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Abstract. If a communicatio networkN with n stations has every station link
with at Ieast|_n/2j other stations, then the edge-connectivityNoéquas its

minimum degree. Alsoin general, this limitation istated to be the be
possibility, as wagroved by Chartrand in 1966. A modevelopednotion of
edgeeonnectivity is introducedwhich is called k-component order ed-
connectivity. It is tle minimum number of edges required to be removetthat
the order of eactisconnected componeis less thatk.
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1 Introduction

Any network, be it aing fiber optic network, satellite communicatiaretworl,
terrestrial microwaveetwork, o social relationships networkan be modele
using graph-theoreticmethods. Network vulnerability is an importal
considerationn network design

The utilization of communication networks has gratnemendously in the la
decade, foexample fortransmitting voice, data, and images around thddw
With the widespread dependence upon such netwibriscomes important f
find networks that yield a high level of reliability anal low level of
vulnerability to disruption

It is desirable to considithe quantitative measures of a network’s vulnerabi
To obtain such measu, we canmodel the network by a graph in which
station terminalsare represented by the nodes of the graph andrike dre
represented by the edg

An important measure @ network’s vulnerability is its edgmnnectivity, the
minimum number of edges wte removal from the network disconnects it i
two or more componentWe assume thaelecommunication networks he
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stations that are perfectly reliable, but linksttbauld fail in accordance with
some known probabilistic model or due to purposeftack.

In the classical model, a network is consideretidamperating if every station
can communicate with every other station througimesgpath connecting
stations and operating links. If any failure ofirgklIresults in a pair of stations
no longer being able to communicate, then the métas failed. In this case,
we say that the network has become disconnected.

The traditional vulnerability concept for this mbde the minimum number of
links whose failure results in a disconnected netwdherefore, if all links

originating from a particular station fail, thenathstation is unable to
communicate with other stations and the network lbesome disconnected.
Equivalently, the value of the traditional edgedsectivity is at most the
minimum degree of any station. In 1966, Chartrabd droved that if each
station is linked to at least half of the othertietss, the network cannot be
disconnected if fewer than a minimum number of difiil, i.e. the network is
invulnerable to failure if fewer than the minimumaunt of links to any station
fail.

Under the supervision of Frank Boesch, togetheh Wdharles Suffel, Daniel

Gross, John Saccoman, and L.W. Kazmierczak, | hadpportunity to study a

new network vulnerability model callddcomponent order edge-connectivity in
which a network is considered operating as longhase is a predetermined
number of stations, sadythat can still communicate regardless of whether t
network is connected [2],[3].

We introduced a new concept calledomponent order edge-connectivity as a
new vulnerability parameter, which is the minimummber of links whose
failure results in a disconnected graph and the bmunof stations in each
subnetwork containing less than the predetermingdberk. Hence the value
of the new vulnerability model ékcomponent order edge-connectivity depends
onk, the minimum number of stations that is needecbtamunicate. It is clear
that if k increases, then the value of paramdt@omponent order edge-
connectivity decreases, i.e. fewer links need tioifiaorder for the network to
fail.

When we need all stations to communicate, thiomponent order edge-
connectivity equals the edge-connectivity of ttaglitional parameter. Also, the
failure of all the links to one station resultsainlisconnected network only if we
need all stations to communicate. Thus, the vafueamponent order edge-
connectivity can be greater than the minimum degfdinks to any station. In
this paper, we study the relationship between thenmym number of links to
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any station, edge-connectivity, ankicomponent order edge-connectivity
parameters [4].

2 Vulnerability M odels

2.1  Traditional Edge-Connectivity A(G)

Given a connected communication netwdtkwith n stations,n= 2, we can

makeN into a disconnected network by removing certaikdibetween stations
in N. The interest in this problem is usually maximizeg minimizing the

number of links whose removal will disconnétt Chartrand [1] presents the
result of a disconnected network by those linkslilggto the station having the

fewest links. In particular, he proved the follogitheorem, wheréxJ denotes
the largest integer not exceeding

Theorem 2.1 [1]. If a communications networkl with n stations has every
station linked with at Iea#:[nlzj other stations, then the minimum number of
links whose removal will disconnebt is equal to the least number of links to
any station irN. Also, the numbetnlzj cannot, in general, be improved.

