

ITB J. ICT, Vol. 5, No. 2, 2011, 89-104 89

Received November 24
th
, 2011, Revised June 10

th
, 2011, Accepted for publication June 27

th
, 2011.

Copyright © 2011 Published by LPPM ITB, ISSN: 1978-3086, DOI: 10.5614/itbj.ict.2011.5.2.2

Synthesis Optimization on Galois-Field Based Arithmetic

Operators for Rijndael Cipher

Petrus Mursanto

Faculty of Computer Science – University of Indonesia
Kampus UI, Depok 16424, Indonesia

Email: santo@cs.ui.ac.id

Abstract. A series of experiments has been conducted to show that FPGA

synthesis of Galois-Field (GF) based arithmetic operators can be optimized

automatically to improve Rijndael Cipher throughput. Moreover, it has been

demonstrated that efficiency improvement in GF operators does not directly

correspond to the system performance at application level. The experiments were

motivated by so many research works that focused on improving performance of

GF operators. Each of the variants has the most efficient form in either time

(fastest) or space (smallest occupied area) when implemented in FPGA chips. In
fact, GF operators are not utilized individually, but rather integrated one to the

others to implement algorithms. Contribution of this paper is to raise issue on

GF-based application performance and suggest alternative aspects that

potentially affect it. Instead of focusing on GF operator efficiency, system

characteristics are worth considered in optimizing application performance.

Keywords: FPGA; Galois Field; Rijndael Cipher; VHDL.

1 Introduction

Galois Field (GF) arithmetic plays an important role in modern communication

system, particularly in two important aspects of information exchange, i.e.

security and data correctness. GF is utilized in cryptography algorithm [1],[2]

and error correction codes (ECC) [3],[4]. Performance of applications in these
two fields is determined by the efficiency of GF arithmetic operators involved

in the system [5]. There has been found in the literatures research efforts in

improving GF operators’ efficiency, e.g. multiplication [6], division [7] and
inversion [8]. In fact, GF operators are not performing their functions

individually and independently, rather they are parts of a functional integration

at the system level. Is operator efficiency beneficial to the application level
performance?

This paper reports an experimental result of implementing Rijndael encryption

and decryption algorithms based on six variants of GF operator. The purpose of

the experiment is to obtain a Rijndael configuration whose throughput is the
most optimum. The Rijndael algorithm was implemented using VHDL by

90 Petrus Mursanto

means of two synthesis tools: the Xilinx ISE 8.2i and the Altium ProChip

Designer.

2 Previous Research

Similar to the ordinary algebra, GF algebra has a number of arithmetic

operations, such as: addition, subtraction, etc. Variants of GF arithmetic

operators are characterized by:

1. operation types: multiplication, division, inversion, square or square root
2. representation basis: standard/polynomial (PB), normal (NB) or dual (DB)

3. processing types: parallel or serial.

In digital circuit, GF addition and subtraction are simply implemented by
exclusive-OR logic operation. The advance of digital technology has shifted

performance measurement mechanism from the running time of software

algorithm [9] to VLSI complexity, i.e. the number of components and their total
delay [6].

The first circuit structure of GF arithmetic was proposed by Berlekamp in 1982,

i.e. polynomial and dual based multiplication [10]. Normal based multiplier was

introduced firstly by Massey-Omura in 1986 [11], which is known afterward as
MO multiplier. In 1988, Mastrovito proposed a more modular multiplier with

higher regularity of the structure that suits systolic cells in VLSI [12]. However,

speed, size and modularity of Mastrovito's multiplier depend much on the
irreducible polynomial P(x) used to generate the field elements. By selecting the

right P(x), parallel multiplication has at most 2
m
-1 logical gates and occupies

55% of the space required for implementing Bartee and Schneider's algorithm
[9]. In 1991, Mastrovito's dissertation reported an experimental investigation on

multiplication using more than one representation basis [13]. It was concluded

that PB multiplier is the most versatile form for the most arithmetic

computational problems of GF(2
m
) in VLSI. In addition, PB solution also

possess conversion cost that can compensate the efficiency gained by the other

representation basis [14] and occupies a half space of the one required by MO

multiplier. Mapping problem for inter-basis conversion is the concern of Wu, et
al. [15] which introduced an efficient conversion method from PB to NB

specifically for squaring. Furthermore, Sunar, et al. proposed conversion matrix

for any form of generator polynomial [16].

