

ITB J. ICT, Vol. 5, No. 2, 2011, 125-140 125

Received May, 2
nd

, 2011, Revised September 19
th
, 2011, Accepted for publication September, 19

th
, 2011.

Copyright © 2011 Published by LPPM ITB, ISSN: 1978-3086, DOI: 10.5614/itbj.ict.2011.5.2.4

Architecture for the Secret-Key BC3 Cryptography

Algorithm

Arif Sasongko
1
, Hidayat

2
, Yusuf Kurniawan

1
& Sarwono Sutikno

1

1Electrical Engineering, School of Electrical Engineering and Informatics,
Institut Teknologi Bandung, Bandung, Indonesia

2
Computer Engineering, UNIKOM, Bandung, Indonesia

Email: 1asasongko,yusufk,ssarwono@stei.itb.ac.id, 2 hidayat@unikom.ac.id

Abstract. Cryptography is a very important aspect in data security. The focus of

research in this field is shifting from merely security aspect to consider as well

the implementation aspect. This paper aims to introduce BC3 algorithm with

focus on its hardware implementation. It proposes an architecture for the

hardware implementation for this algorithm. BC3 algorithm is a secret-key

cryptography algorithm developed with two considerations: robustness and

implementation efficiency. This algorithm has been implemented on software
and has good performance compared to AES algorithm. BC3 is improvement of

BC2 and AE cryptographic algorithm and it is expected to have the same level of

robustness and to gain competitive advantages in the implementation aspect. The

development of the architecture gives much attention on (1) resource sharing and

(2) having single clock for each round. It exploits regularity of the algorithm.

This architecture is then implemented on an FPGA. This implementation is three

times smaller area than AES, but about five times faster. Furthermore, this BC3

hardware implementation has better performance compared to BC3 software

both in key expansion stage and randomizing stage. For the future, the security

of this implementation must be reviewed especially against side channel attack.

Keywords: BC3; FPGA; hardware implementation; symmetric key cryptography.

1 Introduction

Cryptography is one of main issue in protecting data security. It is a very

important aspect in data security either at communication network or computer
system. Encryption is implemented as the main method to preserve the security

of electronic information [1]. This area of research has become very active. In

the recent years, researchers look for cryptography algorithm with better
implementation. The focus of the research is shifting from merely security

aspect to consider as well the implementation aspect. Cryptographic algorithm

whose characteristics: (1) mathematically secure/robust, (2) efficient and secure

to implement is very desirable.

mailto:asasongko,yusufk,ssarwono@stei.itb.ac.id
mailto:hidayat@unikom.ac.id

126 Arif Sasongko, et al.

The encryption algorithms are classified into two types: secret-key and public-

key. The secret-key (symmetric key) algorithm uses same key for encryption

and decryption so this key must be kept secret. It is shared exclusively between

sender and receiver to protect the data in communication. Conversely, the
public-key algorithm uses different key for encryption and decryption [2].

Secret key cryptography has more efficient implementation than public key

cryptography. BC3 [3] is one of the secret-key algorithms [4]. This algorithm is
result of enhancement of BC2 algorithm [5] and AE3 algorithm [6]. The

security of BC2 and AE3 has been investigated quiet intensively. This new BC3

algorithm is modification of the BC2 algorithm especially for the reason of

implementation efficiency. It is believed that the security aspect is not too
different from BC2. It is developed by bearing in mind two considerations:

projected security (robustness to attack) and efficient implementation. As most

of secret key algorithm, for example AES, this algorithm can be divided into
two stages: key expansion, and randomizing. The key expansion stage is

performed to generate several subkeys from the main key (key master). The

next stage is randomizing step wherein the data (plain text/chipper text) is
manipulated using the subkeys to hide the information.

This algorithm has advantages compared to AES in two aspects. In the security

aspect, the subkeys expansion in the BC3 are more secure than AES since the

main key is extremely difficult to find even when the subkeys are found. In
many cryptanalysis, for example differential and linear attacks, attacker try to

find the subkeys before finding master key [7]. So without knowing the

subkeys, attacker can not get master key. If the master key cannot be found
from subkeys, attacker can never find the master key. The other advantage is

that the key-expansion speed is much higher. The software implementation

shows significant performance advantage compared to AES [5]. The hardware

implementation of this algorithm is investigated in the work described in this
paper.