With every communication netwoik an ordinary grapks is associated, whose
setV of nodes corresponds to the stationsNofind whose seE of edges
corresponds to the links

Without a doubt, the problem of communications urdiscussion is equivalent
to determining the minimum number of edges whoseoxal will disconnect
the associated network. This leads to two defingio

Definition 1 [1]. A connected grapks is medge connected if the removal of
any k edges fromG, 0<k <m, results in a connected graph. A disconnected
graph is defined to be 0-edge connected.

Definition 2 [1]. The maximum value o for which a graphG is medge
connected is referred to as #mge-connectivitpf G and is denoted by (G). It
follows immediately that the edge-connectivity ofgeaph is the minimal
number of edges whose removal disconnects the graph
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Theorem 2.2 [4]. Let G be a connected graph of ordenf 5(G) = BJ then

A(G) = 5(G).Furthermore, there possibly exists a connectedhgdpof order

n>6 with 5(G’) <EJ—1 and G’y < 5G").

This theorem is illustrated by graphli and 62 in Figure 1 [4],[5].

Figurel GraphsG; andG, with A(G;) <4(G;) and A(Gy) =3(Gy) = BJ .

2.2  k-Component Order Edge-Connectivity /lf:k) (G)

It is reasonable to consider a model of networlimch it is not necessary that
the surviving edges form a connected subgraphragde they form a subgraph
with a component of some predetermined order. Waustroduce a new edge-
failure model, thé&k-component order edge-failure model. In this modélen a
set of edges fail, we refer toF as ak-component edge-failure set and the
surviving subgrapl@ — Fas ak-component edge-failure stateGf- F contains
no component of order at ledstwherek is a predetermined threshold value.

Definition 3 [3],[4]. Let 2<k <n be a predetermined threshold value. khe
component order edge-connectivity or component order edge connectivity

of G, denoted by Aék)(G) or simply Aik), is defined to be

)I(Ck) (G)=min{| F|:F OE,F is k-component edge-failure set}, ie. all
components o6 —F have orde< k —1.

Definition 4 [3],[4]. A set of edge§ of graphG is /lf:k) -edge set if and only if

it is ak-component order edge-failure set gid|= Af:k).
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We give two examples for showing the above debnitof this parameter in a
cycle graph,G(Cn), and a star graptG(K, ,,_;), with n nodes.

Example 1 [1],[4],[5]- )Iék) (C,)): We start with removing one edge, then it

becomes a path withnodes withn — 1 edges. Leff be the set of edges of the
new graph (or a path) which is divisible ky- 1. It will be an easy exercise to

see that each component(b}‘] - (F +1) has order no more th&n- 1 andH| is

minimum. Therefore/l(k) (C)H= [n_—lJ +1= [L—l
c n k-1 k-1

Example 2 [1],[4],[5]. Af:k) (Kl N —1) :Deletion of any set aih edges results in

a subgraph consisting af+1 components, one isomorphic kg 0 nd

a
Ln-m-1
the remaining components isolated nodes. Theredoiecomponent edge-

failure state exists if the componemi n—m-1 contains at most — 1 nodes.

Thusn-ms<k-1o0rn-k+1<m Since component order edge connectivity is
the minimum number of edges whose removal resnlsk-component edge-

failure state, we obtain the following resulék) (Kl N _1) =n-k+1

3 Bounds on Edge- and k-Component Order Edge-Connectivity

If we remove all edge incidents on a single notes treates &-component
order edge-failure state only whierr n; therefore, ifk < n we cannot conclude

that )IE:k) (G) £ 4(G), such that it may possible that

Af:k) (G) < J(G),AE:") - 5(G), or )lf:k) (©) > 5(G).

