previous studies assumedtltleatnemory service time is
constant ([5],[7].[9],[11],[12]]). Furthermore, s@mresearchers assumed a
Bernoulli process [6] or Poisson process [8] formmey service. In these
studies, the type of memory used in the systemalsagacted and encapsulated
within the hardware architecture. This paper recmthat the memory service
time is dependent on the specific memory type uaed,not on the hardware
architecture itself. Therefore, the memory sertice is represented by a phase

18 Darcy Cook & Ken Ferens

type distribution that can be adjusted to fit th@racteristics of the specific
memory used in an application.

In summary, the main contributions of this paper. ar

1. A statistical measuring tool to measure the exgkepgrformance increase
with an increase in the number of processors imkipnocessor system.

2. A method of determining the expected additionalcekien time for each
task due to memory waiting time for analyzing tlea&fits of adding more
processors to a multiprocessor system.

3. By limiting the analysis to consider only a compgtimodel that is specific
to stream-oriented data and signal processingttiistical analysis method
produces more accurate results than more genaxgisssimethods.

4. A task dependent, memory-request probability mixldeveloped.

5. A phase type distribution that can be adjusted geciically fit the
characteristics of the memory technology is dewetop

3 Solution Strategy

The goal of the analysis is to determine the exgoeatnount of time a processor
must wait to access data memory, when another gsocéhas access to the
memory. From this information the execution timettod task can be extended
to represent the average execution time when cerisglthe time waiting for
memory access. This allows for the tools to compi#ferent implementations
of the system, such as different numbers of prarsss

3.1 Partitioning the Processing Period

One of the difficulties encountered in the analygs that each processor could
execute several different tasks in a processinpgeand each task generally
could have different and independent memory reqpesbabilities §;). The
difficulty was in dealing with a variable number ohemory request
probabilities in a processing period. Further coomubng the problem was that
the time at which a processor switches from oné tasanother task is
independent from that of other processors in thetesy. To work around this
difficulty, the processing period was partitionettoi windows, where each
window was chosen so that, within a window, thedfelasks being executed
did not change for all processors. The analysispesformed on each window,
and after the analysis of a window, the resultirgmary access waiting times
for the tasks in that window were used to adjustgiocessing period. This was
continued for all windows in the processing period.

For example, a processing period with a full pipelis shown in Figure 1. The
first window analyzed is the largest window wherngracessor does not execute

Performance Analysis of a Multiprocessor System 19

more than one task; this is the overlapping seatibtasksA, C, andD, as
shown in Figure 1(a). The system is then analyaatktermine how much time
those sections @k, C, andD are lengthened when the time waiting for memory
access is considered.

|
D Data Set 1 Data Set 2 Data Set 3 iD Data Set 1 Data Set 2 Data Set 3
|
|
oo
Processor 1}|::: Proc. 1
Processor Zi Proc. 2
i1 Processor 3 2214 Proc. 3

First
Analyzed
Window

o
Analyzed
Window

|
j
Processing Period (t,) } Processing Period (t)
|
(a) | (b)

Figurel First and second windows analyzed in the procegsenigpd.

Suppose that after analyzing the first window, tihvee for taskA was extended
(due to memory access time). Consequently, theepsiileg period was now
lengthened to compensate for Tdsk extension, as shown in Figure 1(b).It can
be seen that the overall processing period waghengd, because task A was
extendedB must come afteA is finished; andE must come afteB is finished.
This change would also create a gap between Gaskd E on Processor 3,
which is now an additional window that must be spadl, that was not a
window before the first iteration. The second windihat is to be analyzed is
shown in Figure 1(b). This window consists of tégin processor 1 and taBk
on processor 3. Processor 2 does not execute dhighgiindow, so the system
is analyzed as if there are only two processorshisrwindow. After the second
window is processed the processing period may @aggin. This process is
repeated until the entire processing period isyaeal, at which point the entire
processing period will be adjusted to take intostderation the memory access
waiting times.

