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Abstract. This paper presents a paradigm of real-time processing on the lowest 

level of computing systems: the arithmetic unit. The arithmetic unit based on this 

principle containing addition, subtraction, multiplication and division operations 

is described. The development of the computation model is based on the Soft 

Computing and the Imprecise Computation paradigms, combined with the MSB-

First and the Interval Arithmetic techniques. Those paradigms and techniques 

give the arithmetic unit design the ability to compute with precisions as a 

function of time available or accuracy needed. The predictability of processing 

time and result’s accuracy are obtained by means of processing granularity of k-
bits and by using look-up tables. We present an evaluation of the operation in 

time delay and computation accuracy that shows significant performance 

improvement over conventional arithmetic unit architecture, that is,  the ability to 

produce intermediate-result during execution time, to give certainty in 

computation accuracy even before the process finish time by providing two 

intermediate-results, which act as the lower and upper bound of the real and 

complete computation result, and finally, gain high computation accuracy from 

the early time of the execution process. 

Keywords: arithmetic unit; interval-bounded; MSB-first; real-time; variable-precision. 

1 Introduction 

1.1 The Real-Time Systems 

A real-time system is one whose logical correctness is based on both the 
correctness of the outputs and their timeliness [1]. From the point of view of the 

real-time computation in the hardware level, most present-day strategies are 

focused on increasing hardware computational performance by using 
parallelism, segmentation or multiprocessing design techniques in order to 

decrease the average response delay. 

These strategies are not always the most suitable ones for solving certain 

problems and they give rise to a multitude of questions: in the demand for 
requirements of reduced size applications, is the incorporation of multiprocessor 

architectures embedded in the system acceptable? For minimum timing 
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constraint applications, can a logically correct decision be made only on an 

imprecise numeric result? Does adaptation to changes in environmental 

requirements require the system architecture to be redesigned? The 

investigation described in this paper considers these questions in the current 
implementations of calculation techniques and proposes a real-time architecture 

for arithmetic calculations that adapts the processing delay to the required time 

of the task. 

1.2 Soft Computing and Imprecise Computation 

Zadeh [2] claims in his paper on soft computing, that the real world is 

pervasively imprecise and uncertain, and that precision and certainty carry a 
cost. This statement is relevant with the issue studied in this paper, i.e., how a 

real-time system can achieve accurate result in conditions that there are often 

not enough time to compute all the operand’s precision. We have to design a 
system that exploits the imprecision and uncertainty in order to achieve 

robustness, tractability, and low solution cost. 

Another idea to solve the issue comes from the imprecise computation model 

studied by numerous researches [3-7]. It is a flexible technique for the design of 
real-time systems scheduler that are subject to overload. Each task is 

decomposed into a mandatory part followed by an optional one. The first part 

represents the minimum amount of processing necessary to obtain an acceptable 
result; the second one refines this result and reduces the rate of error. 

The aim of this paper is to make progress in the incorporation of temporal 

restrictions in arithmetical basic operators; that is, to introduce real-time 
properties into the low level of arithmetic hardware, making use of the 

imprecise computation model and the predictability of response time and 

accuracy provided by access to look-up tables. This paper is focused on specific 

aspects of adjustable calculation of the arithmetic unit architecture and the 
operators it provides, which serves as a basis for designing other generic models 

of low level real-time schedulers. This paper is a continuation of previous 

researches on real-time arithmetic made by Mora, et al. [8], Kuspriyanto and 
Kerlooza [9-15]. 

2 Design Principles 

Our design objective for the arithmetic unit is to build an architecture that 
includes features to support timing and accuracy constraints. The proposal 

consists of combining three techniques: 
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1. Computing from the most significant bit (MSB-First) and increasing the 

granularity of the elemental operator, 

2. Producing two values that indicate lower and upper bounds of the actual 

numeric result, and 
3. Obtaining the result in an incremental way. 

2.1 MSB-First Computation and Greater Operator Granularity 

Conventionally, computation process is carried out by a computer from the least 
significant bit first (LSB-First) just like we calculate, thus this technique gives 

slow numeric accuracy escalation throughout the process (see Figure 1). 

Nielsen and Kornerup [16] conducted research on MSB-First digit serial 
arithmetic and our previous research on MSB-First arithmetic architecture [11-

15] shows the potential advantage of this technique over conventional ones. 

Those previous researches also show the need of the intermediate-result: a 
successive product of ongoing arithmetic process execution that can be accessed 

by other computation tasks or elements during process time. 

 

Figure 1 The calculation concept of LSB-First vs MSB-First. 