The hardware implementation is very important from point of view performance

and security, especially as countermeasure against timing attack[8], to avoid the
key being left on the memory, and to save the computer memory. Therefore, we

work to find architecture for BC3 hardware implementation which is efficient,

especially number of gates or area since the speed of hardware implementation
is certainly much higher than software implementation in several orders of

magnitude.

This paper aims to introduce BC3 algorithm with focus on its hardware

implementation. It proposes an architecture for hardware implementation of this
algorithm. This architecture is described using VHDL and has been tested on

Altera FPGA Cyclone® II type EP2C20F484C7 [9]. The result is compared

 Architecture for the Secret-Key BC3 Cryptography Algorithm 127

with AES [4]. The security analysis is always the most important aspect in

cryptography but it is not the subject of this particular paper. Moreover, it is

believed that the security is not too difference from BC2, and it will be treated

on other papers.

2 BC3 Algorithm and the Software Implementation

The BC3 algorithm is improvement of BC2 [5] and AE3 [10]. The

characteristics of BC3 are quiet similar with AES and Camellia [11]. It is
developed with two considerations: projected/measured securities/robustness

and implementation efficiency. It means that this algorithm is designed to

survive against various attacks or crypto analysis. At the same time, it is also
designed to be implemented at various platforms efficiently and fast.

As described above, this algorithm can be divided into two stages: key

expansion (or key schedule) and randomizing. Key expansion stage is
performed to generate subkeys. The randomizing stage is performed to

manipulate the data using the subkeys. The randomizing stage makes the

plaintext encrypted or the cipher text decrypted. This randomizing stage

consists of 11 rounds. In every round, a function F is applied to the data (plain
text, chipper text or intermediate data produced by the previous round). This

function uses different subkeys to manipulate the plain text in each round. This

function is extremely difficult to be inverted without knowing the subkeys. The
detail of this function is described later in Section 2.1.

The main features of BC3 algorithm are:

1. The width of input and output block is 64 bits (plain text and chipper text).
2. The main key length is 128 bits.

3. Key expansion is done in two steps (by six regular rounds and several logic

operations). Regular round is the same F function used in the randomizing

stage.
4. Randomizing stages in encryption and decryption processes are applied in

eleven regular rounds. Each regular round consists of the same F function.

5. In addition to the regular round, special function FA and FA
-1

are used in
every encryption and decryption process.

The key expansion stage is performed earlier to provide the subkeys for the
randomizing stage, but for the presentation in this paper, the randomizing stage

is described first.

128 Arif Sasongko, et al.

3 Encryption and Decryption (Randomizing) Stage

BC3 uses Feistel Network [2], so it encrypts and decrypts data with the same

algorithm. This Feistel network is used in many algorithms such as DES,
BLOWFISH, CAMELIA and Lucifer. Figure 1 shows the randomizing stage of

encryption and decryption in BC3 algorithm. It uses eleven F functions and two

special functions called FA and FA
-1

 functions. In each round, the key which is

used to compute the F functions is different. These keys are called K1 for 1
st

round, K2 for the 2
nd

 round, K3 for the 3
rd
 round, K4, K5…K11. The FA and FA

-1

functions are inserted before the 5
th

 round and 8
th

 round respectively. Moreover,

subkeys: KW1, KW2, KW3, and KW4 are XORed with the data before the first
round and after the last round. All of these subkeys are previously derived from

the main key in the key expansion stages.

Figure 1 Randomizing stage of BC3 algorithm.