3.2 Analyzing a Partition

In order to analyze any particular partition of gfrecessing period to determine
the amount of time that each processor waits fanomg access while another
processor is being served, the memory requestadiy grocessor were modeled
by a discrete time Markov chain. A state diagram artransition matrix were
used to represent the discrete time Markov chaiomRhe point of view of
each processor in the system, there are four siaaeshe memory controller
can be in at any given time. The first state oceuren the memory controller is
polling the current processor to see if it has anony request. The second state
occurs when the memory controller is in the midbktservicing a memory

20 Darcy Cook & Ken Ferens

request from the current processor. The third statrs when the memory
controller is servicing other processors and thveecil processor does not have
a pending memory request. The fourth state occhenwhe memory controller
is servicing other processors and the current gsmehas a pending memory
request. When the memory controller is servicirgepjprocessors, it is said to
be on vacation with respect to the current procedde third and fourth states
represent the cases where the memory controll@m igacation, with respect to
the current processor. The additional task-exeputime due to a processor
waiting for memory access in a multiprocessor sysie determined by the
amount of time spent in state four. Accordinglye thoal of the proposed
analysis method is to determine the amount of tpent in state four, from
which the effect of memory interference on the taskcution time can be
determined. Figure 2 shows the state transitiogrdia for processar with the
probabilities of changing states shown on the tti@nsedges. The transitions
from state to state are defined by the probalifiapsition matrix in Eq. (6).

V'8

4 a (V*B)

Vacation:
No Memory
Request

Servicing:
Memory
Request

Polling:
No Memory
Request

a (s’ +s L-a)V, Vi

@-a)Vv°

d-aV

Figure2 State transition diagram for procesgor

Each memory request queue was individually modeké Geo/PH/1 system
with PH vacations. This means that the arrivalhef tnemory access requests is
a Bernoulli process with arrival probability (for processoi); service is a
negative binomial phase type with representaith8),k and there are vacations
with representatiorfv;, Vi),m. Thev; is a vector describing the probability of
starting in each phase %f; V, represents the phases of the vacatithis the
vector representing the end of the vacation; anid the order of the square
matrix V;. The system is considered to be on vacation wiennmemory
controller is serving other processors.

The probability transition matrix for a processas represented by Eq. (1). The
notation Qg represents an by j matrix full of zeros. Each cell in the matrix
(Cellj, wherei,j = 1..4) represents a probability of transition from oma&tes to
another.

Performance Analysis of a Multiprocessor System 21

0 ap (1_ a,)Vi O(ml)
b= -a)s° a (Soﬁ)+ S Omy Oy
Cla-aMe als) @-aM av)
0(1m) V|Oﬂ 0(mm) Vl

The cells in the first row of the above matrix meg@nt the transition
probabilities of the memory controller transitiogifrom State 1 to States 1, 2,
3, and 4, respectively. The first cel€ll;;) represents the transition probability
of the memory controller going back into State hewit is currently in State 1.
In other words, this is the probability the memoontroller will check again to
see if there is a memory requests from procesafier it has determined there
were no memory requests by processdrhe probability of remaining in this
state for the next time quanta is 0, becausef {ijei controller determined that
the processarhad no memory request, then the controller walhsition to the
state “Vacation: No Memory Request” with probabiliiL- «;)Vi; and (ii) if the
controller determined that the processohad a memory request, then the
controller would transition to the state “Servicinglemory Request” with
probability ;8. Similarly, Cell,, = Omiy represents the probability that the
controller will transition to State 4.

The second row in the above matrix representsrémsition probabilities of the
controller transitioning from State 2 “currentlyrgeing the memory request of
processoi” to States 1, 2, 3, and 4. The system will remaithis state in the
next time quanta if memory service does not finmhjf service finishes but
another memory request is made immediately. Ifiserfinishes and another
memory requess not made immediately, then the system will retiorthe first
state where the memory controller will wait one dimquanta for another
memory request. The second state consists of aenofisub-states, where the
number of sub-stateskswhich is the order of the memory service mag&ix

The third row of the above matrix represents treeaahere the controller is on
vacation (i.e., the memory controller is servingthler processor's memory
request) and there are currently no memory reqé@sigocessor. The system

can go to any other state from this state. If vianaends (i.e. the memory
controller has finished serving other processang)) o memory request arrives,
then the system will go to the first state to waie time quanta for a memory
request to arrive. If vacation ends and a memoguest does arrive, then the
system will go to the second state where the mememyest will be served. If

vacation does not end and no memory request arrities the system will

remain in the third state. If vacation does not and a memory request arrives,
then the system will go to the fourth state. ThHedtstate consists of a number

22 Darcy Cook & Ken Ferens

of sub-states, where the number of sub-states, iwhich is the order of the
vacation matrixv,.

