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Abstract. This paper investigat the performance of wavelbased
multiresolutionmotion estimatio (MRME) for inbetweening in oldcanimate:
films using threedifferent MRME schemes. The three schemes aoars-to-
fine with a wavelebased MRME, one of Zhang's MRMNs, and arMRME in
the spatial domairin ordel to make a performance comparison of thdsaME
schemestwo video sequencewere used for a simulatiorThe experiment
results show thathe coarse-to-fine method performed better thamang'’s
MRME and theMRME in the spatial domain. The evaluation reswoitsblock
size 9x9 indicate that tkcoarse-to-fine method had an averagak signéto-
noise ratio (PSNRof 23.48 dB for the first sequence and 29.84tf@r secon
sequence.
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1 Introduction

In order for a videdo havethe high visual and audio qualithat modern
audiences desirehé restoration oold animated films is requiresince they
havesome kind of damay, such as intensity flicker, noise abldtches [], [2].
Old animated filrs werecreated by hand drawing. Amiaator makes
number ofkey framesand an assistant will then build theermediate frame:
As a result, the motion of the object appears , which interferesvith human
vision. Inbetweeningims to smooth the object motion.

Inbetweening is @rocess obuilding intermediate frames between two ima
in order to show @mooth movement between the first ¢he secondimage.
The intermediateframe is called'in-between’. Inbetweening islso a key
process in all othdlypes of animation, including computer animat

Many researchers have done rese on inbetweeningbut it remain an
interesting studysubjec since the optimal solution fanany problems ts not
been obtained yetDe Juan and Edenheim [3] use gradiefased motiol
estimation on traditionzanimations. This methodan process color animati
videos, but itrequires high computir power and in practicé cannot handls
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displacements greater than 5 pixels [1]. Seah and[4] use a modified
hierarchical feature-based matching method for emoéistimation to build in-
between line drawings from a pair of input line wlireggs. This method uses
features such as intensity, edge, angle, displatenmientation, and
smoothness magnitude.

Most of the inbetweening research done is for 2edisional animation that is
not old and in which the systems requires a lohwman intervention. The
process of inbetweening in this study was imposdy on gray-level animated
films that had some damage.

Inbetweening performance depends on the resultsotibn estimation. Motion

estimation is a process to determine frame displao¢ in a sequence of
pictures. There are several motion estimation dlgos, such as the block
matching algorithm (BMA), gradient algorithm andagk correlation algorithm.
The BMA is the most popular as it is easy to imgemin software and

hardware. According to research [5], [6], the blasktching algorithm with a

multiresolution approach can produce smoother motaxtors. In video coding
and compression, wavelet-based motion estimatipf@]7has received much

attention due to its superior performance compdoea@onventional motion

estimation in the spatial domain. Zhang [8] progoaematching block with a
multiresolution approach on video coding based amelets. His method uses
the wavelet transform to decompose a video frantedrset of sub-frames with
different resolutions.

This paper investigates the performance of waumeed multiresolution
motion estimation for inbetweening in old animatildhs based on three
algorithms and three types of block sizes for matgh

2 Wavelet-Based Multiresolution Motion Estimation (MRME)

2.1 Concept of MRME

Multiresolution motion estimation (MRME) is a spaictase of the hierarchical
block motion estimation (HBME) approach, using &bté block sizes. It can
reduce computational complexity because MRME esémanotion vectors
hierarchically.

MRME in the wavelet domain is similar to MRME iretilspatial domain. In the
spatial domain, a video frame is decomposed intoraber of frames with a
different resolution using the Gaussian pyramitherLaplacian pyramid. In the
wavelet domain, a video frame is decomposed intaraber of frames with a
different resolution as well as with different sphorientations.
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In a wavelet-based MRME technique [7],[8], the mptestimation process is
carried out in the wavelet domain. It starts wistireating the motion vectors at
the lowest resolution level, where most of the imagergy resides. The motion
vectors thus obtained are used as a predictiohifirer resolutions and as an
addition to a smoothing factor. Motion vector atledlock can be obtained by
a block-matching algorithm.

The 2D discrete wavelet transform (DWT2) of imaféx, y) with M-level can
be expressed as a sequence of sub-images [8]@asdDI

{SZK I-\Alzjllj:v,H,D"”’thjKJj:v,H,D} 1)

where{S,.,K = 012...,M} shows a set of approximations 6f(x, y) with a
resolution of {12‘1,2‘2,---,2‘”'}. S, is the original image, whileS,is the
approximation of f (x,y) at the next resolution™2 V\/ZJ'M is detail image in

resolution 2" at locationj, whereV, H andD indicate vertical, horizontal, and
diagonal, respectively.

Zhang and Zafar [8] have proposed four MRME scheribgse schemes are
classified based on their different approach ofenedfice motion vector
estimation in the lowest resolution and motion gectfinement in high and
mid-frequency sub-bands. Wavelet-based coarsaxodthemes [10] an&(+
refine) Zhang’s scheme will be the subject of furtheristigation in this study.

