
 

 

ITB J. ICT, Vol. 5, No. 2, 2011, 89-104                                             89 

 

Received November 24
th
, 2011, Revised June 10

th
, 2011, Accepted for publication June 27

th
, 2011. 

Copyright © 2011 Published by LPPM ITB, ISSN: 1978-3086, DOI: 10.5614/itbj.ict.2011.5.2.2 

Synthesis Optimization on Galois-Field Based Arithmetic 

Operators for Rijndael Cipher 

Petrus Mursanto 

Faculty of Computer Science – University of Indonesia 
Kampus UI, Depok 16424, Indonesia 

Email: santo@cs.ui.ac.id  

 

 

Abstract. A series of experiments has been conducted to show that FPGA 

synthesis of Galois-Field (GF) based arithmetic operators can be optimized 

automatically to improve Rijndael Cipher throughput. Moreover, it has been 

demonstrated that efficiency improvement in GF operators does not directly 

correspond to the system performance at application level. The experiments were 

motivated by so many research works that focused on improving performance of 

GF operators. Each of the variants has the most efficient form in either time 

(fastest) or space (smallest occupied area) when implemented in FPGA chips. In 
fact, GF operators are not utilized individually, but rather integrated one to the 

others to implement algorithms. Contribution of this paper is to raise issue on 

GF-based application performance and suggest alternative aspects that 

potentially affect it. Instead of focusing on GF operator efficiency, system 

characteristics are worth considered in optimizing application performance. 
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1 Introduction 

Galois Field (GF) arithmetic plays an important role in modern communication 

system, particularly in two important aspects of information exchange, i.e. 

security and data correctness. GF is utilized in cryptography algorithm [1],[2] 

and error correction codes (ECC) [3],[4]. Performance of applications in these 
two fields is determined by the efficiency of GF arithmetic operators involved 

in the system [5]. There has been found in the literatures research efforts in 

improving GF operators’ efficiency, e.g. multiplication [6], division [7] and 
inversion [8]. In fact, GF operators are not performing their functions 

individually and independently, rather they are parts of a functional integration 

at the system level. Is operator efficiency beneficial to the application level 
performance? 

This paper reports an experimental result of implementing Rijndael encryption 

and decryption algorithms based on six variants of GF operator. The purpose of 

the experiment is to obtain a Rijndael configuration whose throughput is the 
most optimum. The Rijndael algorithm was implemented using VHDL by 
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means of two synthesis tools: the Xilinx ISE 8.2i and the Altium ProChip 

Designer.  

2 Previous Research 

Similar to the ordinary algebra, GF algebra has a number of arithmetic 

operations, such as: addition, subtraction, etc. Variants of GF arithmetic 

operators are characterized by:  

1. operation types: multiplication, division, inversion, square or square root 
2. representation basis: standard/polynomial (PB), normal (NB) or dual (DB) 

3. processing types: parallel or serial. 

In digital circuit, GF addition and subtraction are simply implemented by 
exclusive-OR logic operation. The advance of digital technology has shifted 

performance measurement mechanism from the running time of software 

algorithm [9] to VLSI complexity, i.e. the number of components and their total 
delay [6].  

The first circuit structure of GF arithmetic was proposed by Berlekamp in 1982, 

i.e. polynomial and dual based multiplication [10]. Normal based multiplier was 

introduced firstly by Massey-Omura in 1986 [11], which is known afterward as 
MO multiplier. In 1988, Mastrovito proposed a more modular multiplier with 

higher regularity of the structure that suits systolic cells in VLSI [12]. However, 

speed, size and modularity of Mastrovito's multiplier depend much on the 
irreducible polynomial P(x) used to generate the field elements. By selecting the 

right P(x), parallel multiplication has at most 2
m
-1 logical gates and occupies 