We now consider the grapﬂal from Figure 1,
(6) _,0 @ _ ©)
A G =47 (G) =47 =1<8(G), 47 (G))> (G,

) -
and AC (Gl) =7> J(Gl).
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Hence, it is a fact that & — F is ak-component order edge-failure state, then it

is also a edge-failure state; therefdre /lfzk) for everyk.

Theorem 31 [4],[5]. For any graph G, A= Af:”)s "(cn_l)s

A2 o 4@ g
c c

Since A < d < e, we will find k that fits into the string of this inequality, such

that AK*D <5< 10
C C

4 Preliminary Result
We will present two lemmas required for our maisutes. The first lemma

establishes a lower bound fﬂik) (G), whereG is a connected graph of order

Lemma 4.1 [4]. Given G be a connected graph of ordeand let2 < k < n.

Then /l(k) (G) = [n_—lJ
c k-1

Proof. AssumeF 0O E is k-component edge-failure set a®- F = Uip_ 1Ci’

where Cl’Cz""’Cp are the component subgraphs®# F, each of order no

more than k — 1. Thus nzzipzlorder(ci)s p(k -1, which implies

pz[knl—l. Upon G is connected, if |F|:)|(Ck)(G) then

(k) DY LU P L
A KR,

We conclude that the proof of the above lemma edsablishes the fact that any

k-component order edge-failure state contains at %?n_] components.
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The second lemma gives a sufficient condition @{G) for the conclusion

AE:k) (G) = 5(G).

Lemma 4.2 [5]. GivenG be a connected graph of ordeand let2<k <n. If

[ki_J(J(G) +1)>n, then AE:k) (G) = 5(G).

Proof. AssumeF O E is ak-component edge-failure set agd- F = Uip_ 1Ci ,

where C1’C2""’Cp are the component subgraphs®f- F, each of order no

more thark — 1.

If )IE:k) (G) < 4(G), then order(Ci ) = J(G) +1 for each. For this, we consider an

arbitrary componentCi and letu be a node ofCi. Since the degreeu)

> J(G) = A(Ck) =| F |, u must be adjacent to at least one additional ncbd@i p

thus orderCi > 2. Using the nodes in:i, produces inequality

order(C. )(order(Ci ) - 1)+ Af:k) (G) > order(C, }3(G) , which implies
order(C, )(oroler(ci )-1)+3(G) 2 order(C.)3(G)
Hence,

order(Ci )(order(Ci ) - 1) > a'(G)(order(Ci ) - 1)

Dividing both sides byorder(C,) ~1) yields the result. Finally, it <3(G),

then

order(Ci )= p(J(G) + 1) > [ki_l—‘(d(e) + 1)
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In Figure 1, consider grapht;z. If k = 6, )Igﬁ)(Gz):B:J(GZ), but
n _| 6 _
[k—_l—l(J(Gz) +1)_ {6—_1—‘(3“) =8>n.

We conclude from the proof of lemmas 4.1 and 4& tivo other sufficient

conditions forAE:k) > J(G) are given in the following lemma without proof.

Lemma 4.3 [5]. GivenG be a connected graph of oraeand let2 < k < n.

LI P (k)
If[k—l—l 1= 9(G), then/lC (G) = J(G).

If 5>k-1 then /lf:k) (G) = 5(G).

5 Main Results

Now we establish the basis theorem for determitiiegoest possible solutidg
such that there exists a connected gi@puf ordern where in such inequality of

/lf:k DGy <s(6) < Af:k) ©G).

r(21)

n

Figure 2 Agrath/ with 5(6/) and,1£ —‘ G <3G

Theorem 5.1 [4,5]. ConsiderG be a connected graph of order If
n

5(G) Z\\n“,lg l<n-1, thenj' W(G) > O(G). Furthermore, ifn 21 ( +1) this is
I +1 ¢

the best possible solution in the sense that fod aluch thatL”J <5< “J -1
+1
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there exists a connected graph/ of order n with J(G/ ):J(G/ )y and

n

HE
ACI cy<asi!).