4 The F Function

The F function has two input. Each of them is 32 bits. This first input is either

first half part of plaintext (in the first round of encripting process), half part of
ciphertext (in the first round of decripting process), or data/output from previous

round/function. The second input is a subkey. The first input is represented by x

with 32-bits, the second input is K and output is represented by y with 32-bits in
the following formula:

 y = P(S[x])  K (1)

where:

 is an XOR logic operator

 Architecture for the Secret-Key BC3 Cryptography Algorithm 129

P is operation of polynomial matrix multiplication;

S is operation of subtitution to x0,x1,x2,x3 inputs. S operation is done to

every byte inputs;

K is sub keys k0,k1,k2,k3.

5 Substitution Box (s-box)

The S box is used in the S operation (subtitution). In this operation, each byte in

the input vector is replaced by the byte from the S-box. S-box uses data in
lookup table for substitution. The S-box of BC3 use a function that has

properties almost similar to inversion function f(x) = x
-1

 in finite field F2
8
. The

linear/affine operation was added to this function to block algebraic attack [12].

This inversion function is chosen because it has excellent properties to hamper

linear and differential attack. Following data S-box (in hexadesimal):

 BB 8B 9E DF 42 D8 F7 1F 52 D7 26 80 3E 20 17 5B
 F1 94 5E EE 78 91 7A 3C 62 53 24 F6 C2 97 E3 8D

 C4 FC 5F AD 40 2B A4 16 4C 50 BC 90 CA 60 96 50

 81 BA 4E 10 C0 D5 49 C3 48 3D F0 B0 DE 76 DB F4

 E6 CD 56 ED 6C F8 B6 C0 36 82 2E 7C DA 4A 92 DD

 7F D4 99 B8 71 28 E9 33 AC 68 66 9F 1B 7D 88 00

 A8 43 C1 1C 34 FD 59 8F CF D9 F0 C5 BD 46 31 14

 1E F3 C6 58 3B 87 E5 6E 6F DC A9 B4 21 5D 30 39

 9D CC 6B 23 D0 65 98 9A 73 77 7B 69 70 D0 37 64

 EA 57 E1 EB 8A CE E0 F5 4D E4 5C 45 54 AB 83 9C

 8E 2F 40 74 CB 70 55 2D 86 AA B3 A3 29 EC 51 E0

 FB 8C E2 D6 12 E8 10 A5 A0 D2 EF 9B 93 11 35 D3
 1D 79 1A B5 25 18 B7 AF 2C 4F FF A2 C8 13 22 60

 E7 BF 44 3A C7 41 BE D1 15 FA 6A 67 95 80 B2 A1

 19 AE 4B 7E C9 FE 85 B0 38 5A 27 A0 89 47 84 75

 B1 A6 3F 30 20 63 72 F2 A7 2A F9 61 32 6D B9 90

The followings are examples how the s-box is used: if s-box input is 00 then

it’s output is BBx , if s-box input is 01 then it’s output is 8Bx, etc.

6 FA and FA
-1

 Function

The other functions used in the randomizing stages are FA and FA
-1

. FA

function is applied before the F function in the 5
th

 round, FA
-1
 function is

applied before the F function in the 8
th
 round. FA function is defined as follow:

 YR = ((XL  KFA1) <<<1)  XR

 YL = XL  ((YR>>>1)  KFA2) (2)

130 Arif Sasongko, et al.

where:

>>>1 is shifts right 1 bit

<<<1 is shifts left 1 bit

 is AND logic operator/intersection

 is OR logic operator/union

FA
-1

 is invers of FA. So, it is defined as:

 XL = YL  ((YR>>>1)  KFA2)

 XR = YR  ((XL  KFA1) <<<1) (3)

Figure 2 illustrates FA and FA
-1

 functions.

Figure 2 Special functions: FA and FA-1.