55% of the space required for implementing Bartee and Schneider's algorithm 
[9]. In 1991, Mastrovito's dissertation reported an experimental investigation on 

multiplication using more than one representation basis [13]. It was concluded 

that PB multiplier is the most versatile form for the most arithmetic 

computational problems of GF(2
m
) in VLSI. In addition, PB solution also 

possess conversion cost that can compensate the efficiency gained by the other 

representation basis [14] and occupies a half space of the one required by MO 

multiplier. Mapping problem for inter-basis conversion is the concern of Wu, et 
al. [15] which introduced an efficient conversion method from PB to NB 

specifically for squaring. Furthermore, Sunar, et al. proposed conversion matrix 

for any form of generator polynomial [16]. 

Several improvements of multiplication algorithm were also reported by 
Afanasyev [17] and similarly by Hasan, et al. [18] that proposed a modification 

of the architecture by defining the irreducible polynomial as all-one polynomial 

(AOP). By applying the AOP, Hasan claimed the complexity of multiplication 
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decreases by 50%. Meanwhile, Lee-Lim also reported a performance 

improvement by applying circular dual basis (CDB) [19]. Lee's method is very 

efficient for trinomial with composite GF((2
n
)

m
) where m is primary relative 

over n, or gcd(m,n) = 1. However, defining certain form of irreducible 
polynomial is considered as limitation, inflexible and low reusability [20]. 

A comprehensive study on GF arithmetic was reported by Paar's dissertation 

[21], in which he proposed a decomposition algorithm from GF(2
k
) to GF((2

n
)

m
) 

where k = n.m, called composite field. In addition, Paar also explored inversion 

after the first algorithm introduced by Itoh-Tsujii in 1988 [22]. Paar's further 

research in [23] reported composite field multiplication and inversion in GF(2
8
). 

Composite field implementation in FGPA showed components saving by 25% 
and acceleration by 10% [24]. The composite field inversion requires 29% of 

AND and XOR gates compared to the standard one. Rudra [25] and Jutla [26] 

also developed a method for linear transformation of GF binary elements to 
composite field representation. 

Combination of serial and parallel processes were reported by Choi, et al. [27] 

that introduced hybrid multiplier by forming irreducible polynomial x
m
 + x

n
 + 1 

where n ≤ m/2. This hybrid multiplier has flexible structure to compromise 

space and time complexity and is proven having less complexity than Wu and 

Hasan’s multipliers [15]. Several other methods were proposed to support 

hardware implementation, such as Huang-Wu [28] that has systolic array 
architecture approach to ease the testing process. 

Previous implementation of Rijndael cipher has been reported, such as 

improvement of arithmetic efficiency based on composite field by Rudra et.al. 
[25], optimization of transformation using Look Up Table by Lee [29],[30], and 

performance improvement of SubBytes algorithm specifically on S-Box module 

by Rijmen [31]. 

3 Motivation 

Previous research focused on efficiency improvement of GF operators to obtain 

better performance in term of speed or occupied space when implemented in 
digital circuits. However, literatures on GF-based implementation at system 

level are merely experience sharing with specific features without any analysis 

on the consequences of GF operator variants involved in the system. Triggered 

by the issues discussed in the available literatures, the experiments were 
designed to answer the following research questions: 

1. Can performance improvement gained at operator level be obtained linearly 

at the application level?  
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2. How can GF-based circuit optimization be achieved at application level? 

3. Will an application take benefit by employing all best variants of GF 

operators? 

4 Methodology 

A set of experiments was designed to examine whether the best variants of GF 

operator can be combined to construct the most efficient application. In other 

words, which configuration of GF operator variants produces an application 
with the greatest throughput? Arithmetic operator types were taken as suggested 

by the algorithm of Rijndael cipher 128-bit. The operators were implemented as 

the most efficient variant from each combination of two parameters: 
representation basis (PB, NB or DB), and processing structure (parallel or 

serial). For further reference in the next discussion, we use six variants of 

operators as follows:  

Table 1 GF operator variants. 