Let’s define the first and second operand as X and Y consecutively. Each 

operand consists of n bits and  denotes the arithmetic operations, ct.ars as the 

time constant to process single pair of operands’ bit needed by the ars 
arithmetic unit, and ta and tf.ars as the start and finish time of the arithmetic 

execution of the ars arithmetic unit, then we can find m(t) the total bits that have 

been computed as a function of time: 

 m(t)
t ta
ct..ars

for ta t t f .ars
 (1) 

We can also define the numeric value of the arithmetic computation carried out 

by the ars arithmetic unit (t)ars for the LSB-First and MSB-First computation 

as Equation (2) and Equation (3) consecutively. 
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 (t)LSB xi yi
i 0

m(t ) 1

 (2) 

 (t)MSB xi yi
i n m(t )

n 1

 (3)  

Based on Equation (2) dan Equation (3), we can predict how the two technique 

performance in gaining numeric value in arithmetic operation as depicted in 

Figure 2. To maximize the advantage of the MSB-First computation, the 
incomplete result (we call it the intermediate-result) should be able to be 

accessed during the computation time.  

 

Figure 2 The performance of LSB-First and MSB-First computation. 

 

Figure 3 Bit-to-bit vs k-operator [2]. 

As Mora [8] said, most elementary operators consider a bit to be the minimum 

unit of information that can be processed. They are called bit-to-bit operators. A 

forward step consists of increasing the granularity and taking a group of bits as 

the minimum unit of operation. In this paper, we consider k-operators as the 
elementary operators that take a k-bit as the minimum unit of information that 

can be processed. Figure 3 schematically shows the functionality of a generic k-

operator. The fundamental idea lies in obtaining advantages in the design of the 
generic arithmetic operators by using k-operator elements in their construction, 
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which contribute to their adjustable processing. The k-operator designs may 

offer inherent improvements in bit-to-bit operations: the structure of the 

arithmetical unit is simplified when using fewer individual processing units to 

process groups of bits. The bit-to-bit operators are a particular example of k-
operators with k=1. 

The k-operators present several design alternatives, the most intuitive one 

consists of making a design based on combinational logic. The combinational 
circuit will produce the result of the function for k-size operands. Alternatively, 

we must make the most of electronic technology by searching for new proposals 

that would probably have been prohibitive some time ago, but not at present. 

We search for an implementation that provides a predictable operator response 
time. So, a general design technique for the k-operators resides in using look-up 

tables (LUT) to make the effective calculation. In this way, for any pair of 

blocks of k bits, the memory structure contains the direct result of its operation. 
These look-up tables must store all the results for k-size operands so that it is 

only necessary to select the cell that contains the result. The operand value itself 

is used to address the table. The nature of the stored data will depend on the 
function to be calculated. Figure 4 schematically shows a k-bit adder based on 

memory-oriented designs. 

 

Figure 4 (a) Block diagram of a k-bit adder. (b) Table content for k-bit adder, 

with k=2 [2]. 

In this way the computation delay for each pair of blocks is similar, irrespective 
of its value, and, what is more important for our purposes, the time delay of the 

complete operation is a multiple of this time delay. 

2.2 Interval Bounded 

If we look again to Figure 2, both LSB-First and MSB-First techniques cannot 

tell us its computation accuracy before tf. We can add the ability to predict 
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where the final computation value lies by using the same idea of the interval 

arithmetic methodology introduced by Moore and Yang [17], Moore [18], and 

Boche [19]. The interval arithmetic produces two values for each arithmetic 

operations. The two values correspond to the lower and upper endpoints 
(bounds) of an interval, such that the true result is guaranteed to lie on this 

interval. The width of the interval, i.e., the distance between the two endpoints, 

indicates the accuracy of the result. Interval arithmetic was originally proposed 
as a tool for bounding rounding-off errors in numerical computation [18]. It is 

also used to determine the effects of approximation errors and errors that occur 

due to non exact inputs. Interval arithmetic is especially useful for scientific 

computations in which data ara uncertain or can take a range of values. 

We can produce lower and upper bounds for LSB-First and MSB-First by 

adopting several algorithms. One of the simplest thing to compute the upper 

bound is by subtracting the maximum value of the arithmetic operation with the 
lower bound (computed by the original algorithm) in parallel. In this way during 

computation time, there will be two intermediate-results, which denote the 

lower and upper bounds of the true values. Figure 5 depicts the basic idea of  
the interval bounded concept. 

 

Figure 5 The interval bound concept of self-accuracy estimation by providing 

lower and upper bound value. 

