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Abstract. One of the most important methods to solve traffic congestion is to 

detect the incident state of a roadway. This paper describes the development of a 

method for road traffic monitoring aimed at the acquisition and analysis of 

remote sensing imagery. We propose a strategy for road extraction, vehicle 

detection and incident detection from remote sensing imagery using techniques 

based on neural networks, Radon transform for angle detection and traffic-flow 

measurements. Traffic-bottleneck detection is another method that is proposed 

for recognizing incidents in both offline and real-time mode. Traffic flows and 
incidents are extracted from aerial images of bottleneck zones. The results show 

that the proposed approach has a reasonable detection performance compared to 

other methods. The best performance of the learning system was a detection rate 

of 87% and a false alarm rate of less than 18% on 45 aerial images of roadways. 

The performance of the traffic-bottleneck detection method had a detection rate 

of 87.5%. 

Keywords: aerial image analysis; incident detection; Radon transform; traffic-

bottleneck detection; traffic controlling; vehicle detection. 

1 Introduction 

Traffic control and incident detection for avoiding traffic congestion are 

emerging research topics due to the rapidly increasing interest in their 

application. The traditional methods to solve these problems rely on traffic 
incident detection using ground cameras located on highways or at 

intersections. Traffic control is a difficult and time-consuming task that needs 

several human operators. The goal of automated incident detection (AID) is to 
minimize human resources [1]. New methods of incident detection based on 

remote sensing imagery and high-resolution aerial imagery can save time and 

costs. According to one research, if an incident lasts one minute the resulting 

traffic congestion will amount to 4-5 min during non-rush hours [2]. A recently 
developed intelligent transportation system using remote sensing imagery that is 

able to control traffic on a roadway has shown remarkable performance. Many 

developed countries pay attention to automated traffic management of 
roadways.  
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Traffic incident detection methods can be divided into two main categories: 

pattern recognition and statistical methods. Collecting traffic information and 

effects of lane geometry on incidents are used in many researches [3]. In 1991, 

volume, occupancy and speed have been introduced as input features for 
incident detection [5]. A review of the latest researches shows that speed, 

volume and occupancy are the main input features in recent AID systems 

[1,2,4]. Sujeeva implemented an artificial neural network (ANN) based AID 
system in his PhD dissertation, using traffic data, incident data and the ANN to 

train and test the system [6].  

More recently, traffic flow was used in some researches as an incident-detection 

feature for AID systems. Traffic flow is the basic idea behind AID methods that 
can analyze measurements taken at different points of a roadway by monitoring 

continuous streams of traffic [3]. In some researches, real-time detection of 

incidents on roadways has been proposed based on traffic flow as input for 
incident detection algorithms [7,8]. Savas has proposed a new method for the 

prediction of traffic incidents based on a geographic information system (GIS) 

platform. He used temperature, humidity, and weather conditions as input 
features based on correlation feature selection [9]. In a similar study, traffic 

incidents were detected using volume, speed and occupancy to assess the traffic 

state and make a decision whether an incident happened or not [1]. 

Compared to other methods, the features of our system show some differences. 
We cannot use speed because continuous frames are not available in aerial 

imagery. In [1] volume (vehicle/h) was used, which is the number of vehicles 

passing a particular part of a roadway, while in our system, in order to find the 
cause of a traffic jam, we calculated traffic volume in several parts of a 

roadway, i.e. traffic bottleneck sections. 

Extracting traffic information such as incident/bottleneck detection using aerial 

images is quite a new approach in both computer vision and intelligent 
transportation systems. Systems that extract traffic information through 

surveillance cameras on freeways/highways are available, but systems that use 

aerial imagery are not. Many standard datasets are available for different image 
processing tasks, such as faces and facial expressions, astronomy, handwriting, 

etc., but there are none for aerial images, specifically datasets of roads or 

freeways. The increasing availability of very high resolution (VHR) digital 
imagery of astonishing quality provided by airborne sources will greatly 

facilitate data acquisition and also significantly reduce the cost of data 

collection and updates, if road details can be extracted from these images 

automatically [10]. 
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We have used aerial datasets gathered by the municipality of Tehran (Iran) and 

also some satellite images provided by Google in Google Earth. We manually 

picked about 45 aerial images of roads with normal traffic and incidents. Using 

our eyes it is not difficult to find traffic or accidents/incidents in an image. The 
proposed system detects incidents/accidents and bottlenecks intelligently. In all 

cases where the system makes a correct recognition in accordance with manual 

recognition we call it successful, otherwise the rate of performance is reduced. 
We will try to collect and publish a dataset as a reference for other investigators 

who want to do further research in this area. 

