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Abstract. A triangular-slot antenna with rectangular patch for 2.3/3.3 GHz 

WiMax applications has been implemented on DICLAD 527 substrate (relative 

permittivity εr = 2.5) with 1.524 mm of substrate thickness. A rectangular patch 

printed on one side of the substrate is fed by a 50 Ω microstrip line and acts as 

the frequency tuning stub, while the triangular slot is positioned on the opposite 

side of the substrate, center lined to the rectangular stub. From the measurement 

results based on VSWR = 2 or equal to the return loss of 9.53 dB, at the lower 

band of 2.3 GHz the resulting impedance bandwidth is 290 MHz (from 2.16 to 

2.45 GHZ) and at the upper band of 3.3 GHz is  370 MHz (from 3.31 to 
3.68GHz), providing services for 2.3 GHz and 3.3 GHz frequency bands 

allocated for WiMax applications. The antenna gain measurement at 2.3 GHz 

frequency band is almost agrees with the simulation result of 3.2 dBi. While at 

3.3 GHz the gain is approximately 4.4 dBi and continues to decrease with 

increasing frequency. The antenna gain measurement achieves maximum of 4.8 

dBi (6 dBi from simulation) at about 3 GHz. The simulation and measurement 

results are evaluated and discussed. 
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1 Introduction 

Rapid progress in wireless communication services have led to an enormous 

challenge in antenna design. Benefited from unlicensed bands, WLAN attracts 

attention of many customers and researchers around the world. Many devices 
using WLAN to take advantages from high speed connectivity between PCs, 

laptops, cell phone, and other equipment in corporate, public, and home 

environments. In the near future, WiMax technology with different standards is 
going to come to market. Wireless data services have evolved and continue to 

grow using various technologies, such as 2G/3G that evolves towards Long 

Term Evolution (LTE), as well as WiFi and WiMax technology. The impact of 

such diverse technologies is on the use of frequency band in that different 
technologies will need to occupy different frequency allocations. WiMax 

technology, both for nomadic application (frequency band of 2.3-2.4 GHz) and 

mobile application (frequency band of 3.3-3.7 GHz) is likely to be a prominent 
candidate to serve for wireless data in the near future. Therefore there is a need 
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to develop a dual band antenna for both WiMax applications occupying 2.3/3.3 

GHz frequency bands. There are several papers on dual-band antennas for 

802.11 a/b/g standards. Liu et. al. [1] proposed inverted-F antenna that can 

cover the 2.4/5.2 GHz WLAN bands. Raj et al. [2] proposed coplanar antenna 
printed on FR4 that operates on 2.4/5.2/5.8 GHz bands. Wu et al. [3] reported 

dual broadband slot antenna, in which two wide resonances were obtained by 

using a U-shaped strip inset at the center of the slot antenna on a substrate with 
relative permittivity of 4.7. Another technique to make a compact multi band  

antenna can be found in [4] and [5], which also describe many issues related to 

advancement in compact microstrip antenna technologies. 

In this paper, we propose a triangular-slot antenna combined with rectangular 
patch as the tuning stub to produce a dual band antenna operating at 2.3/3.3 

GHz bands that can support both nomadic and mobile WiMax applications. The 

proposed antenna uses DICLAD material substrate that can provide larger gain 
compared to that of FR4 material due to lower value of relative permittivity 

(relative permittivity of DICLAD 527 is 2.5 compared to 4.4 of FR4). However, 

the use of low cost material FR4 is more attractive, but should be using a more 
complex array design to compensate for the antenna gain. 

This paper is organized as follows. Section 2 presents the antenna design and 

simulation, Section 3 shows the antenna fabrication and measurement. Analysis 

and discussion are described in section 4. Finally, Section 5 concludes the 
paper.  