Several improvements of multiplication algorithm were also reported by
Afanasyev [17] and similarly by Hasan, et al. [18] that proposed a modification

of the architecture by defining the irreducible polynomial as all-one polynomial

(AOP). By applying the AOP, Hasan claimed the complexity of multiplication

 Synthesis Optimization on Galois Field Based Arithmetic Operators 91

decreases by 50%. Meanwhile, Lee-Lim also reported a performance

improvement by applying circular dual basis (CDB) [19]. Lee's method is very

efficient for trinomial with composite GF((2
n
)

m
) where m is primary relative

over n, or gcd(m,n) = 1. However, defining certain form of irreducible
polynomial is considered as limitation, inflexible and low reusability [20].

A comprehensive study on GF arithmetic was reported by Paar's dissertation

[21], in which he proposed a decomposition algorithm from GF(2
k
) to GF((2

n
)

m
)

where k = n.m, called composite field. In addition, Paar also explored inversion

after the first algorithm introduced by Itoh-Tsujii in 1988 [22]. Paar's further

research in [23] reported composite field multiplication and inversion in GF(2
8
).

Composite field implementation in FGPA showed components saving by 25%
and acceleration by 10% [24]. The composite field inversion requires 29% of

AND and XOR gates compared to the standard one. Rudra [25] and Jutla [26]

also developed a method for linear transformation of GF binary elements to
composite field representation.

Combination of serial and parallel processes were reported by Choi, et al. [27]

that introduced hybrid multiplier by forming irreducible polynomial x
m
 + x

n
 + 1

where n ≤ m/2. This hybrid multiplier has flexible structure to compromise

space and time complexity and is proven having less complexity than Wu and

Hasan’s multipliers [15]. Several other methods were proposed to support

hardware implementation, such as Huang-Wu [28] that has systolic array
architecture approach to ease the testing process.

Previous implementation of Rijndael cipher has been reported, such as

improvement of arithmetic efficiency based on composite field by Rudra et.al.
[25], optimization of transformation using Look Up Table by Lee [29],[30], and

performance improvement of SubBytes algorithm specifically on S-Box module

by Rijmen [31].

3 Motivation

Previous research focused on efficiency improvement of GF operators to obtain

better performance in term of speed or occupied space when implemented in
digital circuits. However, literatures on GF-based implementation at system

level are merely experience sharing with specific features without any analysis

on the consequences of GF operator variants involved in the system. Triggered

by the issues discussed in the available literatures, the experiments were
designed to answer the following research questions:

1. Can performance improvement gained at operator level be obtained linearly

at the application level?

92 Petrus Mursanto

2. How can GF-based circuit optimization be achieved at application level?

3. Will an application take benefit by employing all best variants of GF

operators?

4 Methodology

A set of experiments was designed to examine whether the best variants of GF

operator can be combined to construct the most efficient application. In other

words, which configuration of GF operator variants produces an application
with the greatest throughput? Arithmetic operator types were taken as suggested

by the algorithm of Rijndael cipher 128-bit. The operators were implemented as

the most efficient variant from each combination of two parameters:
representation basis (PB, NB or DB), and processing structure (parallel or

serial). For further reference in the next discussion, we use six variants of

operators as follows:

Table 1 GF operator variants.

Variant Structure Basis

1 Parallel
Polynomial

2 Serial

3 Parallel
Normal

4 Serial

5 Parallel
Dual

6 Serial

The Rijndael cipher is implemented into six versions, each of which was

constructed based on the variants in Table 1. They were implemented using

structural VHDL and synthesized with Xilinx ISE 8.2i and Altium ProChip
Designer. Synthesis parameters were set for speed as the goal, optimized the

period of the entire design with normal optimization effort. The synthesis

process results in maximum combinational path or total delay that defines the

maximum frequency possibly supplied to the system. Hence, the system
throughput can be calculated based on the data capacity proceeded per time

unit, expressed in Mega Byte per second (MBps). Throughput is then used as an

indicator of the system performance. An optimal configuration is defined as the
one having biggest throughput among the six versions of the system.

5 GF Operator Architectures

This section briefly discusses the six variants of GF operator, in particular the
one widely used in encryption and decryption processes, i.e. the multiplication.