7 BC3 Key Expansion

BC3 key expansion or key-schedule process is used to derive the subkeys from

the main key. Hence, this stage is performed before the randomizing stage. The

characteristics of BC3 key schedule are: one way function, fast, having good

diffusion and confusion properties. The process of key expansion is performed
in two steps. First step is shown on Figure 3. The width of BC3 main key (K) is

128-bits. It can be regarded as concatenation of K1 and K2 (K = K1 || K2). The

widths of each key K1 and K2 are 64-bits. The first 32 bit of K1 called K1L, the
last 32 bit of K1 called K1R. So is K2, it is decomposed to K2L, and K2R. It

should be noted that K1 and K2 are different from the subkeys K1, and K2. This

 Architecture for the Secret-Key BC3 Cryptography Algorithm 131

main key K is used to generate KA, KB, KC and KD using process shown on

Figure 3. The F function in this process is the same as F function in the

randomizing stage. C1, C2, C3, C4, C5, C6 are constants which are parts of

BC3 algorithm. These constants are described later in this section.

Figure 3 Initial part of BC3 key schedule.

After first step of BC3 key-schedule is done, second step is performed to

generate the subkeys: KW1, KW2, KW3, KW4, K1, K2, K3, K4, K5, K6, K7, K8,

K9, K10, K11, KFA1, KFA2. The computation is described as follow:

 KE = KA  KB  KC

 KF = KA  KB  KD

 KG = KF  KE  KA (4)

Then, the following computation is performed:

KW1 = KE  KF  KG K7 = K6  KW2  KFA1

KW2 = KF  KG  KD KFA2 = K1  K5  K6

K1 = KE  KW2  KF K8 = C3  K3  K7

K2 = KE  KF  KW1 K9 = (K5 >>>1)  K3

K3 = KW1  KW2  K2 K10 = K8  K4  K5

K4 = K1  KW2  K3 K11 = K3  K5  K6

KFA1= C1  KE  K4 KW3 = K9  K4  K6

K5 = C2  KW2  K3 KW4 = K2  K8  K9

132 Arif Sasongko, et al.

K6 = K1 K2  K5 (5)

The constants: C1, C2, C3, C4, C5 and C6 have the same size 32 bits. The
constants C1 and C2 are taken from √0.7 (after the zero point) which is

D62F 59FB D597 BEF1 (64 bit). The constants C3 and C4 are taken from

√0.8 (after the zero point) which is E4F9 2E2D FF6E C9AB. The constants
C3 and C4 are taken from √0.9 (after the zero point) which is F2DC E89B

636C B246. So the constant are:

C1 = D62F59FBx ; C2 = D597BEF1x

C3 = E4F92E2Dx ; C4 = FF6EC9ABx

C5 = F2DCE89Bx ; C6 = 636CB246x

The objectives of the utilization of these constants are to get random keys and to

show that there is not any backdoor on this algorithm.

8 BC3 Software Implementation

The source code of BC3 software implementation is written in C language [3].

This algorithm is constructed in 1150 lines code. The key schedule stage and
randomizing stage take 0.7731 us and 0.71865 us respectively on PC with 1.2

GHz AMD Duron Processor. This result is better than AES [5]. Figure 4 shows

the data flow diagram of BC3 software.

This implementation is very fast because it does not have any multiple rotations

in program. Multiple rotations of data can slow down the software

implementation significantly. The implementation consists of Boolean logic,

substitution, and single bit rotation. This software is developed in the way that
can be ported in different platform, processor and OS. It is also easy to compare

this implementation with CAMELIA [13] or AES [14].

The Table 1 shows comparison of BC3 and some other popular algorithm. This
comparison is using Intel Celeron 1,3Ghz with 512 MB memory. All software

is compiled using ANSI C.It must be noted that BC3 has 64 bits input/output

meanwhile AES and Camellia have 32 bit input/output. To get a fair
comparison, the the smallest measured data unit is 128 bit block. This data unit

is encrypted once using AES or Camellia and encrypted twice using BC3. So,

128millions bit is encrypted in one million process using CAMELLIA and AES

or 2 million process using BC3.

 Architecture for the Secret-Key BC3 Cryptography Algorithm 133

Plaintext Regular round

Subkey

registers
S-Box

Ciphertext

Special

Function

First

keyschedule

Last

keyschedule

KA,

KB,

KC,

KC

Keymaster

Figure 4 The 1st level DFD of BC3 software.

The case is almost similar for key expansion. One key expansion process for

AES or Camellia is equivalent to two key expansions for BC3. The number on
the figure has been multiplied by two for the BC3.