Variant Structure Basis 

1 Parallel 
Polynomial 

2 Serial 

3 Parallel 
Normal 

4 Serial 

5 Parallel 
Dual 

6 Serial 

 

The Rijndael cipher is implemented into six versions, each of which was 

constructed based on the variants in Table 1. They were implemented using 

structural VHDL and synthesized with Xilinx ISE 8.2i and Altium ProChip 
Designer. Synthesis parameters were set for speed as the goal, optimized the 

period of the entire design with normal optimization effort. The synthesis 

process results in maximum combinational path or total delay that defines the 

maximum frequency possibly supplied to the system. Hence, the system 
throughput can be calculated based on the data capacity proceeded per time 

unit, expressed in Mega Byte per second (MBps). Throughput is then used as an 

indicator of the system performance. An optimal configuration is defined as the 
one having biggest throughput among the six versions of the system. 

5 GF Operator Architectures 

This section briefly discusses the six variants of GF operator, in particular the 
one widely used in encryption and decryption processes, i.e. the multiplication. 

Variant 1 of multiplier implements Mastrovito's circuit in [12]. Multiplication is 
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processed partially in variant 2 by the circuit shown in Figure 1. Variant 3 and 4 

are realized based on the NB multiplier in [13]. Multiplier variant 5 and 6 are 

implemented using parallel and serial structures in [13]. 

 

Figure 1 Serial PB Multiplier GF(2m). 

The implementation of six variants of multiplier results in delays shown in 

Table 2. It can be seen that the parallel multiplier in dual basis has the biggest 

combination delay. The best variant is the one having the smallest delay, i.e. 
polynomial based parallel multiplier or variant 1.  

Table 2 Delay of GF(24) multiplier in ns. 

Structure Tools PB NB DB 

Parallel 
Xilinx 12.69 13.49 17.61 

Altium 11.37 11.94 14.25 

Serial 
Xilinx 15.96 15.18 15.31 

Altium 15.24 16.26 15.14 

6 Rijndael Cipher 

This session describes the implementation of Rijndael cipher with focus on 

hardware structure involving GF algebra. Decipher is a reverse process of 
cipher and vice versa. More details on analytic theory and algorithm's 

philosophic background, its strength and weakness as well as limitation are 
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covered in [32]. 

According to Rijndael encryption scheme, one block of data is converted to 

ciphertext by means of a number of transformation algorithms. Temporary 

result of internal process in delivering ciphertext is called State. State is 
represented in a square of byte arrays. It has four rows and a number of 

columns. Number of columns is defined using a variable that equals to block 

length divided by 32. This session describes the implementation of Rijndael 
cipher with data block and key length of 128 bits.  

Encryption algorithm is arranged in several steps of computation such as shown 

in Figure 2. In initial phase (iteration 0), State is computed by XORing data 

block and the cipher key. Furthermore, State is going through 10 iterations 
consisting of computation phase SubBytes (SB), ShiftRows (SR), MixColumns 

(MC) and AddRoundKey (ARK). Specific for the 10
th

 iteration, State skips the 

MC process. In every iteration, result of MC is XORed with Round Key which 
is unique for corresponding iteration. The Round Key is produced by Round 

Key Generator from a number of transformations over the cipher key. 

 

Figure 2 Rijndael Cipher Process. 

Detail of internal process in each block within Figure 2 has been discussed in 

[31]. This paper presents the structure of Rijndael's blocks and their throughput 

as consequences of GF operator variants selected in the implementations.  
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6.1 SubBytes 

SubByte (SB) transformation is a byte non-linear substitution, operates on each 

State independently. Substitution table (known as S-Box) is invertible and built 
with composition of two main steps, i.e.: multiplicative inversion and Affine 

transformation. GF(2
8
) inversion can be accomplished in either parallel or 

serial. Direct parallel inversion for GF(2
4
) has been discussed in [12] with 

subfield in [13]. Affine transformation delay is duration time required by XOR 
operation. Considering additional cycles for Affine transformation, throughput 

of SubBytes is obtained as shown in Table 3. 