The fourth row of the above matrix represents geovhere the system is on
vacation and there is currently a pending memoqyest. In this case no more
memory requests can arrive so the system can eghwin in the current state
if vacation does not end, or it will go to the sedcstate if vacation does end,
where the pending memory request will be serveeé.fohrth state consists of a
number of sub-states, where the number of subssittie which is the order of
the vacation matri¥/;.

3.2.1 Vacation Mod€

For a given problem the arrival probability;, for each processor in the
partition that is being analyzed is known, andgsbevice of the memory,S).k
is also known; thereforéyi,Vi),m, is the only remaining unknown process.

The vacation probability transition matrix for pessoti is given by:

[A(imod N)+1 B(i mod N)+1]
A((i+1) mod N)+1 B((i+1)mod N)+1 |

| (2)

I

I
V= | A((i+2)mod N)+1
l A((i+N—2) mod N)+1

Each submatri¥y represents transitions between states of procgsdule it is
being served by the memory controller. Each mdypepresents the transitions
from the states where the memory controller wasirsgrprocessoy, to the
states where the memory controller is serving meag+1 (or processor 1, if

= N, whereN is the number of processors in the system). Thecsipts of the
A matrix and theB; matrix consist of the “mod” operator. This operat®
necessary in the notation to account for the wrappiround of the subscript.
That is, when processpis done being served, the memory controller mdoes
processoi+1, but if j+1is greater than the number of processors in thesys
(N), then it wraps around to processor 1. For exanifpleere were 4 processors
in the systemN=4), then the matrix used to represent the vacatiggraressor
3 (i=3) would be of the form:

A, B,
V,; = A B (3)
A,

Performance Analysis of a Multiprocessor System 23

The form of the matrixA; representing transitions between states when the
memory controller is serving proces$ds shown below.

A= 0 a,p
' (1_0'1)80 aj(SO,B)+S @)

The first row in the above matrix represents tla¢esivhen there are 0 memory
requests. In this case the processor will only ienma service if a memory
request arrives, in which case the memory requididbegin being served. If no
memory request arrives then the memory controlifrge on to serve the next
processor (this transition is represented in m&gix

The second row represents the state when therementory request that is
currently being served. If service finishes andneav memory requests arrive,
then the state represented by the first row (O mmgmexrjuests) is entered. The
state remains the same if either service doesmehf or if it finishes but a new
memory request arrives to start a new memory receegice.

The form of the matrixB; representing transitions between states when the
memory controller is moving from serving procesgaio serving the next
processor (which i§+1) mod N is shown below.

B :[(1_¢(j+1)modw)(1_aj) ¢(j+1)modN(1_aj):3}
: O(1k) 0(I<k) (5)
The F'row of this matrix represents the state when taeeeD memory requests
for processoj. The 2%row represents the state when there is 1 memonegtq
for processoj. Since the processor will never start a vacatitverwthere is a
pending memory request that can be serviced, titgapility of starting to serve
the next processor when there is one memory redsidgst which is why the
second row consists of zeros. When there are 0 myeraquests the memory
controller will start to serve the next procesdmut it could transition to the
state where there is no pending memory requesthfomext processor, or it
could transition to the state where there is a mgnctemory request for the
next processor, depending on whether a memory sicegsest has arrived for
the next processor since it was last served. Thanpetery; represents the

probability that a memory request is made by premeg from the time its
vacation starts to the time that its vacation efitiéss means that-¢; represents
the probability that there are no memory requesislarby processgrin the
time that its vacation starts to the time its viratends. The first entry in the
first row of matrix B; represents the transition from serving procegsty
serving the next processor (proces§ot) mod N when there are no memory
requests pending for proces¢prl) mod N The second entry in the first row of

24 Darcy Cook & Ken Ferens

matrix Bj represents the transition from serving procegdorserving the next
processor (process¢irrl) mod N when there is one memory request pending
for processofj+1) mod N The vectow; that represents the start of vacation for
processor can be represented as follows:

Uizl_(l_¢(i+1)modN) ¢(i+])modNﬁ o .. O] (6)

The first entry in the vector represents the tiaosito serving the next
processor (processér-1) mod N when there is no pending memory request
for the next processor. The second entry in théoveepresents the transition to
serving the next processor when there is one pgndamory request. The rest
of the vector is filled with zeros. The vector thaepresents the transitions when
the vacation of processarends is given by,°, and can be represented as
follows:

v 0 ™

1_a((i+N—2)modN)+l

L Oy
This shows that the vacation for processdinishes after processd(i+N-2)
mod N)+1(which is the previous processoritim the cycle) was being serviced,
but now has 0 memory requests, and no new memquese arrived.