2 Antenna Design and Simulation 

The proposed antenna design in this paper refers to the antenna shape that was 

produced in [5] using a triangular slot with rectangular tuning stub for 

2.4/5.2/5.8 GHz triple-band WLAN applications (IEEE 802.11b/a standard), 

which is implemented on FR4 substrate materials. In this paper we develop a 
similar method to design a dual band antenna operating at 2.3/3.3 GHz for 

WiMax nomadic and mobile applications. We also use DICLAD (relative 

permittivity εr = 2.5, with substrate thickness h = 1.54 mm), instead of FR4 
(relative permittivity εr = 2.5) as in [5] in order to evaluate different antenna 

characteristics and trade-off for better antenna gain. WiMax technology covers 

the IEEE 802.16d standard for nomadic users using 2.3-2.4 GHz frequency 

band and IEEE 802.16e for mobile users using 3.3-3.7 GHz frequency band.  
Therefore 2.3/3.3 GHz dual band antennas are proposed in this paper for the 

sake of simple and common antenna usage. The antenna bandwidth and gain 

specifications are expected to satisfy various applications at different countries. 
Usually the antenna requires 95 MHz of bandwidth (SWR=2) at 2.3-2.95 GHz 

frequency band and wider bandwidth can be obtained in the 3.3-3.7 GHz 
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frequency band. The required antenna gain varies with the application and the 

required area of coverage. For access points onboard the vehicle, e.g. buses or 

trains, 3-4 dBi of antenna gain will be acceptable, while for access points of 

larger areas the required antenna gains of up to ten dBi are needed.  

Figure 1 shows the geometry of the proposed dual-band antenna. The antenna is 

intended to operate in 2.3/3.3 GHz frequency bands as stated by 802.16/d/e 

specification for nomadic and mobile WiMax applications. The lower band 
covers 2.3 GHz WiMax 802.16 d standard, and the upper band covers 3.3 GHz 

WiMax 802.16.e standard. The proposed antenna consists of triangular slot and 

rectangular tuning stub printed on the opposite side. Antenna occupies an area 

of 100 x 92.5 mm
2
. L1 is the length of each side of the equilateral triangle, while 

the length and width of the rectangular tuning stub is W1 and W2, respectively. 

The length of microstrip feed line from the feed point to the rectangular stub is 

denoted by G2 while G1 is the gap between rectangular tuning stub and 
triangular slot on the opposite side. The rectangular patch as a tuning stub is fed 

by a 50 Ω microstrip line and is printed on the opposite side of microwave 

substrate (DICLAD) and placed symmetrically with respect to the centerline of 
triangular slot. The use of tuning stub has been shown to be effective for the 

resonant frequency adjustment of microstrip antennas [6]. The dual-band 

characteristic is obtained from dual resonant structures having different 

dimensions of the rectangular tuning stub, while the triangular slot affects and 
modifies the ground plane characteristics of the overall antenna construction. 

 

 

Figure 1 Geometry of the proposed dual-band antenna. 

Simulation process involves the selection of materials for substrate, tracing and 

choosing the ground plane dimension, drawing the models, choosing the 
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excitation port, and setting up the optimum geometric dimension to satisfy the 

desired center frequency, as well as the bandwidth requirement for each band 

for the specified return loss/VSWR requirements.  The simulation is iteratively 

conducted until the desired results are found. Referring to Figure 1 the optimum 
dimensions of the proposed geometric antenna are as follows: L= 84.3 mm, W1 

= 15.3 mm, W2 = 24.2 mm, G1 = 4,7 mm, G2 = 17 mm and the width of  feed 

line is 4 mm. 

As mentioned in [5] that by choosing suitable parameters, such the antenna 

design can produce significant increase of bandwidth. Figures 2 & 3 show the 

simulated return loss and VSWR characteristics of the proposed dual-band 

antenna.  

 

Figure 2 Simulated return loss for proposed dual-band antenna. 

From the simulation, the impedance bandwidth of the lower frequency band 

determined by -10 dB return loss shown in Figure 2  (equal to the VSWR of 

1.93) reaches approximately 300 MHz of bandwidth (2.15 GHz-2.41 GHz), 
which is approximately 13% of bandwidth for the frequency band of 2.3 GHz). 

For the upper frequency band, the impedance bandwidth is wider that reaches 

approximately 400 MHz (3.315 GHz-3.71 GHz, about 11% for the frequency 

band of 3.3 GHz). The center frequency, as well as the impedance bandwidth in 
the two bands are determined by adjusting the rectangular dimensions that 

needs to be carefully tuned. 
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Figure 3 VSWR of the proposed antenna. 