Variant 1 of multiplier implements Mastrovito's circuit in [12]. Multiplication is

 Synthesis Optimization on Galois Field Based Arithmetic Operators 93

processed partially in variant 2 by the circuit shown in Figure 1. Variant 3 and 4

are realized based on the NB multiplier in [13]. Multiplier variant 5 and 6 are

implemented using parallel and serial structures in [13].

Figure 1 Serial PB Multiplier GF(2m).

The implementation of six variants of multiplier results in delays shown in

Table 2. It can be seen that the parallel multiplier in dual basis has the biggest

combination delay. The best variant is the one having the smallest delay, i.e.
polynomial based parallel multiplier or variant 1.

Table 2 Delay of GF(24) multiplier in ns.

Structure Tools PB NB DB

Parallel
Xilinx 12.69 13.49 17.61

Altium 11.37 11.94 14.25

Serial
Xilinx 15.96 15.18 15.31

Altium 15.24 16.26 15.14

6 Rijndael Cipher

This session describes the implementation of Rijndael cipher with focus on

hardware structure involving GF algebra. Decipher is a reverse process of
cipher and vice versa. More details on analytic theory and algorithm's

philosophic background, its strength and weakness as well as limitation are

94 Petrus Mursanto

covered in [32].

According to Rijndael encryption scheme, one block of data is converted to

ciphertext by means of a number of transformation algorithms. Temporary

result of internal process in delivering ciphertext is called State. State is
represented in a square of byte arrays. It has four rows and a number of

columns. Number of columns is defined using a variable that equals to block

length divided by 32. This session describes the implementation of Rijndael
cipher with data block and key length of 128 bits.

Encryption algorithm is arranged in several steps of computation such as shown

in Figure 2. In initial phase (iteration 0), State is computed by XORing data

block and the cipher key. Furthermore, State is going through 10 iterations
consisting of computation phase SubBytes (SB), ShiftRows (SR), MixColumns

(MC) and AddRoundKey (ARK). Specific for the 10
th

 iteration, State skips the

MC process. In every iteration, result of MC is XORed with Round Key which
is unique for corresponding iteration. The Round Key is produced by Round

Key Generator from a number of transformations over the cipher key.

Figure 2 Rijndael Cipher Process.

Detail of internal process in each block within Figure 2 has been discussed in

[31]. This paper presents the structure of Rijndael's blocks and their throughput

as consequences of GF operator variants selected in the implementations.

 Synthesis Optimization on Galois Field Based Arithmetic Operators 95

6.1 SubBytes

SubByte (SB) transformation is a byte non-linear substitution, operates on each

State independently. Substitution table (known as S-Box) is invertible and built
with composition of two main steps, i.e.: multiplicative inversion and Affine

transformation. GF(2
8
) inversion can be accomplished in either parallel or

serial. Direct parallel inversion for GF(2
4
) has been discussed in [12] with

subfield in [13]. Affine transformation delay is duration time required by XOR
operation. Considering additional cycles for Affine transformation, throughput

of SubBytes is obtained as shown in Table 3.

Table 3 Throughput SubBytes in MBps.

Structure Tool PB NB DB

FulPar
Xilinx 105.56 92.00 80.00

Altium 113.56 98.40 86.36

Parallel
Xilinx 102.40 149.20 n.a.

Altium 112.00 162.80 n.a.

Serial
Xilinx 116.60 131.40 120.48

Altium 125.60 135.08 130.68

6.2 ShiftRows

In ShiftRows (SR), the row of State is shifted in cyclic or left rotated with offset

varies from 0 to 3. SR is directing input bytes to different row of output bytes.
Implementation delay equals to zero or 'cost-free' since there is no gate

involved.

6.3 MixColumns

In MixColumn, column of State is considered as a polynomial of GF (2
8
) and

multiplied by modulo of x
4
+1 with specific polynomial:

c(x) = '03'x
3
 + '01'x

2
 + '01'x + '02'

MixColumns delay is duration time of multiplication which is implemented in

parallel or serial. In this case, there are multiplication with constant operands,

i.e. 01, 02 and 03. Performance evaluation is conducted over the throughput of

MixColumns if the multiplier is implemented in one of the six variants in Table
1. Result of throughput measurement using Xilinx and Altium tools is shown in

Table 4.

96 Petrus Mursanto

Table 4 MixColumns throughput in MBps.