There are several researches on traffic measurement and road extraction from 

the past few years that use aerial imagery and remote sensing imagery. Lin and 
Saripalli have proposed a robust road detection and tracking algorithm for aerial 

images. They successfully detected roads in 96% of the images [11]. Vehicle 

detection in low-resolution aerial imagery based on SIFT keypoint features and 
SVN have been proposed by [12,13]. Even though there are several proposed 

techniques for road and vehicle detection using aerial imagery from recent years 

[10-13], we have not found any incident detection algorithm using aerial 
imagery. Therefore, we have selected and created a number of new features for 

automated incident detection and developed a new algorithm for incident 

detection using aerial imagery. 

Road extraction and vehicle detection using aerial imagery involves information 
and data related to GIS and these data need to be updated every certain period 

of time [14]. Road extraction and vehicle detection for incident detection in 

aerial imagery is a new, controversial issue in computer vision, which also 
influences many other projects and operations, such as traffic control and 

incident detection on highways. Some other real-time applications using sensors 

[15] or ground cameras have been implemented for traffic control, such as [16-

20]. Since the development of new satellite systems such as Quick Bird, 
IKONOS and Geoeye-2, remote sensing imagery is available with a 0.25 meter 

resolution. Vehicles can be observed clearly in this type of satellite images. 

Some vehicle detection methods have been studied using aerial imagery 
[21,22,23]. The study most closely related to this paper is [14]. In this study the 

authors have developed a system for traffic incident recognition using aerial 

imagery. Their approach focused on road extraction and incident detection 
using the Radon transform method. The main difference between our system 

and [14] is a new input feature for incident and bottleneck detection. This 

feature is traffic flow, which helps us improve the detection rate.  

In order to achieve better performance, we introduce the feature of traffic 
incidents extracted by study of available datasets of aerial imagery. Studying 

aerial traffic images shows that the most important characteristics of an incident 
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in an aerial image are the direction of the vehicles and the traffic flow in the 

scene. If an incident occurs, the number of vehicles will increase rapidly within 

a specific time interval, and also there will be one or more vehicles with an 

irregular angle. Therefore, in order to build our system, these features were 
measured using image processing and machine vision methods. An example of 

an aerial image used for incident detection is shown in Figure 1. 

 

 

Figure 1 An example of an aerial image for incident detection. 

2 Principle of Detection System 

Recently, intelligent transportation systems have been receiving attention in 
computer vision, especially those using aerial remote sensing imagery. A 

number of conventional highway incident detection algorithms using images 

from ground cameras have been developed in the past several years [18,19]. 
Techniques for vehicle detection, road extraction and incident detection based 

on artificial intelligence have been developed in machine vision, but only a few 

researchers have investigated traffic sensing and incident detection based on 
aerial images [20]. The method proposed in this paper is a new method of 

incident detection using high-resolution imagery from the GeoEye-2 satellite. 

The images are taken in full color and in equal intervals. GeoEye-2 is equipped 

with the most sophisticated technology ever used in a commercial satellite 
system. It offers an unprecedented spatial resolution by simultaneously 

acquiring 0.25-meter panchromatic and 1.65-meter multispectral images [14]. 

The proposed method is presented in Figure 2 as a flowchart. 
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Vehicle detection
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Figure 2 Flowchart of the incident detection algorithm (Ɵ: vehicle direction; T: 
traffic flow). 

3 Configuration of Detection System 

As shown in Figure 2, the core of the proposed incident detection system 

consists of two main features to recognize incidents on a roadway. The first one 
is figuring out the vehicle direction that is defined as Ɵ and the second one is 

the measuring of traffic flow within a specific time interval defined by T [24]. 

Before considering these two features, the system needs to extract the roadway, 

distinguish coordinates of the road district and detect the vehicles.  
 

It is really useful to know that roads are present as a direct district with a 

different color in the aerial imageries [14]. Therefore, a linear feature can be 
appropriate for road extraction. Another feature that roads possess are the white 

lines that are available continuously alongside the road and discontinuously in 

the middle of the road [14]. Another feature used in this method is the color of 

the road which distinguishes the road from the completely specified edges.  
 