Proof. We first show that ii<1 <n-1, then| n L If | does not divide

EE

n, then [l—n]—l:L—nJ But n=HJI+r,0<rsl—1 so " _,, " and
-1

{ :

i

n [ and as before n . Finally

n
|
l'l f | divides n, then n=n.=ﬂ.=(ﬂ_1).+1, Thus
>+ | I

_n 0+ =( +1)@nJ+1) >n.
AR

The conclusion follows by applying Lemma 4.2 [4] ttwik=H—|. To

demonstrate the best possible condition we cortstguaph G/ Assume

n>1( +1) and writen:HJHr {I—”J(Hr){l—”]r, whereo<r <I-1. Let

us start withl distinct complete graphb;- r of order HJ andr of order[l—n—l.

These cliques are connected in a path-like marsieh@wn in Figure 2.
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Finally, sincel =1 and HJ >| +1=> 2, there exists a nodein a distinguished

K{nJ of degree L—HJ—l and edges are removed if necessary to obtain

5((3/) = 0. Sincen=I(l +1),{LJ =1, we have[LJ >1.
l+1 [+1
Thus,

Agl_n—‘JrlJ(G/) =1-1<] SL—LJSJ.

Corollary 5.1 [1]. Let G be a connected graph of orderlf 3(G) = EJ then

A(G) = 3(G).

Proof. If we setl = 1, then Theorem 5.1 becomes: Gebe a connected graph
on n =2 nodes. IfBJ < J(G) then Af:k) (G) = J(G). Since/}f:k) (G) = 4(G), the
conclusion follows.

Corollary 5.1 is the first part of Chartrand’s Them (Theorem 2.2). Since any
n

)I([l —|(G) < 9G), thenk = H_‘ is not the best possible condition. We need to do

more work to discuss and further investigate apfibo in telecommunication
networks that mention the second part of Chartsafitieorem.

Applications in telecommunication networks can takeample of the terrestrial
communications network connecting the various gjtighich can be described

in a graph as a network topology paa#(G). To provide reliability of local
connections in every city, you need complete netwapology K, (G).

For example,n = 10, andl = 3 and 4. Then fol = 3, the value of

HJ = {%)J =3, and Lﬂ—l = 4. Thus, for a number of nodes= 10, the network
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topology forl = 3 will consist two complete graphs 0{3(6), and a complete

graph of K4(G).

Similar to the value df = 4, the value - the vah.{eFJ B{OJ 2, and[I } 2.
Then, related to the number of nodes 10, the shape network topology will

consist of two complete graphs t§f2 (G) and two complete graphs Gs(f3 (G)

This example is illustrated in Figure 3 for the sanumber of nodes = 10,
and for different values ¢f| = 3 and =

SN
K.G)  K(Gy) K,(G) K, G) K,Gy,  K,G,)

571:_ 4-2=2

Figure3 (a) Path GraptR, ;(G) contains twoK5(G) and oneK 4 (G) with
1%9(6)2 5(G) for 25k =5 and A% (6) < 5(G) for 5<k <n. (b) Path
Graph B (G) contains twoK, (G) and two K5(G) with Aék) (G) 2 5(G)

for2<k<7 andAék)(G)<5(G) for 7<k<n.

6 Conclusion

In 1966, Chartrand proved that &(G) ZEJ where d(G) is the minimum

degree of any node in the connected gr&obf ordern, then A(G) = (G),
where A(G) is the edge connectivity, which is the minimum emof edges
that must be removed in order to make the graphodisected. We have

demonstrated that the analogous result holds X§?(G), which is the

minimum number of edges that must be removed toodisect the graph into
components, each of order no more thanl. Namely, for all connected graphs
G of ordern there exists a value &fsuch that ifd(G) is sufficiently large then

)If:k) > 0(G). Moreover, the value d&fcan be chosen such th&%‘ < o(G).
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Whenk = n, )If:k) (G) = A(G), and the lower bound o@(G) is EJ thus

Chartrand'’s result follows from ours.
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