Structure Tool PB NB DB

Parallel
Xilinx 819.6 746.8 620.0

Altium 897.2 814.0 669.6

Serial
Xilinx 842.0 554.8 858.4

Altium 907.2 570.4 931.2

6.4 AddRoundKey

This is a simple process, i.e. XORing State with the Round Key resulted from
RKG in corresponding iteration. Delay of this process comes from the XOR

gates.

6.5 Round Key Generator

RKG is to produce Round Key for every iteration. The original cipher key is

only for iteration 0, and then used by RKG for delivering Round Key in

iteration 1. Round Key 1 is processed for delivering Round Key in iteration 2,
and so on. Circuit delay is the duration time required for multiplicative

inversion. Round Key Generator has similar structure with SubBytes involving

only inversion and XOR. Performance measurement of ARK can be seen in
Table 5. It is shown that normal based inversion variant has the highest

performance as demonstrated in [33].

Table 5 Throughput Round Key Generator in MBps.

Structure Tool PB NB DB

FulPar
Xilinx 211.12 183.96 161.84

Altium 227.16 196.8 172.72

Parallel
Xilinx 117.08 186.76 n.a.

Altium 128.20 203.44 n.a.

Serial
Xilinx 118.44 134.96 122.64

Altium 127.56 138.72 133.00

6.6 Rijndael Cipher Performance

The overall performance of Rijndael encryption requires a uniform of symbol

representation basis. For that reason, the best performance must be identified for

every representation basis. In summary, Table 6, Table 7 and Table 8 show the
best throughput of the Rinjdael's modules produced by the three representation

basis.

 Synthesis Optimization on Galois Field Based Arithmetic Operators 97

Table 6 The best throughput of SubBytes in MBps.

Tool Modul Architecture Throughput Δ × clk

Xilinx

SymbSerial Serial PB 116.60 2.11 × 65

SymbSerial Parallel NB 149.20 21.42 × 5

SymbSerial Serial DB 120.48 2.33 × 57

Altium

SymbSerial Serial PB 125.60 1.96 × 65

SymbSerial Parallel NB 162.80 19.66 × 5

SymbSerial Serial DB 130.68 2.15 × 57

Round Key Generator (RKG) runs in parallel with three iterative processes, they

are: SubBytes (SB), ShiftRows (SR) and MixColumns (MC). Results of those

parallel processes are XOR-ed with Add Round Key (ARK) to produce new

State that becomes the input for next iteration. Hence, number of cycles
required in iteration is defined by the biggest one of the two processes whose

period follows the slowest module. Throughput is calculated based on parallel

processes in four columns; in this case the total data is 16 bytes.

Table 7 The best throughput of MixColumns in MBps.

Tool Module Architecture Throughput Δ × clk

Xilinx

Serial Multp PB 842.0 2.11 × 9

Parallel Multp NB 746.8 21.42 × 1

Serial Multp DB 858.4 2.33 × 8

Altium

Serial Multp PB 907.2 1.96 × 9

Parallel Multp NB 814.0 19.66 × 1

Serial Multp DB 931.2 2.15 × 8

Table 8 The best throughput of Round Key Generator in MBps.

Tool Modul Architecture Throughput Δ × clk

Xilinx

FullPar Inv PB 211.12 75.79 × 1

Parallel Inv NB 186.76 85.68 × 1

FullPar Inv DB 161.84 98.87 × 1

Altium

FullPar Inv PB 227.16 70.44 × 1

Parallel Inv NB 186.76 78.64 × 1

FullPar Inv DB 172.72 92.64 × 1

98 Petrus Mursanto

Table 9 The highest throughput of encryption.

Tool Basis Δ/clk #clock Δ(ns)
Thrgput

(MBps)

Xilinx

PB 75.79 65+9+1 5684.25 2.82

NB 85.68 5+1+1 599.76 26.68

DB 98.87 57+8+1 6525.42 2.45

Altium

PB 70.44 65+9+1 5283 3.03

NB 78.64 5+1+1 550.48 29.07

DB 92.64 57+8+1 6114.24 2.62

It is shown in Table 9 that encryption performance is very low since it has to

accommodate the delay of RKG which is built in parallel structure. It is

therefore required to build a serial structure of RKG as long as the number of
cycles in total does not exceed the number of cycles accumulated by SB, SR

and MC. PB and DB can have operational structures in serial per symbol with

serial operators; whereas NB should have serial structure per symbol with
parallel operators. In this case, serial operators result in number of cycles

exceeds the number of cycles for encryption. Performance of serial structured

RKG is presented by Table 10.