The parametep; is defined as the probability that a memory regjoesurs for
processoli while processor is on vacation. To determine this value, first the
amount of time spent in the vacation process nded®e known. The
probability of the vacation process ending in dipalar number of time quanta
needs to be determined for all time quanta amowtisre the probability is
significant. The first step in calculating theselmbilities is to create a new
Markov chain with a probability transition mati%’ by combiningy;, V;, and
V?°, as shown below:

|0 Vv
Vi_|:ViO V:| (8)

Starting in state 1 o¥;’, the system will transition to the sub-matkixby the
probabilities in the starting vectar, it will then sojourn withinV; until it
returns to state 1 by the probabilities defined/ifh Since the vacation process
(v;,V;),m starts throughy; and ends through® and sojourns withinv; during
vacation, the vacation time is the same as the tivaeit takes to return to state

Performance Analysis of a Multiprocessor System 25

1 of V; for the first time when starting from state 1. Tparameterfx,y‘“)is
defined as the probability of first visiting statérom statex in a Markov chain
at then™ time quanta. The following result has been shawiet valid by [13].

fX(,?/ﬂ) vazfz?/) yr;/)ny fOf‘nZ 1 (9)
Themis the number of states in the Markov chain, agds the probability of
transitioning to statg from statex. This also means thét, 1):va for anyx and
y. The probability of finishing the vacation procéss time quantum can then
be calculated by using (14) to calculfté” in the Markov chain represented by
V', which is the probability of first returning toasé 1 starting from state 1in
time quanta. The probability of processaequesting access to memory in one
time quanta was previously given as This can be used to calculate the
probability of processorrequesting access to memory withinime quantum,

defined as;™, with the following equation.
o =a Z(l— a,)"™ forn=1 (10)
h=1

Egs. (9) and (10) can now be used to calculatgtbleability that the vacation
for processoi will end in n time quantum and that there will be a memory
request made by processaturing that vacation. This probability is definasl
9™ and is calculated by:

p" =0t fornz1 (11)

Therefore the probability that a memory requestuoedor processor while
processoris on vacation is given by:

¢ = ;¢i<n) (12)

It is not practical to use (12) to determipgesince this equation involves an
infinite sum. It can be shown that if the probapilof requesting access to
memory for each of the processors is less tharel, i< 1 for alli), then the
probability of eventually finishing a vacation isThis means that state 1 \d4f

is a recurrent state for which the following eqoatholds true [11]:

> f= (13)
n=1

This fact can be used to determine a practicalt lbmithe sum in (12) by
choosing some acceptable error limjtwhere:

26 Darcy Cook & Ken Ferens

" f) —
Z_;‘f” =1-¢ (14)

Eq. (14) gives an upper limit, to the sum in (13), where the probability of the
vacation ending in more thantime quantum is considered insignificant. The
smaller the errorg,, the larger the value of which means that more accuracy
in the calculation ofp; will come at the cost of increased computational
overhead. Once the valueraf calculatedy; can be approximated by:

¢ = z¢i(n) (15)
n=1
The calculation o; is shown in the form of a pseudo code functiomwel

Functiong; = calc_phi (V, ;)

-- order_\/'is the order of the square matrix V

order_\[« get_order(V)

N«

F < V/ -- Fis the matrix holding the probability of first
--moving from each state to each other staifufr
-- the current value of n, where f(1,1) is the
-- probability of flnlshlng the vacation in mie
-- quantum

sum«— F(1,1)

-- g, Is the probability of a memory request occurringni

-- t|me quantum for the current value of n (Eqoati5)

G(—
Qj— 0. * F(1,1)-- Equation 16

-- check to see if the error limit has been reache
while (sum < 1¢,)
--this next for loop calculates the next value @fs-
-- shown by Equation 14
for x=1 to order_VY
for y=1 to order_YV
total— O
for z=1 to order_V
total— total + V (X,2)*F(z,y)
end (for)
F_new(x,y)— total - F(y,y)* V/'(x,y)
end (for)
end gor)

F<— F_new
sum«— sum + F 1,1)
0.<— 0.+ (1 (X.% -- E uation 15
(1,1)-- Equation 16 and 17
end (|Ie)

end (function)

Performance Analysis of a Multiprocessor System 27

An iterative algorithm to calculatei that depends on the probabilities in the
probability transition matrix Vi’ is outlined belaw