Table 1 Comparison of Software Implementation.

Algorithm Encryption Time for 128

millions bit (in second)

Key expansion time

AES 0.453 1.063

BC2 0.765 0.378

BC3 0.485 0.390

Camellia 1.187 1.172

Khazad 0.687 1.063

IDEA 2.235 1.523

The AES has slow key schedule because encryption setup process is different

from decryption setup process. If CFB encryption mode is used, then AES Key
expansion is faster since it doesn’t need decryption and key expansion for

decryption.

134 Arif Sasongko, et al.

9 BC3 Hardware Implementation

The objective of this research is to propose BC3 architecture with very efficient

area. The implementation with minimum area can be easily used as co-
processor, as part of smartcard, or other embedded system, wherein this

algorithm is typically used. It is targeted that for every block of data (64 bit), the

hardware being designed must need less than 12 clocks to perform

encryption/decryption. Thus, 200 MHz hardware implementation can have
throughput up to1 Gbps. So, it will be able to be used in Gigabit Ethernet or T1

network.

On the BC3 algorithm, the same F function is used every round in both
randomizing stage and first part of key expansion stage. Thus, it is very

advantageous to have a single block capable to perform this function multiple

times. In addition, it is very efficient also if this block can performed FA and
FA

-1
Function. For this reason, we design this computing block to perform those

functions as efficient and flexible as possible and it is named Regular Round

block. This block must be a combinational digital circuit. Therefore every round

needs only one clock. This choice must be taken to ensure that 64 bit input can
be treated in less than 12 clocks as the objective described above.

The other necessary computing block is a block to calculate the subkeys in the

second part of key expansion: KW1, KW2, KW3, KW4, K1, K2, K3, K4, K5, K6,
K7, K8, K9, K10, K11, KFA1, KFA2. This block takes Ka, Kb, Kc, and Kd as

inputs and it is called Keyschedule block. Hence, the design has two computing

blocks: regular round block and key schedule block. The regular round block is
used in the randomizing and key scheduling stage. The key schedule block is

used in the keyscheduling stage only.

Besides the computing blocks, it is necessary to have control blocks and a

register block. The register block (or memory) is needed to store the subkeys. It
is then called subkey registers. The control box is an FSM (finite state machine)

that controls the computing block to perform their functions. So there are three

control blocks: FSM key scheduling, FSM Encryption, and FSM decryption. In
addition to those control blocks, it is necessary to have a main control FSM to

manage the input output process and to coordinate the three other control FSMs.

As depicted on Figure 6, the proposed architecture has four control/FSM blocks

(Main Controller, FSM Keyschedule, FSM Encryption, FSM Decryption), two
computing blocks (Regular Round, Keyschedule) and a register file/memory

(Subkey register). This architecture is depicted in Figure 5.

 Architecture for the Secret-Key BC3 Cryptography Algorithm 135

Input_ready

Key_ready

enc_dec

Data_Req

enc_ok

Data_ack

Output_ready

enc_en

clk

resetclk

reset FSM_

Encryption

FSM_

Decryption

FSM_

Keyschedule

F
S

M
_
M

a
in

_
C

o
n

tr
o

lle
r

dec_ok

dec_en

clk

reset

schedule_ok

schedule_en

clk

reset

Regular_Round

Subkey

Registers

Keyschedule

- KW_first_sel

- XOR_pre_Fround

- subkey_sel

- func_sel

- data_selector

- key_selector

- KW_last_selector

- XOR_last_Fround

- output_enable

en KA-KG,

K1-k11,

KW1-KW4,

KF1-KF2

- Seq_A_key_in_sel

- Seq_B_key_in_sel

- ANDOR_out_sel

Subkeys :

KA-KG, K1-k11,

KW1-KW4, KF1-KF2

KA,KB,

KC,KD

- subkeys

- const. keys

- Keymaster1_en

- Keymaster2_en

- Const_selector

clk

reset

clk

reset

Input_data

64 bit
Output_data

64 bit

Figure 5 BC3 algorithm architecture.