Table 10 Throughput serial Round Key Generator (RKG).

Tool Modul Architecture Thrghput (MBps) Δ × clk

Xilinx
Serial-Serial Inv PB 29.61 2.11 × 64

Serial-Parallel Inv NB 46.69 21.42 × 4
Serial-Serial Inv DB 30.66 2.33 × 56

Altium
Serial-Serial Inv PB 31.89 1.96 × 64

Serial-Parallel Inv NB 50.86 19.66 × 4
Serial-Serial Inv DB 33.25 2.15 × 56

By changing RKG structure from parallel to serial, performance of the system

increases. It is evidently shown by the increasing throughput of the application

significantly in Table 11.

Table 11 Throughput of Rijndael cipher with serial RKG.

Tool Basis Δ/clk #clock Δ(ns)
Thrgput

(MBps)

Xilinx
PB 2.11 65+9+1 158.33 101.06
NB 21.42 5+1+1 149.94 106.71
DB 2.33 57+8+1 153.78 104.04

Altium
PB 1.96 65+9+1 147 108.84
NB 19.66 5+1+1 137.62 116.26

DB 2.15 57+8+1 141.77 112.86

 Synthesis Optimization on Galois Field Based Arithmetic Operators 99

It can be seen on Table 11, Rijndael cipher with normal based representation

has the highest throughput. It is shown consistently by both Xilinx and Altium

tools. It proves that the most efficient at PB operators does not deliver the most

optimal Rijndael application. Performance degradation of RKG modularly in
fact improves the throughput of integrated system in the application.

7 Automatic Synthesis Optimization

Experiment results show that employing the best operators does not
automatically produce the most efficient application. This phenomenon is

shown consistently by Xilinx and Altium synthesis tools. Simple and common

logic saying that parallel process is faster than serial does not hold. This is
caused by the fact that the synthesis tools have initiated automatic improvement

or limited optimization to the VHDL structural design.

Multiplication and inversion are obviously the dominant process in Rijndael
encryption. Examination on the results shows that multiplication with fixed bit

operands is optimized by removing unnecessary components in the system. For

specific configuration of Rijndael cipher, P(x) and g(x) are fixed during the

system lifecycle. g(x) is one of the operand performing as a(x) in Figure 1.
Fixed values of pi and gi cause the content of block Ei in Fig.1 can be simplified

becoming the circuits shown in Figure 3. All combinations of ai and pi within

internal block Ei can be optimized without any AND gate. By omitting AND
gates, Xilinx reduces significantly the delay so that the minimum period is 2.5

ns. Hence, processing 4 bit requires 10 ns, which is faster than parallel

multiplication delay 12.69 ns.

Figure 3 Internal component of Ei in PB Serial Multiplier for (a) ai=0; pi=0 (b)

ai=0; pi=1 (c) ai=1; pi=0 (d) ai=1; pi=1.

It is examined that optimization was not applied to parallel multiplications

although they also have constant operands. It is due to the fact that the tools
optimize constant bit only, whereas parallel multiplier signal is implemented as

an m-bit bus.

100 Petrus Mursanto

DB multiplier is superior over the PB and NB variants in term of fully serial

delivery of the product. With constant values of P(x) and A(x), DB serial

multiplier delivers the product bit by bit as the operand bi enters from MSB to

LSB. Therefore, variant 6 saves 1 cycle compared to variant 2 and 4 that
delivering the product after the whole cycle for m-bit completes. For that

reason, variant 6 based systems can process addition serially as the product is

delivered from index m-1 to 0.

Figure 4 DB serial multiplier with constant P(x).

With constant P(x) = x
4
 + x + 1, optimization steps applied to serial DB

multiplication is shown by Figure 4. In general this finding supports several

statements in the literature that multiplication with constant operands can be

more efficient [10]. It was examined as well that optimization does not apply to
serial NB multiplier. In serial NB multiplication, the values of both operands

change dynamically during the lifecycle of the system due to the rotation of

internal registers.