Using a threshold operation, road and background can be separated from each 

other, preparing the images for the operations that follow. Setting the color 
threshold is achieved by means of the color of the roads in several aerial 

imageries, which are available in a dataset. After thresholding, the edge 

detection operation can be run better [14]. The Canny method for edge detection 
has been used. This method has a better performance than the other methods 

available for this kind of imagery. In digital images, where there is an edge, 
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there are differences in color too. The sharpen operation using a filter leads to 

an increased difference in color at the edges, which can enhance automatic edge 

detection. The next step is distinguishing the roads using Hough transforming. 

 
After road extraction, we need to detect the vehicles on the roadway. This is 

simple because only those objects that are inside the roads have to be handled. 

One of the important features of vehicles that can help detecting them is the 
vehicle’s model. A vehicle can be detected using its model from dataset 

examples using neural network classifiers. In order to enhance the performance 

of the learning system, morphology transform is used to enhance the vehicle’s 

features. This is defined by gradient as shown in equation 1 until 3 [25,26]. 

  G (f) = (f  g) − (f Θ g)       (1) 

Where g is a structuring element, f is a gray scale source image, f  g means 

dilation, and f Θ g means erosion. 
 

Dilation: 

   ˆ:
z

A B z B A                   (2) 

Erosion: The  erosion  of  by , written  , is given by:A B A B  

   
z

A B z | B A  
 

 (3) 

Figure 3 shows a morphology image of the Tehran-Karaj (Iran) highway. In 
aerial images vehicles usually appear as a rectangular shape, so model-based 

vehicle detection can be used to discriminate vehicle targets and non-vehicle 

targets. Figure 4 shows some dataset examples for neural network classifiers.  

Another noticeable feature of vehicles in aerial images is their color, which 
differs significantly from that of other objects. This phenomenon can help us 

detect vehicles by adaptive threshold processing. The results of threshold 

simulation indicate that this method can improve detection performance. The 
mean square error of the learning system for vehicle detection is shown in 

Figure 5. 

After classification with the neural network method, the direction of the 
vehicles has to be detected. Incidents usually cause one or more vehicles to have 

an irregular direction and the traffic flow to change rapidly, so the best features 

for incident detection are the direction of the vehicles and traffic flow in the 

scene.  



 Incident and Traffic-bottleneck Detection Algorithm 157 
 

For detecting the direction of the vehicles the skeleton algorithm is used to 

transform the extracted vehicles into a line, and subsequently Radon transform 

is used to find the direction of vehicles. In the last step of finding the direction 

of the vehicles, thresholding is used to compare the vehicle angle to a threshold. 
Those lines (vehicles) that are at an irregular angle are candidates for marking 

an incident. For this purpose, we should have a mathematical transform that 

converts line singularities from the original image into characteristic points in 
the transformed image. These points should be local maxima in order to be able 

to extract them with some form of post-processing. Radon transform (RT) 

appears to be a good candidate. Radon transform converts the original image 

into a new image space with parameters Ө and t. Each point in this new space 
accumulates all information corresponding to a line in the original image with 

angle Ө and radius t [27]. Thus, when Radon transform localizes a local 

maximum near an angle Ө0 and around a slice t0 it means that the original image 
has a line in position (Ө0, t0). This is the kind of transform we are looking for. 

Applying the Radon transform to an image f(x,y), i.e. Figure 6, for a given set 

of angles can be thought of as computing the projection of the image along the 
given angles, i.e. Figure 7. The resulting projection is the sum of the intensities 

of the pixels in each direction, i.e. an integral line. The result is a new image 

R(ρ,Ө). This can be written mathematically by defining Eq. (4): 

 cos sinx y     
 (4) 

After which the Radon transform can be written as equation 5: 

 
R( , ) ( , ) ( cos sin )f x y x y dxdy     

 

 

        (5) 

Where )0( is the Dirac delta function. 

 

Figure 3 Morphology preprocessing result. 

 

Figure 4 Dataset examples. 
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Figure 5 Mean Square Error for the Learning System. 

 

Figure 6  As an example, the line in this image will be distributed over a larger 

interval at Ө = 19. 

 

Figure 7   The result of a Radon transform with Ө = 19 where there is no 

definite peak. 