With a thorough and extensive simulation, we looked at the effect of the 
rectangular dimension, as well as the effect of feed length and feed gap on the 

impedance bandwidth. Note that the feed length G2 will determine the gap 

between the rectangular patch and the triangular slot on the reverse side, G1. We 

found that the impedance bandwidth at 2.3 GHz is quite independent of the 
patch dimension but is slightly sensitive to the changes of the feed length and/or 

feed gap. On the other hands, the impedance bandwidth at 3.3 GHz band is 

sensitive to the changes of the patch dimension but rather independent of the 
feed length or feed gap. Figures 4 (a)–(c) show the effect of feed length/gap and 

the patch dimensions on impedance bandwidth and center frequency. 

We can clearly see from Figure 4 (a) that the feed length G2, which in turn, 
affects the feed gap, G1 changes the impedance bandwidth at both 2.3 and 3.3 

GHz bands and also slightly changes the resonant frequency at 2.3 GHz but 

doesn’t affect the 3.3 GHz band so much. While the patch dimensions W1 and 

W2 affect the impedance bandwidth and resonant frequency of the 3.3 GHz 
(upper) band but not much affect the 2.3 GHz (lower) band. This can be 

explained that good impedance matching can be obtained by tuning the best 

coupling between the rectangular patch and the triangular slot, which is 
performed by adjusting the feed gap G1 and, in turn, the feed length G2. 

Therefore the dimension of rectangular patch determines the resonant frequency 

and impedance bandwidth of the upper 3.3 GHz band, and the dimension of 

feed gap as well as the feed length tunes the impedance bandwidth and resonant 
frequency of the lower 2.3 GHz band. 
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(a) 

  
(b)      (c) 

Figure 4 Effect of feed gap (a), patch dimension W1 (b) and W2 (c) on center 

frequency and impedance bandwidth. 

Figure 5 shows the antenna gain versus its frequency. From Figure 5, the 

simulated gain at 2.3 GHz frequency band (after interpolation) is approximately 
3.2 dBi, and the gain at 3.3 GHz frequency band is approximately 4.4 dBi. It 

can also be seen that the antenna gain achieves maximum level of 4.8 dBi (from 

measurement) or 6 dBi (from simulation) at approximately 3 GHz and then 

continue to decline for higher frequencies.  
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Figure 5 Simulated and measured gain (dBi) of the proposed antenna. 

The radiation pattern for azimuth direction shows a bidirectional pattern for 
both frequency bands. The pattern for elevation direction shows a regular 

broadside, which is suitable for either access point or mobile terminal 

application in wireless communication. Pattern in azimuth direction is also 

suitable for access point with bidirectional coverage application. The simulation 
results for the radiation pattern are shown in Figure 6. 

 
(a) For 2.3 GHz band           (b) For 3.3 GHz band 

Figure 6 Radiation pattern of the proposed antenna. 
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We can see from Figure 6 that radiation pattern for both frequency bands are 

quite similar and comparable, with the pattern of azimuth (phi) direction is more 

directive for the upper band of 3.3 GHz. This corresponds to the fact that the 

antenna gain is higher for the upper band. The radiation pattern in Figure 6a and 
b shows that the pattern for elevation (theta) dropped at 0 degree. This can be 

explained that radiation is maximum towards the direction that is perpendicular 

to the radiator plane and minimum towards the direction parallel to the antenna 
plane of rectangular stub as the radiator. Since theta = 0 or 180 degrees 

corresponds to the direction parallel to the antenna plane, its radiation pattern 

will drop (minimum). Similar behavior occurs on the azimuth plane, so that the 

radiation pattern will be maximum towards phi = 0 or 180 degrees and 
minimum towards phi = 90 or 270 degrees. 

3 Antenna Fabrication and Measurement 

The proposed antenna is implemented using DICLAD 527 material in order to 

obtain a higher antenna gain. The use of low cost FR4 material will result in a 

lower antenna gain, so that to produce a high gain antenna using low cost FR4 

materials will require a multi element array design. Figure 7 shows the 
implemented antenna for single element design. 