2.2 Wavelet-Based Coarse-to-Fine Scheme

In a coarse-to-fine scheme [10], the motion veidastimated only at the low-
pass band. Motion vectors at a given resolutioellean be predicted from the
motion vectors at a lower resolution, by multiplyithem by two. A

smoothness factor is added after the motion estmairocess is done around

that prediction. Led, (X, y) represent the motion vectors centeredxay) for
the sub-image at levél Then the estimation &f, (X, ) is given by

Vk(xl y) = 2\/k+1 (X’y)+ 5k (va) (2)
for k=0,1,2,.. M

where M is the level of decomposition adg is a refinement factor.



198 Dwi Ratna Sulistyaningrum, et al.

In this study, the original frame was decomposed two levels using the 2D
discrete wavelet transform (DWT2). The lowest ragoh only had 1/4 pixels

of the original image, but it contained a largeceetage of the total energy. In
each low-pass band, block matching estimation wafopned within twenty

four neighboring pixels. Figure 1 shows the strietof the wavelet-based
coarse-to-fine algorithm.

Motion 5> Interpolation ‘ Interpolation '
vector ] Matching (ST matching (I Matching

Figure 1 The structure of the wavelet based coarse-to-figerishm.

2.3 (Sgtrefine) Zhang's Scheme

Zhang [8] has proposed several techniques for ma#imation, one of which,
the scheme-Ill & + refine) technique, provides superior performance over the
others. A total of seven sub-bands were obtaineth &i two-level wavelet
analysis. The motion relationships among the regolulevels are shown in
Figure 2.

The motion vector in a sub-band at a given resmukevel, which is predicted
from a motion vector at the lowest resolution levil multiplied by an

appropriate power of two. A refinement factor igled to this prediction after
carrying out a motion search around this motiordjoteon. The equation of the
motion vector prediction can be written as

ij (X1 y) :2 ij—l(x’ y) +d<j (X, y) (3)
for k=1,2,.. M andj=V H D
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whereV, is the motion vector at sub-band lekekith orientationj and J, is
the refinement factor determined by the resulthef inotion estimation around
the predicted valu@ V', .

N . m
VOGN, | vooyIN Acx, y)
A(xyy)
v(x,y)
| | | | . A(x,y)
TSN ACH IR CIT -
A(x,y) -
vI(X,y) v(x,¥)
Alx,y)
A(x,¥)
Figure 2 Motion relationship in a two-level variable-blockke MRME
scheme.
3 Wavelet-based Inbetweening in Old Animated Films

Figure 3 shows a block diagram of the inbetweersygtem for old animated
films proposed by Sulistyaningrum [10]. It consisfsseveral processing units.
First, correcting intensity flicker; second, estiing motion vectors; third,

smoothing motion vectors resulted from step 2; tlougenerating intermediate
frames between two frames.

Old animated films produced between 1930-1940 wee object of this
experiment. Such old films usually have some kihdamage, such as intensity
flicker, blotches, noise and line jitter. Intensiligker is the unnatural temporal
fluctuation in perceived image intensity that daesoriginate from the original
frame. In this work, the handled damage type wadyg onensity flicker. A
histogram matching method [11] was applied to airfiicker. This method is
based on histogram equalization by applying a umifbistogram.
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Original Flicker Motion
Sequence correclion esfimation
frame gin,k)
Motion fepu Enhanced
e Vector L - —* sgquence
smoothing AxlvERsing frame f{n,k)

Figure 3 Block diagram of the inbetweening system for oldrated films.

Two algorithms of wavelet-based MRMEs were invesdgg for their

performance. In addition, the original MRME alghnt was also investigated.
To begin the process of motion vector estimatitwe, original image frames
were decomposed into two layers to build the pydsmrhe Laplacian Pyramid
approach was applied to the original MRME, while DRWas applied to the
wavelet-based MRME. In the wavelet-based coardawn-algorithm, motion

vectors were estimated only at the low-pass bandhé Zhang algorithm [8],
motion vectors were estimated at all levels of eadb-band. A detailed
explanation of both methods has been given in Ge&i3.

The motion-vector smoothing algorithm consists wb tsteps: detecting and
smoothing the outlier. An average motion vectoraumding block is used for
motion vector smoothing in [12]. The average motimttor is defined as
follows:

\"A

=1
Vm_g i

9
i=1
D, =abs(v, - V,) (4)
9
Dn = %ZabS(Vm _V|)
i=2

Where v, denotes the mean value @f and all neighbors. After computing
D, andD,, thenv, is outlier, if D, >D, .

Vector median filtering (VMF) is applied for smodaig outlier in [13]. VMF is
used to smooth the motion vector field by using tiedian of motion vector
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input adjacent to the vector. ¢, = Z';=1“vj -V “ the vector median is defined

as the one that has the smallest distance fromvedtors in V, i.e.
med (V) =v, OV so thatd, =min{d,} .

Inbetweening can be done by interpolation. Inteappoh is a key process for
each type of animation, including computer aninratibhe object interpolation
approach was applied to inbetweening in this studiherefore, object
segmentation had to be done first before inbetwgpwian take place. The
process of object segmentation uses a thresholdogiethile the interpolation
uses cubic interpolation.