Fori=1to N
@i < o;-- initialize all ¢; parameters
g1 -- initialize all g

end (for)

w]tnle (f| > 10-12 for any i)-- check for convergence
ori=

(pl_old<— ¢; -- save the lasp, parameter, because a
- new one will be calculated
-- create the Vmatrix the based on the lategt
/" < build_vacation Procesm(l)
-- calculate the new value of
¢; = calc_phi (V, o)
g «—@;_old-¢; -- calculate the error between the
-- currentp and the last one
end (for)

end (while)

The above algorithm first assigns an arbitrary @atuy; for alli, 1<i<N. In this
case the value fap; is assignedy. While any value between 0 and 1 can be
assigned and the algorithm will still work, usingvalue that is closer to the
actual final value will result in faster convergen&inceyp; is the probability
that there will be a memory request while procesgoon vacation and is the
arrival probability, in general, the largeris, the largep; will be, which is why

a; is used as a starting guess.

An error valueg; is kept for each processor. This is the differebpetveen the
latest value of; and the value af; that was calculated previously. When all of
the error values are less than30then this means that the algorithm has
converged to a final value gf for all i. The error values are initialized to 1 at
the beginning to ensure that the while loop is reateéhe first time. Then the
vacation matrices for each processdW;, V°, v) are built using the current
value of¢; for all i. Then a new value af; for all i is calculated using the
functioncalc_phi The difference between the new valuesg;@nd the previous
values ofgp; are calculated. This difference is checked toikdéeis less than
10" for all i. If the error is smaller than the limit, then thaues ofp; have
converged to the final values, otherwise the pmce®ds to be repeated. Once
the final values ob; are determined, there are no longer any unknosmshe
vacation process is fully defined. This algorithepdnds on convergence of the
@i values. If the values @f do not converge then the algorithm would continue
indefinitely and, therefore, it would not be stalitaplicit proof of convergence
for this algorithm is not offered in this paperwever, an argument for proof of
convergence could be made that is similar to tloefpof the stability of token
passing rings made by Georgiadis and Szpankowg$k#in

28 Darcy Cook & Ken Ferens

3.2.2 Determining the Memory Access Waiting Probability

Now that the vacation process for each processaiefmed, the probability
distribution of the discrete time Markov chain thabdels the memory accesses
of each processor can be determined. From the Ipititpadistribution the
amount of time that is spent waiting for accesthéomemory when the memory
controller is currently serving another processor be determined.

First the vacation proces§;;,V,),m, for each processaris built using the
determined values af; for all 1<N, as shown with (3), (4), (5), (6), and (7).
Then the vacation process is used to build theaglidity transition matrix for
the Markov chain representing the memory access@socessol, as shown
with (1). Then the steady state probability vectocan be calculated for the
Markov chain. The steady state probability vectmrR®;, can be calculated by
solving for y = mP,. The steady state probability vector represents th
probability of being in any given state fin a steady state condition.

The fourth block row ofP; shown in (1) represents all of the states where
processori has a pending memory request, but the memory altertris
currently serving other processors. Thereforestira of the probabilities in the
steady state vector that represent the stateseirdotlirth block row of the>,
shown in (1) is the probability that the procedsas a pending memory request,
but the memory controller is serving another preoesEach of the rows in the
matrix shown in (1) is made up of several sub-rafswhich the number
depends on the number of states in the memorycgepvbcess, which Is The
first row shown in (1) is actually only one row. &lsecond row represeris
actual rows. The third and fourth rows are eachenga ofm sub-rows, where
m is the order of the vacation process. The ordeh@fvacation process is also
dependent on the order of the memory service, ande determined by (16):

m=(k +1)(N -1) (16)
There is one block row in the vacation for eaclhcpssor, except the processor
who the vacation process is defined for, so therdl-iL block rows in the
vacation. Each block row in the vacation is madeofig+1 rows, one row for
the case where the currently serviced processofhmaemory requests, arkd
rows for the case where the currently servicedgssar has 1 memory request
that is being serviced. This means that the sutheofastm items in the steady
state vectorr; will be the probability that processorwill have to wait for
memory access when it has a pending request betteisgemory controller is
currently serving another processor. This is regresi mathematically as:

Z=Y""" mlh] (17)

Performance Analysis of a Multiprocessor System 29

Where {; is defined as the probability that processavill have to wait for
memory access when it has a pending request betteisgemory controller is
serving other processors, and the notatifin means the iterh in vectorz,.