8 Conclusions and Further Research

This paper reports that an optimal performance of Rijndael cipher does not

always require the best variants or the most efficient GF operators. Combining
all best operators, where each is the most efficient variant, is not a simple

mechanistic conversion process. In addition, when implemented in FPGA,

efficiency improvement is also contributed by synthesis tools that optimize
serial operators whose operands are constant. This explains why the

experimental results show the superiority of serial based system over parallel

ones. This result supports previous finding with similar experiments on Reed

Solomon Codec [34].

Obtaining synergic efficiency at system level requires careful considerations on

several aspects of the system. Based on the facts obtained in this paper, it is

worth to investigate system characteristics as the main contributors for the

 Synthesis Optimization on Galois Field Based Arithmetic Operators 101

application performance, i.e. the operator composition and distribution,

interaction between them and types of internal process within the system.

It is interesting to examine further the consistency of this optimization in other

GF-based applications. Explorative experiments are required for Rijndael AES
with cipher-key 128-bit [35] or RS (255,223) 8-bit such as the one used by

NASA [36]. Hypothetical prediction suggests that higher performance ratio

would be obtained by serial variants over the parallel ones. It is because of
additional combinational path in parallel operators that results in bigger delays.

Meanwhile, serial operators requires only several additional cycles with

constant minimum periods.

Acknowledgement

Part of this material is based upon work supported by European Union Project

VN/Asia-Link/001 (79754). The author would like to thank Prof. R.G. Spallek
and Mr. Jörg Schneider for providing tools and facilities in the Professur für

VLSI-Entwurfssysteme, Diagnostik und Architektur, Technische Universität

Dresden, Germany.

References

[1] van Tilborg, H., An Introduction to Cryptology, Kluwer Academic

Publishers, 1988.

[2] Schneier, B. Applied Chryptography, Wiley&Sons, 1993.

[3] Wicker, S.B., Error Control Systems for Digital Communication and

Storage, Prentice Hall, New Jersey 07458, 1995.

[4] Sweeney, P., Error Control Coding from Theory to Practice, John Wiley

& Sons, Inc., 2002.

[5] Lin, S. & Costello, D.J. Error Control Coding, Prentice Hall, Englewood

Cliffs, New Jersey, 1983.

[6] Wang, C., Truong, T., Shao, H., Deutsch, L., Omura, J. & Reed, I., VLSI

Architectures for Computing Multiplications and Inverses in GF(2
m
),

IEEE Transactions on Computers, 34(8), pp. 709–717, August 1985.

[7] Hasan, M., Wang, M. & Bhargava, V., Division and Bit-Serial

Multiplication over GF(q
m
), IEEE Transactions on Computers, 41(8),

972-980, August 1992.

[8] Zhou, T., Wu, X., Bai, G. & Chen, H., Fast GF(p) Modular Inversion

Algorithm Suitable for VLSI Implementation, Electronics Letters, 38(14),

pp. 706-707, 4 July 2002.

102 Petrus Mursanto

[9] Bartee, T. & Schneider, D., Computation with Finite Fields, Information

and Computers, 6, 79–98, March 1963.

[10] Berlekamp, E., Bit-Serial Reed-Solomon Encoders, IEEE Transactions on

Information Theory, 28, 869-874, November 1982.

[11] Massey, J. & Omura, J., Computational Method and Apparatus for Finite

Field Arithmetic, US Patent No.4, 587, 627, 1986.

[12] Mastrovito, E.D., VLSI Designs for Computations Over Finite Field GF

(2
m
), Master’s Thesis No: 159, Linkping Studies in Science and

Technology Linkping, Sweden, Dec 1988.

[13] Mastrovito, E., VLSI Architectures for Computations in Galois Fields,

PhD Thesis, Dept of Electrical Eng, Linkping Univ, Sweden, 1991.

[14] Gollman, D., Algorithmenentwurf in der kryptographie Habil. University

of Karlsruhe Preprint, 1990.

[15] Wu, H., Hasan, M.A., Blake, I.F. & Gao, S., Finite Field Multiplier

Using Redundant Representation, IEEE Transactions on Computers, pp.

1306-1316, Nov 2002.

[16] Sunar, B., Savas, E. & Koç, C.K., Constructing Composite Field

Representations for Efficient Conversion, IEEE Transactions on

Computers, 52(11), 1391-1398, November 2003.

[17] Afanasyev, V., Complexity of VLSI Implementation of Finite Field

Arithmetic, In Proc of II Int’l Workshop on Algebraic and Combinatorial

Coding Theory Leningrad, USSA., pp. 6-8, 1990.