4 Experiment and Results

Our simulation used two video sequences to invaighe wavelet-based
MRME. It used a Popeye sequence with a dimensidi¥0fx 320 pixels and a
Felix the Cat sequence with a dimension of 240 ® dixels. The mean
absolute difference (MAD) was used for the blockehing algorithm of the

wavelet-based MRME. Assuming that a motion block size N x M, the MAD

is defined as:

MAD(dx, dy) = NT\A S (M)~ 1,y (me+ i+ ) )

=l n=1
where |, (m,n) is the pixel value at coordinateém,n) in (k)th frame,

I, (m+dx,n+dy) is the pixel value at coordinatggn+ dx,n+dy) in the
(k+1)th frame. The motion vector is given by:

(MV,,MV,) =min MAD(dx.dy) (6)

(dx,dy)OR?
This experiment used 101 consecutive frames foh ¢éast sequence. 50 even
frames were removed and 50 new even frames werergfed from 51 odd
frames using the proposed and existing algorithifhe selected frames had a
static background and a dynamic foreground. The BP8Mds calculated from
the constructed even frames with respect to thggnaii even frames, as follows:

N M

_ 1 _ 2
MSE =22 D (g (X 1)~ fers (X, ¥))

x=1 y=1
255 j

PS\NR =10x lo
=100, 22
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whereMSE is the mean square errdt,is the vertical size of framéJ is the
horizontal size of the framef,, (X, y) is the pixel value of the original even

frame at position(x, y)and f_..(X,y)is the pixel value of the constructed

even frame at positior(x,y). The average PSNR, denoted by PSNRs
given as

PSR, , =+ > PSNR ™

wherePSNR, is the measure®SNR for framet, andK is the total number of
constructed even frames.

This experiment was carried out in order to ingede the performance of a
wavelet-based multiresolution motion estimation fobetweening in old
animated films for three algorithms and three typdsblock size. The
comparison results are shown in Figure 4, Figuen® Figure 6. The figures
indicate that the coarse-to-fine scheme providedrgarovement of the PSNR
for all test sequences over the spatial MRME andngfs MRME. The
performances of the coarse-to-fine method and tetiad MRME method
provided similar PSNR values for a constant blode ©f 9x9 and variable
block sizes of 5, 9, 17.

Table 1 shows the average PSNR for all test se@serihe test resulted in
three MRME schemes and three various block sizesmlbsequences. The
variable block size was varied (5x5, 9x9, and 1}xfidm top to bottom levels.
The constant block size was varied (5x5 and 9x8g #ble indicates that the
coarse-to-fine MRME provided the best PSNR forbédick sizes, especially in
block size 9x9. In the coarse-to-fine scheme, tlodian vectors are estimated
only at the low-pass band so that the noise in hlgh-pass band is not
processed. This causes the coarse-to-fine MRMEetmbre resistant to noise
than Zhang's MRME scheme.

The coarse-to-fine MRME and the spatial MRME gawsmailar PSNR for the
9x9 block size and the variable block sizes bec#usavavelet transformation
used in the experiments was the Haar wavelet, whiherates sub-images
similar to those of the Laplacian pyramid. The klsize affects the accuracy of
the ME. The larger the block size, the more aceuitds; however, computation
time is also longer.
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Figure 4 PSNRs of the spatial MRME, the coarse-to-fine MREME Zhang's
MRME with block size 5x5 for test sequences: (ap&e, (b) Felix.
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GRAFIK PSNR INBETWEENING Popeye 9x9
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Figure 5 PSNRs of the spatial MRME, the coarse-to-fine MREWE Zhang's
MRME with block size 9x9 for test sequences: (ap&e, (b) Felix.



PSNR (dB)

PSNR (dB)
=

Wavelet-based Multiresolution Motion Estimation 205
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Figure 6 PSNRs of the spatial MRME, the coarse-to-fine MREHE Zhang's
MRME with variable block sizes 5, 9, 17 for testjgences: (a) Popeye, (b)
Felix.
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Table 1 Average PSNR of test video sequences.

Variable
Sequences Schema Constant Block Block
5x5 9x9 5x5,9x9,17x17
Blow Me .
Down Popeye MR(';"E spatial 17.0244 2003717  23.4286
omain
(1933)
Coarse-to-fine 22.2571 23.4805 23.4286
Zhang's MRME 17.8945 17.7746 18.0369
Felixthe cat ~ MRME spatial 18.9243  29.8436 29.6829
in Hollywood domain .
(1923) Coarse-to-fine 26.3320 29.8445 29.6842
Zhang’'s MRME 23.1284 24.3541 24.4985
5 Conclusion

In this paper a comparative study was discussedhef performance of a
wavelet-based MRME for inbetweening in old animafidhs. Our findings

show that the coarse-to-fine method was one of ltkst methods for
inbetweening in old animated films. The evaluatiesults on block size 9x9
indicate that the coarse-to-fine method had anameePSNR of 23.48 dB for
the Popeye sequence and 29.84 dB for the Felixesegu
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