3.2.3 Adjusting the Partition to Account for Waiting Time

Now that{; for each processor can be calculated, these vahrede used to
adjust the length of the patrtition of the proceggieriod that is being analyzed
so it can be adjusted to account for the time ¢laah processor spends waiting
for memory access. The partition ends when thé tirsk that is executing in
the partition ends. In order to determine whiclkktasds first, the end time of
each of the tasks is calculated taking into comaiéten the memory access
waiting time. The end time of each task can beutaled with (18):

t

t _ ‘remaining_old _i

remaining_new_i 1- ZI (18)

The tremaining_old_iIS the time remaining in the task execution withoensidering

the memory access wait times, from the beginninip@fcurrent partition being
analyzed. The task that has the smallgstining new iiS the task that will end
first, and therefore this is the new partition tjrdefined asparition_new

The other calculation that needs to be done inramleadjust the processing
period to be able to analyze the next partitiotoisletermine how much of the
task processed on each of the processors is dahim e analyzed partition.
The ratio of the task executed in the partitionetito the total execution time of
the task that is executed on processardefined a%,. The value of), can be
calculated by (19):

| -
ei — _partition_new (1_ZI) (19)

1:total _task_i

Thetwa sk i1S the total execution time of the task executggtmcessor when
the memory access waiting time is not considerdtk flemaining time that
needs to be analyzed for each task can then belat@d by (20):

t = liotal_task i ~ Liotal _task i (9| +6 prev_i) (20)

task_remaining_i

The O, i is the ratio of the amount of the task that weelya®ed in previously

analyzed partitions. After the amount of each thsk is remaining is calculated
the entire processing period can be updated, aednéxt partition can be
analyzed.

30 Darcy Cook & Ken Ferens

4 Experimental Results

Validation of the statistical analysis method wasaplished by comparing it
with the measurements taken from a real multipsiogssystem. We used a
Xilinx Virtex-1l Pro FPGA [15] on the Xilinx XUPV2Rdevelopment platform
[16]. MicroBlaze [17] soft processors were usederheach processor was
clocked at 100 MHz. This system was limited to fMicroBlaze processors for
a given application. The minimum time quantum wasn%. A polling based
memory controller was implemented within the FPGAe global memory was
implemented with RAM with access time less tharcpssor clock.

A green screen video system was used to test thlysés method. This is a
common technique used for television weather fatscto show the weather
map behind the meteorologist. The example applinatikes two images that
are in YUV colour format, converts them both to R@8&our format, then

replaces all of the green pixels in the primary gmavith the corresponding
pixel from the secondary image. Then the combinaaje is converted back to
the YUV colour format. The example application wiagded up into 16 tasks.

The first step in implementing the system was tothe example application on
a system with a single processor, to determineséhi@l execution time of each
of task (Table 1). The tasks were then allocatedach of the N processors
based on the single processor task parameters wasiggeedy scheduling
algorithm from [18]. In order to analyze this systéo predict the effect of the
memory access waiting times, a memory access niedededed. In this case
the global memory service was modeled by a negdivemial process, with
k=18 and p.~0.95.This resulted in a probability distribution thatogely
matched the experimental data.

Tablel Single processor task parameters.

Task Initial Task Time AccessRequest Task Initial Task Time Access Request

(nsx 10) Probability (ey) (nsx 10) Probability (o)
0 1484 0.054 8 968 0.525
1 1484 0.054 9 968 0.525
2 1484 0.054 10 1268 0.549
3 1484 0.054 11 968 0.525
4 1484 0.054 12 2630 0.681
5 1484 0.054 13 1268 0.549
6 968 0.525 14 1368 0.459
7 1268 0.549 15 1368 0.459

An example application where the global memory badth is saturated after
only adding a few processors to the system wasechsgecifically to show the
benefit of this analysis method over a more siniplspproach. The analysis of

Performance Analysis of a Multiprocessor System 31

the processing period was performed for a systetn %i 3, and 4 processors
and compared to the experimentally measured primgepsriod times. Also, a

simple analysis method was applied that calculttesprocessing period by
assuming that the maximum bandwidth of the globatiory had been reached.
Therefore, the processing period time was calcdlbtesubtracting the portion

of each task that was due to memory accessesctiemating the processing

period of the parallel tasks, then adding the s@inhe time for each memory

access (which was previously subtracted). This atk#ssentially assumes that
every time a memory access was requested, thelghodmory was already

being serviced by another processor, so that tleeepsing time can be

parallelized but all of the memory accesses weeewed serially. In addition, a

comparison was made with awblivious processing period, which ignores
memory interference.