Table 3 Throughput SubBytes in MBps. 

Structure Tool PB NB DB 

FulPar 
Xilinx 105.56 92.00 80.00 

Altium 113.56 98.40 86.36 

Parallel 
Xilinx 102.40 149.20 n.a. 

Altium 112.00 162.80 n.a. 

Serial 
Xilinx 116.60 131.40 120.48 

Altium 125.60 135.08 130.68 

6.2 ShiftRows 

In ShiftRows (SR), the row of State is shifted in cyclic or left rotated with offset 

varies from 0 to 3. SR is directing input bytes to different row of output bytes. 
Implementation delay equals to zero or 'cost-free' since there is no gate 

involved.  

6.3 MixColumns 

In MixColumn, column of State is considered as a polynomial of GF (2
8
) and 

multiplied by modulo of x
4
+1 with specific polynomial: 

c(x) = '03'x
3
 + '01'x

2
 + '01'x + '02' 

MixColumns delay is duration time of multiplication which is implemented in 

parallel or serial. In this case, there are multiplication with constant operands, 

i.e. 01, 02 and 03. Performance evaluation is conducted over the throughput of 

MixColumns if the multiplier is implemented in one of the six variants in Table 
1. Result of throughput measurement using Xilinx and Altium tools is shown in 

Table 4. 
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Table 4 MixColumns throughput in MBps. 

Structure Tool PB NB DB 

Parallel 
Xilinx 819.6 746.8 620.0 

Altium 897.2 814.0 669.6 

Serial 
Xilinx 842.0 554.8 858.4 

Altium 907.2 570.4 931.2 

6.4 AddRoundKey 

This is a simple process, i.e. XORing State with the Round Key resulted from 
RKG in corresponding iteration. Delay of this process comes from the XOR 

gates.  

6.5 Round Key Generator 

RKG is to produce Round Key for every iteration. The original cipher key is 

only for iteration 0, and then used by RKG for delivering Round Key in 

iteration 1. Round Key 1 is processed for delivering Round Key in iteration 2, 
and so on. Circuit delay is the duration time required for multiplicative 

inversion. Round Key Generator has similar structure with SubBytes involving 

only inversion and XOR. Performance measurement of ARK can be seen in 
Table 5. It is shown that normal based inversion variant has the highest 

performance as demonstrated in [33]. 

Table 5 Throughput Round Key Generator in MBps. 

Structure Tool PB NB DB 

FulPar 
Xilinx 211.12 183.96 161.84 

Altium 227.16 196.8 172.72 

Parallel 
Xilinx 117.08 186.76 n.a. 

Altium 128.20 203.44 n.a. 

Serial 
Xilinx 118.44 134.96 122.64 

Altium 127.56 138.72 133.00 

6.6 Rijndael Cipher Performance 

The overall performance of Rijndael encryption requires a uniform of symbol 

representation basis. For that reason, the best performance must be identified for 

every representation basis. In summary, Table 6, Table 7 and Table 8 show the 
best throughput of the Rinjdael's modules produced by the three representation 

basis. 
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Table 6 The best throughput of SubBytes in MBps. 

Tool Modul Architecture Throughput Δ × clk 

Xilinx 

SymbSerial Serial PB 116.60 2.11 × 65 

SymbSerial Parallel NB 149.20 21.42 × 5 

SymbSerial Serial DB 120.48 2.33 × 57 

Altium 

SymbSerial Serial PB 125.60 1.96 × 65 

SymbSerial Parallel NB 162.80 19.66 × 5 

SymbSerial Serial DB 130.68 2.15 × 57 

Round Key Generator (RKG) runs in parallel with three iterative processes, they 

are: SubBytes (SB), ShiftRows (SR) and MixColumns (MC). Results of those 

parallel processes are XOR-ed with Add Round Key (ARK) to produce new 

State that becomes the input for next iteration. Hence, number of cycles 
required in iteration is defined by the biggest one of the two processes whose 

period follows the slowest module. Throughput is calculated based on parallel 

processes in four columns; in this case the total data is 16 bytes. 