 

Radon transform has some interesting properties relating to the application of 
affine transformations. We can compute the Radon transform of any translated, 

rotated or scaled image if we know the Radon transform of the original image 

and the parameters of the affine transformation applied to it [27,28]. The 

rotation property can be defined as Eq. 6. 
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( ( ))( , ) ( , )R f g x t Rf t           (6) 

  

The effect of rotation on the Radon transform can be seen in Figure 8a and 8b. 

We can see how, as the image is rotated more, the local maxima of the Radon 
transform move to the right, while slice t remains constant, i.e. the Radon 

transform of the rotated images is the same as the original’s, but shifted in the 

angular direction by the angle of rotation. We can compare the maximum 

rotation of lines to find irregular direction [28,29]. 

 
(a) 

 
(b) 

 
(c) 

Figure 8   (a) Rotated images. (b) Local maxima near angles π/4 move away 

from the red line. (c) Corrected version [27]. 

Applying the angle detection for an image f(x,y) with a set of angles can be 

thought of as a computed projection of the input image along the angles in the 

image, which can be written mathematically by defining Eq. (7) [29,30]. 

 cos sinx y      (7) 

The two polar coordinates r and θ can be converted to the Cartesian 

coordinates x and y using the trigonometric functions sine and cosine: 

 cos , sinx r y r        (8) 

The two Cartesian coordinates x and y can be converted to polar 

coordinates r by Eqs. (9) and (10). 

 
2 2r y x                             (9) 
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The angle of the vehicles can be calculated using Radon transform properties 

such as θ, which can be used as one of the traffic incident features. For this goal 

θ needs to be compared with Tθ as threshold. 

Another feature of traffic incidents is traffic flow in special parts of a roadway, 

which is commonly used in incident detection algorithms [24]. Traffic incidents 

affect traffic flow and make the number of vehicles in the scene increase 
rapidly. In order to detect an incident, the traffic flow is measured and 

compared. Analyzing the traffic flow under normal traffic conditions and under 

incident conditions shows that the number of vehicles is different in both 

situations. Figure 9 shows the different values of traffic flow for different 
conditions. The red line represents the incident-condition flow and the blue line 

shows the normal condition of the roadway. The difference between both values 

can be seen between 35 and 50 seconds after start. After 35 seconds the number 
of vehicles increases rapidly in the scene. It can be useful to compare traffic 

flow every single second with a threshold, which is the maximum traffic flow 

value under normal conditions. 

 

Figure 9 Comparing the traffic-flow ratio under normal and incident 

conditions. 
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Traffic flow (T) is the number of vehicles present in the scene during a specific 

time interval and is defined by Eq. 11. 

 

60

i1
N

T
60

i
       (11) 

where Ni is the number of vehicles in one second within a time interval of one 

minute. 

The traffic flow within a single minute is calculated, and is then compared to T t 
as the threshold for traffic flow.  

4 Bottleneck Detection 

Finally, the above features are considered for traffic incident detection, along 

with bottleneck presence. When a heavy accident happens on a highway, 

finding the correct direction of each vehicle is quite difficult and in some cases 

impossible due to traffic jams and vehicles being too close to each other [31]. 
On the other hand, if an accident occurs in the middle of a road or in the 

vehicles intake sides, finding global traffic flow is not useful and global traffic 

flow shows a normal traffic situation [32,33]. Bottleneck detection is a useful 
way to find an incident area. No efficient previous study has been done on aerial 

images to find bottlenecks, while [34] used surveillance cameras for vehicle 

tracking to extract traffic information on freeways. Their system relies on video 
to track vehicles and follow their path to measure traffic flow. Vehicle tracking 

is a time-consuming and process-intensive task and does not perform well 

during traffic jams, because vehicle detection from a congregation of vehicles 

via surveillance cameras is quite difficult. A system that can detect traffic using 
a single image is economical, fast, accurate and useful. In our system, which 

uses images received during a specific time interval, for example every fifteen 

minutes, and aerial images, the traffic flow and bottlenecks are distinguishable. 

Cassidy, et al. [35] use the capacity of highways and mechanical sensors to 

detect vehicles and calculate their flow on freeways for detecting bottlenecks, 

while in our method the capacity of highways and other static hypotheses are 

not necessary. Also our method uses only single images to extract traffic 
information from, so installing many sensors and sites along the freeway is not 

necessary. As shown in Figure 10, the system of Cassidy, et al. [35] needs a 

great number of sites on a freeway, even on ramps, and it also has to be pre-
initialized with information about the freeway, such as capacity data.  
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Figure 10 Sites on highways for normal surveillance (courtesy of [35]). 