2.5
g, D —
—".‘
x
.. W
2 S
B 1.5
5
[-% . .
téo 1 ¢ LN
‘2 *e**** Ignores Interference "'--....,._"
8 g5 - === Actual Measurement e
g = == proposed Estimate
0 e Simple Estimate
1 2 3 4
Processors

Figure3 Processing period results (saturated bandwidth).

Figure 3 shows that the proposed analysis preditare quite close to the
actual measurement of the task periods. The sirapldysis method is not
accurate in the case of 2 processors. The simplgsas method gives an upper
limit to the expected processing period time, whishclose to the actual
measurement only when the global memory bandwisltiaturated (3 and 4
processors), but it is not a good estimate wherb#melwidth is not saturated (2
processors). The proposed analysis method in thpempis superior to the
simple analysis method because it does not depencthe@mory bandwidth
saturation, and it gives a good estimate for athbers of processors tested.
Furthermore, the results show the significance rafluding the effect of
memory interference; the predictions made by thkviobhls method, which
ignores memory interference, are significantly eaéred, while the proposed
estimate agrees with the actual hardware.

32 Darcy Cook & Ken Ferens

Additional simulations were performed to predictl@ompare the performance
of larger numbers of processors. An application ghassen such that it could be
divided into different numbers of tasks and alledato different numbers of
processors, as follows: {2,8}, {3,12}, {4,16}, {5, {6,24}, {7,28}, {8,32},
{9,26}, {10,40}, {11,44}, {12,48}, {13,52}, {14,56}, {15,60}, and {16,64};
where in {p,t}, p is the number of processors anid the number of tasks. The
application required 10000 ns of single CPU timaclEtask was assigned a
random task time, with the constraint that the sifirask times of all tasks was
kept constant at 10000 ns. In addition, each taak wassigned a random
probability of memory access, with the constrairattthe sum of probabilities
of all tasks remained constant at 1.0. This enstiredapplication had a 100%
chance of accessing global memory. Finally, eask t#zas randomly allocated
to one of four slots of a processor.

Figure 4 shows that the processing period of tlupgsed method decreases
with increasing number of processors, as expeciéd. rate of decrease is
increasingly dampened with increasing number ot@ssors because of the
increased probability of memory contention. Addieditional processors to
the system results in more tasks executed in pralit each of the tasks take
longer to execute because of memory contention.pfbposed prediction tool
clearly shows the expected improvement of perfoaearand it provides a
means to judge and justify the cost of adding p@sces to the system. In
particular, the results show that the system resaghabal-memory interference-
saturation at about 6 processors, and, accorditigdye is decreasing benefit in
adding more processors than 6 to this system.

10

8

\ \ = ===Single Processor
6 \

\.\ \

-~

—
- — o -
—m =

Processing Period (ns x 103)
S
-

0 1 2 3 45 6 7 8 9 10 11 12 13 14 15 16
Number of Processors

Figure4 Prediction and comparison of multiple processofgrarance.

Performance Analysis of a Multiprocessor System 33

5 Discussion

Figure 3 and Figure 4 demonstrate the importanceons$idering the effect of
memory interference in a shared memory multipraresgstem. On the one
hand, the oblivious prediction, which ignores tffee of memory interference,
overshoots the processing period by an averag®¥%f 4nd in some cases as
much as 80%. On the other hand, the proposed fimdimethod agrees with
the experimental results, and provides a very gestimate of the actual
processing period. Furthermore, the results demaestthat the proposed
prediction method leads to a faster and more ecaabrsystem. For instance,
Figure 3 shows that, on the one hand, the simpddysis method predicted a
very minimal improvement for increasing the numbeprocessors from one to
two, and this may have incorrectly lead a develdperhoose a one-processor
system. On the other hand, the proposed prediatiethod would have
suggested a three-processor system, which runs fa8%r than a single-
processor system, at the cost of an additional pnaressors. Finally, the
simulations suggest the proposed prediction metieoohains superior to the
oblivious method. The simulations show that whilkee toblivious method
predicts the same global memory saturation poimt, proposed prediction
method provides a better economic cost and beauaditysis.