[18] Hasan, M., Wang, M. & Bhargava, V., A Modified Massey-Omura

Parallel Multiplier for a Class of Finite Fields, IEEE Transactions on

Computers, 42(10), pp. 1278–1280, October 1993.

[19] Lee, C.-H. & Lim,J.-I., A New Aspect of Dual Basis for Efficient Field

Arithmetic, Samsung Advanced Inst of Technology, 1998.

[20] Fenn, T.S., Benaissa, M. & Taylor, D., GF(2
m
) Multiplication and

Division Over the Dual Basis, IEEE Transactions on Computers, 45(3),

pp. 319–327, March 1996.

[21] Paar, C., Efficient VLSI Architectures for Bit-Parallel Computation in

Galois Fields, PhD Thesis, Univ of Essen, Germany, June 1994.

[22] Itoh, T. & Tsujii, A Fast Algorithm for Computing Multiplicative Inverses

in GF(2
m
) using Normal Basis, Journal Information and Computation,

78(3), pp. 171–177, Sep. 1988.

[23] Paar, C. & Rosner, M., Comparison of Arithmetic Architectures for Reed-

Solomon Decoders in Reconfigurable Hardware, IEEE Symposium on

 Synthesis Optimization on Galois Field Based Arithmetic Operators 103

FPGA-Based Custom Computing Machines (FCCM), pp. 219–225, April

1997.

[24] Mursanto, P., Comparison of Galois Field Mutlipliers in Standard and

Composite Field Architectures, In National Conference on Computer

Science & Information Technology, Depok Fasilkom UI, 29-30 January

2007.

[25] Rudra, A., Dubey, P.K., Jutla, C.S., Kumar, V., Rao, J. & Rohatgi, P.,

Efficient Rijndael Encryption Implementation with Composite Field

Arithmetic, Proc of 3rd Int’l Workshop on Cryptographic Hardware and

Embedded Systems, Springer-Verlag, 2162, pp. 171-184, 2001.

[26] Jutla, C., Kumar, V. & Rudra, A., On The Circuit Complexity of

Isomorphic Galois Field Transformations, Technical Report RC22652

(W0211-243) IBM Research Division, Nov 2002.

[27] Choi, Y., Chang, K.-Y., Hong, D. & Cho, H., Hybrid Multiplier for

GF(2
m
) Defined by Some Irreducible Trinomials, Electronics Letters,

40(14), pp. 852–853, July 8, 2004.

[28] Huang, C.-T. & Wu, C.W., High-Speed Easily Testable Galois-Field

Inverter, IEEE Transactions on Circuit and Systems, 48(9), pp. 909–918,

September 2000.

[29] Li, H., A Parallel S-Box Architecture for AES Byte Substitution,

International Conference on Communications, Circuits and Systems,

1(1), pp. 1–3, 27-29 June 2004.

[30] Li, H., A New CAM Based S-Box Look Up Table in AES, IEEE

International Symposium on Circuits and Systems, 5, pp. 4634–4636, 23-

26 May 2005.

[31] Rijmen, V., Efficient Implementation of the Rijndael S-box F.W.O. Post-

Doctoral report, Dept. ESAT, Belgium, 2001.

[32] Daemen, J. & Rijmen, V., AES Proposal: Rijndael, March 9, 1999 Ver 2.

[33] Mursanto, P., Manfaat Representasi Elemen Berbasis Normal dalam

Meningkatkan Kinerja Operator Aritmetika Galois Field, In Proc 6
th

National Conf. Design and Application of Technology, Widya Mandala

Univ., pp. 121–127, Jul 19, 2007.

[34] Mursanto, P., Performance Evaluaton of Galois Field Arithmetic

Operators for Optimizing Reed Solomon Codec, In Proceeding

International Conference on Instrumentation, Communication,

Information Technology & Biomedical Engineering (ICICI-BME)

Bandung, Nov 23-25, 2009.

104 Petrus Mursanto

[35] Daemen, J. & Rijmen,V. , Rijndael, The Advanced Encription Standard,

Dr.Dobb’s Journal, 26, pp. 137–139, Mar 2001.

[36] Sklar, B., Digital Communications Fundamentals and Applications,

Prentice Hall, Inc., New Jersey 2
nd

 ed, 2003.