Table 7 The best throughput of MixColumns in MBps. 

Tool Module Architecture Throughput Δ × clk 

Xilinx 

Serial Multp PB 842.0 2.11 × 9 

Parallel Multp NB 746.8 21.42 × 1 

Serial Multp DB 858.4 2.33 × 8 

Altium 

Serial Multp PB 907.2 1.96 × 9 

Parallel Multp NB 814.0 19.66 × 1 

Serial Multp DB 931.2 2.15 × 8 

Table 8 The best throughput of Round Key Generator in MBps. 

Tool Modul Architecture Throughput Δ × clk 

Xilinx 

FullPar Inv PB 211.12 75.79 × 1 

Parallel Inv NB 186.76 85.68 × 1 

FullPar Inv DB 161.84 98.87 × 1 

Altium 

FullPar Inv PB 227.16 70.44 × 1 

Parallel Inv NB 186.76 78.64 × 1 

FullPar Inv DB 172.72 92.64 × 1 
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Table 9 The highest throughput of encryption. 

Tool Basis Δ/clk #clock Δ(ns) 
Thrgput 

(MBps) 

Xilinx 

PB 75.79 65+9+1 5684.25 2.82 

NB 85.68 5+1+1 599.76 26.68 

DB 98.87 57+8+1 6525.42 2.45 

Altium 

PB 70.44 65+9+1 5283 3.03 

NB 78.64 5+1+1 550.48 29.07 

DB 92.64 57+8+1 6114.24 2.62 

It is shown in Table 9 that encryption performance is very low since it has to 

accommodate the delay of RKG which is built in parallel structure. It is 

therefore required to build a serial structure of RKG as long as the number of 
cycles in total does not exceed the number of cycles accumulated by SB, SR 

and MC. PB and DB can have operational structures in serial per symbol with 

serial operators; whereas NB should have serial structure per symbol with 
parallel operators. In this case, serial operators result in number of cycles 

exceeds the number of cycles for encryption. Performance of serial structured 

RKG is presented by Table 10. 

Table 10 Throughput serial Round Key Generator (RKG). 

Tool Modul Architecture Thrghput (MBps) Δ × clk 

Xilinx 
Serial-Serial Inv PB 29.61 2.11 × 64 

Serial-Parallel Inv NB 46.69 21.42 × 4 
Serial-Serial Inv DB 30.66 2.33 × 56 

Altium 
Serial-Serial Inv PB 31.89 1.96 × 64 

Serial-Parallel Inv NB 50.86 19.66 × 4 
Serial-Serial Inv DB 33.25 2.15 × 56 

By changing RKG structure from parallel to serial, performance of the system 

increases. It is evidently shown by the increasing throughput of the application 

significantly in Table 11. 

Table 11 Throughput of Rijndael cipher with serial RKG. 

Tool Basis Δ/clk #clock Δ(ns) 
Thrgput 

(MBps) 

Xilinx 
PB 2.11 65+9+1 158.33 101.06 
NB 21.42 5+1+1 149.94 106.71 
DB 2.33 57+8+1 153.78 104.04 

Altium 
PB 1.96 65+9+1 147 108.84 
NB 19.66 5+1+1 137.62 116.26 

DB 2.15 57+8+1 141.77 112.86 
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It can be seen on Table 11, Rijndael cipher with normal based representation 

has the highest throughput. It is shown consistently by both Xilinx and Altium 

tools. It proves that the most efficient at PB operators does not deliver the most 

optimal Rijndael application. Performance degradation of RKG modularly in 
fact improves the throughput of integrated system in the application. 