 

 

(a) View of Triangular slot          (b) View of rectangular patch 

Figure 7 Prototype of the proposed 2.3/3.3 GHz dual band antenna. 

A prototype of antenna is fabricated as shown in Figure 7 and tested by 

measuring its parameters, particularly VSWR and antenna gain, to validate the 
simulation result as well as to verify the antenna design specification. 

Measurement of VSWR or return loss is most important because our main 

intention in this research is to produce a dual band characteristic within the 
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specified center frequency with sufficient impedance bandwidth requirement. 

Here we show the measurement of VSWR and not the return loss, since it can 

represent similar behavior of the frequency response for the antenna but the 

bandwidth specification is published based on VSWR. For ease of comparison, 
Figure 8 shows the measured as well as the simulated VSWR for 2.3/3.3 GHz 

frequency bands.  

We can see from Figure 8 that for VSWR = 2 (equal to return loss of - 9.53 dB), 
at the lower band of 2.3 GHz results in impedance bandwidth of nearly 290 

MHz (from 2.16 to 2.45 GHZ) and at the upper band of 3.3 GHz results in the 

impedance bandwidth of  370 MHz (from 3.31 to 3.68GHz). When compared 

with the simulation, the measurement results exhibit close agreement, except for 
the lower band the bandwidth measurement is 60 MHz lower than the 

simulation. This impedance bandwidth can meet the specification for WiMax 

nomadic (2.3-2.4 GHz) as well as for WiMax mobile standard (3.3 to 3.7 GHz). 

 

Figure 8 Simulated and Measured VSWR of the proposed antenna. 

The gain measurement and simulation presented in Figure 5 shows that the gain 
obtained from measurement (interpolation of the measurement data) at 2.3 GHz 

frequency band is approximately 3 dBi, which almost agrees with the simulated 

gain. While the measured gain at 3.3 GHz frequency band is approximately 3.8 

dBi, which is 1.4 dB lower than the simulated gain of 5.2 dBi. It can also be 
seen that the measured antenna gain increases and achieves maximum level of 

approximately 4.8 dBi (6 dBi from simulation) at 3 GHz and then continue to 

decline for higher frequencies. The antenna gain at the upper band (3.3 GHz 
band) is higher than that of the lower band (2.4 GHz) due to the fact that 

although in general the antenna gain reduces with increasing frequency, but in 
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this paper, the rectangular patch plays an important role in producing the upper 

band of 3.3 GHz, so that the gain is higher and this fact will be argued in the 

following section. 

4 Analysis and Discussion 

From extensive simulations we have found the effect of rectangular dimension, 

as well as the effect of feed length on resonant frequency and the impedance 

bandwidth. Note that the feed length G2 will determine the feed gap between 
rectangular patch and the triangular slot G1. We found that the impedance 

bandwidth at 2.3 GHz is quite independent of the patch dimension but is 

slightly sensitive to the changes of the feed length. On the other hands, the 
impedance bandwidth at 3.3 GHz band is sensitive to the changes of patch 

dimension but rather independent of the feed length. When the feed line length 

G2 is reduced the resulting center frequency of the lower band (2.3 GHz) 
slightly shift to the higher frequency band, while the higher frequency band 

remains stable. The impedance bandwidth also increases when G2 value 

decreases. This aspect can be inferred that to tune on one of the frequency 

bands, we can vary the gap G2. However it needs to be traded off with the 
impact on the resulting bandwidth. 

We also studied the effect of the rectangular stub width W1 and its length W2 on 

the resonant frequency and impedance bandwidth. When W1 is reduced, while 
all others parameters are constant, it shows that the upper resonant frequency 

band increases. However the impact on impedance bandwidth is that it 

decreases the bandwidth of the lower band but keeps the bandwidth of the upper 
band unchanged. When the stub height W2 is reduced while other antenna 

dimension is kept constant, the lower resonant frequency decreases, but 

resulting in the increased impedance bandwidth. At the upper band, decreasing 

W2 results in the shift of the center frequency to a higher frequency, without any 
significant change of impedance bandwidth. Those behavior can be explained 

that good impedance matching can be obtained by tuning the best coupling 

between the rectangular patch and the triangular slot, which is performed by 
adjusting the gap G1 and, in turn, the feed length G2. Therefore, in order to 

obtain the optimum design, simulation need to be carried out extensively with 

iteration in order to optimize the antenna specification under conflicting 

parameter settings. 