6 Conclusion

This paper has provided a method for determiniegetkpected amount of time
that each processor in a stream-oriented sharecorgemultiprocessor system
will wait for memory access because another pracdssbeing served. Since
the memory controller operated by polling each gssor for memory requests,
each processor's memory requests was individuatlgeted as a discrete time
Markov chain Geo/PH/1 system with PH vacations.rThe using an iterative
algorithm to determine the vacation process fohgaocessor, the system was
analyzed to determine the amount of time that gaobessor spent waiting for
memory access when another processor was accegsngnemory. The
proposed analysis allows the processing period pipalined execution of a
data flow graph to be adjusted to account for tleenory access wait time. The
proposed analysis tool is useful for evaluatindedént task allocations, number
of pipeline stages, and number of processors ys& to see how changes in
these parameters could change the performanceystem.

Acknowledgement

The authors acknowledge Attahiru S. Alfa for prangl the inspiration of
applying queuing theory for the prediction tool.

34

Darcy Cook & Ken Ferens

References

[1]

[2]

[3]

[4]

[5]
[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

Cong, J., Han, G. & Jiang, WSynthesis of an Application-Specific Soft
Multiprocessor SystemProc. 2007 ACM/SIGDA 15th International
Symposium of FPGA, pp.99-107, 2007.

John, L.K. & Liu, Y.,Performance Model for a Prioritized Multiple-Bus
Multiprocessor SystenlEEE Transactions on Computed$(5), pp.580-
588, May 1996.

Othman, S.B., Salem, A.K.B., Saoud, SBRSoC Design of RT Control
Applications based on FPGA SoftCore Processolibth IEEE
International Conference on Electronics, Circuitsgd Systems, pp.404-
409, Sept. 2008.

Ravindran, K., Satish, N., Jin, Y. & Keutzer, Kkn FPGA-Based Soft
Multiprocessor System for IPV4 Packet Forwardinbpternational
Conference on Field Programmable Logic and Appbeat pp.487-492,
Aug. 2005.

Bhandarkar, D.P.Analysis of Memory Interference in Multiprocessors,
IEEE Trans. CompC-24(9), Sept 1975.

Das, S.K. & Sen, S.K.Analysis of Memory Interference in Buffered
Multiprocessor Systems in Presence of Hot Spotd-andrite Memories
Proceedings of the TOInternational Parallel Processing Symposium,
pp.281-285, Apr 1996.

Mudge, T.N., Al-Sadoun, H.B. & Makrucki, B.AMemory-Interference
Model for Multiprocessors based on Semi-Markov Bsses,|IEEE
Proceedings on Computers and Digital Techniglig44), pp. 203-214,
July 1987.

Naderi, M.,Modelling and Performance Evaluation of Multiprosess,
Organizations with Multi-Memory UnitsSIGARCH Comput. Archit.
News,16(5), pp. 35-51, Dec 1988.

Sethi, A.S. & Deo, N.Interference in Multiprocessor Systems with
Localized Memory Access ProbabilittiesEEE Transactions on
ComputersC-28(2), pp. 157-163, Feb 1979.

Paul, J.M. & Mickle, M.H. ,Multiprocessor Shared Memory Access and
Rewards,Journal of the Franklin Institut&335(4), pp. 629-641, May
1998.

Isaacson, D.L. & Madsen, R.W.Markov Chains Theory and
Applications New York, United States, Wiley, 1976.

Reijns, G.L. & van Gemund, J.CAnalysis of a Shared-Memory
Multiprocessor via a Novel Queuing Modé&| Syst. Archit.(Netherlands),
45(14), pp.1189-1193, July 1999.

Rosenblatt, M.Markov Processes: Structure and Asymptotic Behavior
New York, United States: Springer-Verlag, 1971.

[14]
[15]
[16]

[17]
[18]

Performance Analysis of a Multiprocessor System 35

Georgiadis, L. & Szpankowski, WStability of Token Passing Rings
Queueing Syst. Theory ApplL1(1-2), pp. 7-33, Jul 1992.

Xilinx Inc., Virtex-11 Pro and Virtex-1l Pro X Platform FPGAs:dplete
Data SheetDS083 V4.7, Nov. 2007.

Xilinx Inc., Xilinx University Program Virtex-l Pro Development
System-Hardware Reference ManuaG069 V1.1, Apr 2008.

Xilinx Inc., MicroBlaze Processor Reference Guitdés081 V9.0, 2008.
Hu, T.C.,Parallel Sequencing and Assembly Line Proble@erations
Research9(6), pp.841-848, 1961.