There is a relation between the capacity of a freeway and the density/flow of 

vehicles [36,37]. Using capacity and density it is easy to detect flowing traffic, 
when the proposed system cannot detect it. However, our system can find 

traffic/number of vehicles within a specific zone without any initializing and is 

therefore able to detect bottlenecks. Our method of finding traffic is 
approximately the same as in other studies, such as [36,37], but the detection of 

cars is an image processing system that is intelligent and finds normal/heavy 

traffic using feedback. 

To find bottlenecks, finding the left and right sides of a road is important. After 

road detection, the middle-line of the road that separates the left and the right 

side will be revealed, dividing the width of the road in two. Incidents can be 

discovered using the traffic flow feature in each moving window. The zones of 
traffic flow on the right side of a road are shown in Figure 11. The traffic flow 
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figures can be calculated in each zone separately; each zone is shown by a green 

rectangle in Figure 11.  

 

Figure 11 Traffic flow zones on the right side of a road. 

Without any incident, the traffic flow in each zone should be equal to the global 

traffic flow. In case of an incident, the traffic flow in some zones will have an 

obvious difference with the global traffic flow or in other zones. Eq. 12 shows 

how to calculate the global traffic flow using traffic zones.  

Tglobal = 
 𝑇𝑚
𝑚
1

𝑚
, ∀𝑇𝑚 =

 N i
60
i=1

60
                                                           (12) 

For incident detection, each zone should be compared to its neighboring zones. 

If there is an obvious difference, higher than a predefined threshold, a traffic 

bottleneck has been found. For confirmation, traffic zone comparison will 
continue for all zones. If an incident is present in a road image, two groups of 

zones, one high-flow and one low-flow, will be formed. In some cases, there 

can be two or three accidents in one image. Consequently, there will be three 
groups that show three separate bottlenecks. Finding bottlenecks using zones is 

quite easy, like a projection line, zones are swept one after another orderly and 

each transformation from high-flow to low-flow suggests a bottleneck and can 
be a sign of an incident on the road. Figure 12 shows a bottleneck on a road. 

The bottleneck in Lane A can be discovered by first separating two groups of 

zones. The bottleneck is recognized when we compare traffic flow in zone X5 

with traffic flow in zone X6. Lane B (the return lane) has low-flow traffic in all 
zones and is in a normal situation. 

 
 Lane A        Lane B 

Figure 12 Traffic-flow zones added to a highway image. 
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In Figure 12, thirty-six zones are set on both sides of a highway. This means 

traffic flow is shown inside each of the sixteen separate zones on each side. In 

lane A, zone X1 to X16 , and, similarly, in lane B, zone Y1 to Y16. 

 

Figure 13 Recognizing a bottleneck in lane A. Finding bottlenecks is the same 

as finding a threshold value in binarization by separating independent peaks. 

Obviously, the traffic-flow in lane B is quite low and near zero. As shown in 

Figure 12, in lane A there is a high traffic-flow in zones X6 to X16 and a low 
traffic-flow in zones X1 to X5. The key is in the traffic-flow changing from low 

to high from G1 to G2. Changing traffic-flow from low to high begins in X6 and 

continues until X16. X6 to X16 make up G2 group with a high traffic flow, 

against X1 to X5 making up G1 with a low traffic flow. For noise removal and 
preventing false bottleneck detection, making groups such as G1 and G2 is 

necessary. 

Finding bottlenecks has the same algorithm as establishing a threshold value in 
binarization. Finding entropies in Figure 13 leads us to discover the bottlenecks. 

In other words, the place that separates two independent peaks in a vector is the 

bottleneck place. 

Calculating standard traffic flow needs a series of aerial images and object 
tracing to count how many vehicles pass a window/zone in a specific 

time/period. Meanwhile, bottleneck detection can be done offline and without 

processing a number of concatenated aerial images. Furthermore, taking and 
transforming aerial images is time-consuming, involves extra expenses, while 

processing offline and without a series of images is economical and fast. This 

bottleneck detection method can find incidents on a highway using one image, 
not a connected series of images.  