10 Control Block/FSM

The architecture above can be used for encryption and decryption. The

operation of this architecture is defined in the FSM. For encryption process, the

signal enc_dec must be driven high by the user (to set the mode to encryption).
The operation of this architecture in this mode is as follow:

1. The main key must be entered through the input data port. The key ready

signal must be driven high during this process to inform the main controller
that a new key is fed to the system. Then, the main controller is sending

signal (schedule enable) to the FSM_Keyschedule so the

FSM_Keyschedule takes the control of the subkey registers block and the

two computing blocks.
2. The FSM_Keyschedule controls the regular round block and uses it to

produce KA, KB, KC, and KD. The results are then stored in the register file

(the subkey register block).
3. The FSM_Keyschedule controls the Keyschedule block and uses it to

produce the subkeys by using KA, KB, KC, and KD as input. The result is

136 Arif Sasongko, et al.

then stored in the subkey registers block. The FSM_Keyschedule is then

give the control back to FSM Main controller through the signal

Schedule_ok. This signal informs the main controller that the key expansion

process is completed.
4. The main controller sends the signal Data Req to tell the user that the

system is ready to receive the data/plain text

5. When the user needs to encrypt data, the user must put the data to
input_data port and drives the signal Input_Ready high.

6. The main controller sends the signal Enc_Enable to tell the FSM Encryption

to starti its operation.

7. The Encryption FSM uses the regular round block to encrypt the data. It
uses the proper subkeys which are stored in the Subkey registers as key in

every round.

8. The output of encryption is then sent to Output_Data port and the control is
given back to FSM main controller.

9. The FSM Main controller sends the signal Output ready to the user.

10. The user can take the result and sends acknowledge to the system
11. The main FSM sends signal Input_Ready, so the user can put the next data

to be encrypted. The operation is loop back to step (4).

For the decryption mode, the operation is almost similar to decryption mode.

The difference is that, at step 6, the main FSM send signal Dec_Enable to FSM
Decryption instead of sending Enc_Enable to the FSM Encryption. Then, the

FSM Encryption is taken the control of the Regular Round block. The signal

enc_dec must be driven low by the user (to set the mode to decryption).

11 Regular_round Block

Regular_round block is used for round process in randomizing stage and first

part of key-scheduling stage. Figure 7 shown the regular_round block.
Basically, this block can be divided into two parts: input selector and F

function. The input selector feed the block with the proper the input for each

particular round. There are four possibilities of input: (1) from input port in the
first round, (2) from previous round directly, (3) from previous round trough FA

function, or (4) from previous round trough FA
-1

 function. Figure 6 shows the

detail of this block.

The F function in the Regular Round Block can take various key depending on
various subkey selectors. The FSM_Encryption/FSM_Decryption (controller)

drives these subkey selectors.The subkeys are stored and restored on the subkey

registers. This Regular Round designed in order to process one round per cycle.
So, this architecture needs eleven cycles to execute eleven rounds in

encryption/decryption process.

 Architecture for the Secret-Key BC3 Cryptography Algorithm 137

Spec_Function

FROUND

SEL_2 SEL_2

SEL_2 SEL_2

Subkey_KW3 Subkey_KW4

XOR_last_Fround

XOR_pre_Fround

REGISTER

Input_data

Function_Sel

S
E

L
_
1

1S
E

L
_

6

SEL_2

Const_keyschedule Subkey_SK1 : SK11

subkey_sel

Subkey_KF1

Subkey_KF2

Data_sel

Keymaster1_en

Output_data

REG_1

S
E

L
_

4

S
E

L
_

4

Const_sel

Key_sel

Output_enable

KW_last_selector

64

3232

4

64

6464

32

32

6 x 32

64

32

4

116

REG_2

32

32

Keymaster2_en

6464
64 64

S
E

L
_
2

S
E

L
_

2 Subkey_KW2

Subkey_KW4

Subkey_KW1

Subkey_KW3

KW_first_sel

Subkey_KW2Subkey_KW1

clock

reset

SEL_4_64

32

Selection data from:

-input_data,

-keymaster

-regular_round output,

-FA or FA inverse

Regular_round

process

FA and FA inverse

process

Figure 6 The regular_round block.