The antenna gain at 2.3 GHz frequency band is approximately 3 dBi, and the 

gain at 3.3 GHz frequency band is approximately 4.4 dBi (simulation shows 5.2 

dBi) . It can also be seen that the antenna achieves maximum level of 4.8 dBi (6 
dBi from simulation) at approximately 3 GHz and then continue to decline for 

higher frequencies. The antenna gain at the upper band is higher than that of the 
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lower band. It also shows that the antenna gain exhibits a larger deviation 

between the simulation and the measurement result compared to that of the 

lower band. These can be explained due to the fact that the antenna gain is 

optimized by the resonant frequency, but in this paper the rectangular patch and 
triangular slot interact one with another in producing the lower and the upper 

band of 2.3/3.3 GHz, so that the gain is maximum somewhere between the two 

bands, despite the fact that the rectangular patch acts as the radiator mainly for 
generating the 3.3 GHz band. Therefore, the gain for 3.3 GHz band is higher 

than that for 2.3 GHz band. However the deviation from the simulation becomes 

larger at the upper band is most likely due to the fact that at the upper band, 

geometrical dimension might be less accurate because of smaller dimension 
compared to that of the larger triangular slot, resulting in a higher percentage of 

dimensional error. 

5 Conclusions 

A dual-band 2.3/3.3 GHz antenna with rectangular tuning stub and triangular 

slot has been designed and implemented using DICLAD 527 substrate material. 

The dual band characteristics can completely cover the frequency requirements 
stated in IEEE 802.16 d/e standards, which cover 2.3-2.4 GHz and 3.3-3.7 GHz 

frequency bands. Dual-band performance was achieved by choosing optimum 

parameters for triangular slot as well as for the optimum dimension of the 
rectangular tuning stub.  Extensive experiment is conducted to see the effect of 

antenna dimension on dual band characteristics to obtain the desired 

performance.  Return loss and/or VSWR were simulated and measurement was 
carried out to obtain sufficient impedance bandwidth on the desired frequency 

band. The results show that based on the VSWR = 2 (equal to return loss of 

9.53 dB), at the lower band of 2.3 GHz results in impedance bandwidth of 

nearly 290 MHz (from 2.16 to 2.45 GHZ) and at the upper band of 3.3 GHz 
results in the impedance bandwidth of  370 MHz (from 3.31 to 3.68GHz). 

When compared with the simulation, the measurement results exhibit a good 

agreement, except for the lower band that shows the bandwidth measurement is 
60 MHz lower than the simulation. From our experiment it is found that the 

impedance matching at 2.3 GHz is quite independent of the patch dimension but 

is sensitive to the changes of the feed gap between rectangular patch and the 

triangular slot. On the other hands, impedance matching at 3.3 GHz band is 
sensitive to the changes of patch dimension and the feed gap. This is because 

good impedance matching can be obtained by tuning the best coupling between 

the rectangular patch and the triangular slot, which is performed by adjusting 
the gap between rectangular stub with the triangular slot as well as the feed 

length of the feed line. The rectangular patch is therefore responsible to produce 

the dual band of 2.3/3.3.GHz, while the gap and the length of the feed line in 
conjunction with the rectangular slot and the rest of the conducting material 
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forming the ground plane affect the impedance bandwidth of the antenna. The 

gain measurement at 2.3 GHz frequency band (using interpolation curve) almost 

agrees with the simulation result of 3.2 dBi. While at 3.3 GHz the gain is higher 

that can achieve 4.4 dBi and continues to decrease with increasing frequency. 
The maximum gain obtained from measurement achieves 4.8 dBi (6 dBi from 

simulation) at about 3 GHz. The obtainable gain characteristic from the 

proposed antenna design is sufficient for WiMax application to serve as access 
points of small to medium coverage areas. For wider area applications, a multi 

element array design will be required, and we leave that for our further study. 
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