In bottleneck detection, junctions and traffic lights should be selected and 

marked. Commonly, there is a high traffic flow before junctions and traffic 

lights and there is definitely low traffic flow after them. In traffic-bottleneck 
detection this can lead to a wrong decision. This is a drawback of bottleneck 

detection because without supervising this method, traffic lights and junctions 

are assumed to be bottlenecks and incidents. We should know where the hot 
spots are (junctions, traffic lights, bumps, etc.) and make a “does not matter” 

comparison zone there. There is still one drawback, because if an 

incident/accident happens in a hot spot, the system cannot recognize it with 

5 10 15
0

2

4

G2 G1 
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traffic-bottleneck detection and needs to fall back on angle and standard traffic 

flow (number of cars per time period). The flowchart for traffic-bottleneck 

detection and incident detection is shown in Figure 14. 

Image Acquisition

Road Extraction

Calculating parting line in the 
middle of road

Setting traffic-flow zones in 

both side of road

Vehicle detection

Figuring traffic flow in each zone 
by counting vehicles

Comparing all zones in each road 
side 

Making group of similar zones in 
each road side   

There is one or more incident(s),
Finding traffic bottleneck(s)  

 group ≥ 2

There is not incident  

yes

No

 

Figure 14 Flowchart for traffic bottleneck detection. 

5 Results 

Experiment: incidents can be detected in a remote sensing image as shown in 

Figure 15 using the proposed incident detection algorithm. This scheme, of 

course, has some disadvantages: its performance rate is about 87% and it cannot 

detect vehicles outside the road. This scheme can be accelerated to transfer the 
information to drivers who intend to cross a road, or it can help the police to 

control traffic. The incident detection results can be seen in Table 1. Eight 

roadways were selected for testing the proposed algorithm. The result of the 
AID algorithm is a logical value (true or false) that represents incident detected 

or not. The best performance the system achieved was a detection rate (DR) of 

87% and a false alarm rate (FAR) below 18% on 45 aerial images of roadways. 
As for traffic-bottleneck detection, on eight roads where there was at least one 

incident, seven traffic-bottlenecks were recognized. This means that the 

bottleneck detection had a performance rate of 87.5%. A comparison with the 
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results of this study with the bagging-based SVN implementation in [2], which 

achieved a DR of 84.78%, shows that even though they used ground-camera 

images with a high resolution, the results of our system showed a better 

performance. Another comparison: [9] implemented a GIS based AID system 
and achieved an accurate-detection percentage of 67.42%, which is also lower 

than our results. Finding and counting vehicles with bottleneck detection 

windows/zones in high-resolution aerial images produced acceptable results. It 
had the same result as the normal method using vehicle angle and time/period 

traffic flow. Using low-resolution aerial images, the method is inefficient, while 

traffic-bottleneck detection is efficient enough to achieve a reasonable and 

acceptable result. 

Table 1 Incident detection results. 

Site 
Number of 

vehicles 

Number of 

detected 

vehicles 

Incident detection 

result (True/False) 

Traffic bottleneck 

Detection (true/False) 

Road1 8 7 T T 

Road2 52 47 F T 

Road3 31 24 T T 

Road4 30 27 T T 

Road5 19 17 T T 

Road6 55 44 F F 

Road7 23 23 T T 

Road8 10 10 T T 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 15 Vehicle detection and incident detection results. (a) (b) Sample 

image of road segments. (c) Vehicle detection results, where white lines 

represent extracted vehicles. (d) Incident detection result. 
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6 Conclusions  

In this paper, we focused on the issue of vehicle detection, road extraction and 

incident detection using high-resolution aerial imagery for traffic analysis. A 
traffic-bottleneck detection method was proposed by adding zones to calculate 

traffic flow within these zones and comparing the results with each other. 

Finding traffic incidents with this method is economical due to needing only 

one image and no permanent connection to the image source. Previous methods 
usually use live video images or a series of images from a road for a specific 

period/time; therefore a long-time connection or permanent connection to 

satellite or balloon is required. Using our bottleneck detection method, one 
image per surveillance-period is enough and a permanent connection or using 

video processing to calculate traffic flow is not necessary.  

Further work could include more training samples for the neural network 
classifier and using more information such as edge shapes to improve the 

detection rate. This method can also use other features for incident detection 

from high-resolution satellite images. Nowadays, xerographic satellites and 

special airplanes provide aerial images. We can control road traffic from a 
traffic balloon, which has more flexibility. There is the possibility of following 

the road via traffic balloon on autopilot. Also, there can be several balloons in 

one road district, which is a separate issue. 
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