12 Key-schedule Block

Key-schedule block is design to perform the second part of key expansion

process. It takes KA, KB, KC, KD as input and generates the subkeys. Figure 7

shown the keyschedule block. It consists of various combinational block such as
AND gate, XOR gate, OR gate, rotation, and combination of them. Moreover,

there are several multiplexer for selecting and channeling the data.

138 Arif Sasongko, et al.

SUBKEY

REGISTERS

:

KA

KB

KC

KD

KE

KF

KG

KW1

KW2

KW3

KW4

SK1

SK2

SK3

SK4

SK5

SK6

SK7

SK8

SK9

SK10

SK11

KF1

KF2

C1

C2

C3

C4

C5

C6

S
E

L
1

1
S

E
L

1
1

S
E

L
9

S
E

L
9

S
E

L
9

S
E

L
1
_

T
O

_
1

1

S
E

L
1

1

S
E

L
3

S
E

L
1

_
T

O
_

9

(KF, KW1, K1, K5, KF1, KF2, K11, K10, KW4)

KA, KE, (KE), C2, C1,

K1, K3, K8, K2

KB, KF, KW2, (KW2),

KE, K5, (K5), K4, K8,

KD, KG, KF, K3, K4, K6, (K6), K5, K9

KA, KC, KE, KW1, K2,

K3, K5, KF1, K7, XORonly(K3), K6

KD, KB, KG, KF, KW2,

(KW2), K2, (KW2), K3, K4

KC, KA, KF, KE, KW1,

K1, (K1), K6, C3, K9

(KG, KE, KW2, K2, K3, K4, K6, K7, K8, K9, KW3)

KA, KB, KC, KD

Seq_B_key_sel

Seq_A_key_sel

AND_OR_out_sel

ROTR (K5)

SK1 : SK11,

KW1 : KW4,

KF1 : KF2

C1 : C2

clock

reset

Figure 7 The keyschedule block.

13 Result of BC3 Hardware Implementation

The BC3 design is described in register transfer level by using VHDL. The

number of files written for this design is 29 files. The design is then simulated

using test vector. It is then compared with the software implementation and

manual calculation to ensure the correctness.

The design is then implemented using Altera FPGA Cyclone® II type

EP2C20F484C7 [9]. The result of synthesis shows that hardware design of BC3

algorithm requires 3098 logic elements, 1119 registers and 136 I/O pins. The
timing report informs estimation critical path along 32.620 ns or 30.66 MHz.

This indicates that fastest value which can be passed to this design is 30.66

MHz or fastest period time is 32.620 ns. The Cyclone II is a low cost/low
performance FPGA from Altera. Obviously, this speed can be improved using

 Architecture for the Secret-Key BC3 Cryptography Algorithm 139

faster FPGA or ASIC. The ASIC implementation can be faster in some orders

of magnitude.

The comparisons of BC3 hardware with BC3 software is shown on Table 2.

Table 2 Comparison of BC3 implementation.

Criteria BC3 hardware

(assume using fastest

period time (30.620ns))

BC3 software

(on AMD Duron

Processor 1.2 GHz)

Key expansion process

(encryption/decryption)

0.55454 us 0.7731 us

Randomizing process 0.35882 us 0.71865 us

Table 2 show that key-scheduling and encryption/decryption processes on
hardware is 0.55454 us and 0.35882 us, respectively. The key-scheduling and

encryption/decryption processes on software are 0.7731 us and 0.71865 us,

respectively. So, the time for key-scheduling and encryption/decryption

processes on hardware implementation is faster than on previous software
implementation.

The comparison of result BC3 hardware implementation with AES hardware [4]

is shown on Table 3.

Table 3 Comparison of BC3 and AES.