7 Automatic Synthesis Optimization 

Experiment results show that employing the best operators does not 
automatically produce the most efficient application. This phenomenon is 

shown consistently by Xilinx and Altium synthesis tools. Simple and common 

logic saying that parallel process is faster than serial does not hold. This is 
caused by the fact that the synthesis tools have initiated automatic improvement 

or limited optimization to the VHDL structural design. 

Multiplication and inversion are obviously the dominant process in Rijndael 
encryption. Examination on the results shows that multiplication with fixed bit 

operands is optimized by removing unnecessary components in the system. For 

specific configuration of Rijndael cipher, P(x) and g(x) are fixed during the 

system lifecycle. g(x) is one of the operand performing as a(x) in Figure 1. 
Fixed values of pi and gi cause the content of block Ei in Fig.1 can be simplified 

becoming the circuits shown in Figure 3. All combinations of ai and pi within 

internal block Ei can be optimized without any AND gate. By omitting AND 
gates, Xilinx reduces significantly the delay so that the minimum period is 2.5 

ns. Hence, processing 4 bit requires 10 ns, which is faster than parallel 

multiplication delay 12.69 ns. 

 

Figure 3 Internal component of Ei in PB Serial Multiplier for (a) ai=0; pi=0  (b) 

ai=0; pi=1  (c) ai=1; pi=0  (d) ai=1; pi=1. 

It is examined that optimization was not applied to parallel multiplications 

although they also have constant operands. It is due to the fact that the tools 
optimize constant bit only, whereas parallel multiplier signal is implemented as 

an m-bit bus. 
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DB multiplier is superior over the PB and NB variants in term of fully serial 

delivery of the product. With constant values of P(x) and A(x), DB serial 

multiplier delivers the product bit by bit as the operand bi enters from MSB to 

LSB. Therefore, variant 6 saves 1 cycle compared to variant 2 and 4 that 
delivering the product after the whole cycle for m-bit completes. For that 

reason, variant 6 based systems can process addition serially as the product is 

delivered from index m-1 to 0. 

 

Figure 4 DB serial multiplier with constant P(x). 

With constant P(x) = x
4
 + x + 1, optimization steps applied to serial DB 

multiplication is shown by Figure 4. In general this finding supports several 

statements in the literature that multiplication with constant operands can be 

more efficient [10]. It was examined as well that optimization does not apply to 
serial NB multiplier. In serial NB multiplication, the values of both operands 

change dynamically during the lifecycle of the system due to the rotation of 

internal registers. 

8 Conclusions and Further Research 

This paper reports that an optimal performance of Rijndael cipher does not 

always require the best variants or the most efficient GF operators. Combining 
all best operators, where each is the most efficient variant, is not a simple 

mechanistic conversion process. In addition, when implemented in FPGA, 

efficiency improvement is also contributed by synthesis tools that optimize 
serial operators whose operands are constant. This explains why the 

experimental results show the superiority of serial based system over parallel 

ones. This result supports previous finding with similar experiments on Reed 

Solomon Codec [34]. 

Obtaining synergic efficiency at system level requires careful considerations on 

several aspects of the system. Based on the facts obtained in this paper, it is 

worth to investigate system characteristics as the main contributors for the 
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application performance, i.e. the operator composition and distribution, 

interaction between them and types of internal process within the system.  

It is interesting to examine further the consistency of this optimization in other 

GF-based applications. Explorative experiments are required for Rijndael AES 
with cipher-key 128-bit [35] or RS (255,223) 8-bit such as the one used by 

NASA [36]. Hypothetical prediction suggests that higher performance ratio 

would be obtained by serial variants over the parallel ones. It is because of 
additional combinational path in parallel operators that results in bigger delays. 

Meanwhile, serial operators requires only several additional cycles with 

constant minimum periods. 
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