Criteria BC3 (128 bits) AES (128 bits)

Logic elements 3,098 10,338

Randomizing process

(encryption/decryption)

11 clock cycles 54 clock cycles

Key expansion 17 clock cycles 10 clock cycles

The result of area of BC3 algorithm is smaller than area of AES [4]. The main
advantages come from: (1) flexible regular_round block so each round can be

executed in single clock, (2) sharing the computation block when possible, (3)

the design of BC3 algorithm which is very regular/homogenous .Actually, the
ideas used in this architecture can be also to construct an architecture for AES.

14 Conclusions

This paper presents an architecture for implementing BC3 algorithm on
hardware. This implementation needs fewer logic elements than AES [4] and

has better performance. Furthermore, the BC3 hardware implementation has

better performance compared to BC3 software both in key expansion and
encryption/decryption. Therefore, this architecture is proven to result a low area

140 Arif Sasongko, et al.

implementation thanks to the exploitation of the regularity of the BC3

algorithm. Idea used in this architecture may be utilized also for other algorithm

using Feistel network. For the future, the robustness of this implementation

must be reviewed especially against side channel attack such as timing attack
and power analysis attack.

References

[1] Goldreich, O., Foundations of Cryptography, Vol. I Basic Tools,
Cambridge, 2006

[2] Stallings, W., Cryptography and Network Security Principles and

Practices (4
th
 ed.). New Jersey: Prentice Hall, 2005.

[3] Kurniawan, Y., Algoritma Enkripsi Indonesia BC3, http://ysfk2008.

wordpress.com, Accessed on November, 2011.

[4] Satoh, A., Morioka, S., Takano, K., & Munetoh, S., A Compact Rijndael
Hardware Architecture with S-Box Optimization, ASIACRYPT 2001,

LNCS 2248. pp. 239-254, 2001.

[5] Kurniawan, Y., Suwandi, A., Mardianto, M. S., Supriana, I., Sutikno, S.

The New Block Cihper: BC2, International Journal of Network Security,
8(1), pp. 16-24, 2009.

[6] Kurniawan, Y., Analisis Sandi Diferensial AE3, Proceeding of Seminar

Nasional IC2007 BINUS University, Indonesia, 2007.
[7] Biryukov, A., Khovratovich, D. & Nikolić, I. , Distinguisher and

Related-Key Attack on the Full AES-256, Lecture Notes in Computer

Science, 5677/2009, Springer-Verlag, 2009
[8] Kocher, Paul C., Timing Attacks on Implementations of Diffie-Hellman,

RSA, DSS, and Other Systems, CRYPTO, 1996.

[9] ---, DBC2C20-Cyclone II Development Board, Altera, 2008

[10] Kurniawan, Y., Algoritma Enkripsi AE3 dan Analisis Sandi Linear,
Proceeding of Konferensi Nasional Sistem Informasi, Indonesia, 2008.

[11] Matsui, M., Nakajimi, J., A Description of Camellia Encryption

Algorithm, from http://www.ipa.go.jp/security/rfc/RFC3713EN.html,
Accessed on Februari, 2009.

[12] Katz, J. & Lindell, Y., Introduction to Modern Cryptography, Chapman

& Hall/CRC, 2008.

[13] Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J.
& Tokita, T., Camellia : A 128-Bit Block Cipher Suitable for Multiple

Platforms — Design and Analysis, Lecture Notes in Computer Science,

2012/2001, Springer-Verlag, 2001
[14] Bertoni, G., Breveglieri, L., Fragneto, P., Macchetti, M. & Marchesin, S.,

Efficient Software Implementation of AES on 32-Bit Platforms, Lecture

Notes in Computer Science, 2523/2003, Springer-Verlag, 2003.

http://ysfk2008/
http://www.springerlink.com/content/0302-9743/
http://www.springerlink.com/content/0302-9743/
http://www.springerlink.com/content/0302-9743/
http://www.ipa.go.jp/security/rfc/RFC3713EN.html
http://www.springerlink.com/content/0302-9743/
http://www.springerlink.com/content/0302-9743/
http://www.springerlink.com/content/0302-9743/
http://www.springerlink.com/content/0302-9743/