Using LUT-based computation we can actually make the difference between the 
lower and upper bounds (the accuracy) is predictable and no further 

computation needed to produce the upper bound value. The upper bound value 

in each k-operator can be stored on the same address with the lower bound 

value. Figure 6 shows the modification of the LUT content in Figure 4(b). In 
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each address, the left three bits are the lower bound and the right three bits are 

the upper bound value of k=2 addition. 

 

Figure 6 Modification of the table content for k-bit adder, with k=2. 

2.3 Variable Precision 

The delay adjustment ability and the variable quality of the result of each 

function depends on the possibility of partially executing its implementation. In 
general, each operator has a part that must be executed obligatorily and another 

that can be partially calculated [5,20]. The execution control of this optional 

part will allow us to adjust the function performance according to the 
application requirements (accuracy needed or available time). In this aspect, the 

implemented partial execution technique (stages or iterations) must provide 

capabilities for successive refinement of the solution and thus, support real-time 

requirements. Response delay is related to the number of calculated stages or 
iterations of the operations. Normally, a shorter process time results in less 

accuracy in the results. If the computation accuracy is met or the time left for 

computation is up, the execution can be stopped and intermediate-result can be 
accessed by other processes. This is the basic concept of variable precision 

computation covered in this paper. 

3 Architecture 

In this section, we develop an architecture of three basic arithmetic operations: 

addition/subtraction, multiplication and division in which timing constraints are 

present.  Figure 7 shows the block diagram of the MSB-First Interval-Bounded 
Variable-Precision (MFIBVP) arithmetic unit. 



30 Yusrila Y. Kerlooza, et al. 

 

Figure 7 Block diagram of the MFIBVP arithmetic unit. 

3.1 Addition and Subtraction 

Similar to [8], the proposed addition method is based on the carry-select adder 

scheme and is made up of the following steps: 

1. Fragmentation of operands into k-size blocks: It is immediate from the 
original operands. For operands with numbers of n bits (with n > k ), we can 

divide the number into n/k blocks of k bits. 

2. Addition of the corresponding pairs of blocks. The partial additions are 
obtained directly from a compound k-adder grid. This block contains a few 

k-adder operators that add the parts of the operands in parallel. Considering 

the reduced size of k, it is feasible to fit multiple k-adder operators into the 

grid block. The carry process is performed directly by obtaining the sum 
and its successor from the k-operator. An array of look-up tables is used in 

this paper as the k-adder operators. 

3. Ordered concatenation of the partial additions taking the carry logics into 
account: The selection of each block is a function of the carry bit of the 

preceding block, selected according to the algorithm carry-select adder. For 

example, Figure 8 shows the operation scheme for operands fragmented 
into four parts. The resulting formation by means of successive selections of 

the partial sums can be observed. 

The detailed schematic of the carry-select adder scheme for Figure 8 is depicted 

in Figure 9 (a-d). The MFIBVP adder can be converted into a subtractor with 
the same features by employing XORs with two fan-in in each bit of the second 

operand (assuming the first operand acts as the subtrahend). The first XORs 

input pins are connected to the second operand’s bits and the others to the c0. If 
the value of c0=0 it will act as an adder, otherwise it will act as a subtractor, 

since the value of the second operand will be converted to its 2
’s
 complement. 
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Figure 10 shows the position of XORs in the adder’s first step of its block 

diagram. 

 

Figure 8 The basic concept of successive refinement of intermediate result of 

the MFIBVP addition. 

 

 

Figure 9 The MFIBVP adder schematic with n/k=4; (a to d) the fastest but least 

accurate to the slowest but most accurate computation (continued). 
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Figure 9 (continue) The MFIBVP adder schematic with n/k=4; (a to d) the 

fastest but least accurate to the slowest but most accurate computation. 
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Figure 9 (continue) The MFIBVP adder schematic with n/k=4; (a to d) the 

fastest but least accurate to the slowest but most accurate computation. 

 

Figure 10  Additional XORs on the second operand will change the MFIBVP 

adder to a subtractor. 

The MFIBVP adder design is based on the previous algorithm, with the special 

feature that only part of the blocks obtained from the operands are combined 
according to the time availability. As the Figure 8 depicts, the operation control 

line will select the appropriate result for each application. We propose that the 

sum and combination of the blocks will begin with the last block by considering 

the value of cn
k

1

0
 for determining the lower bound and the value of cn

k
1

1
 for 

determining the upper bound as shown in Figure 10(a), depending on timing 

constraints, and move towards the left. The rest of the blocks of the results are 
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taken directly from the LUT array without being combined, causing no 

additional delay. Thus, depending on the application requirements, the system 

will adapt the quality-delay of the response. Of course, according to the increase 

in the number of selection stages, the error computation will decrease. 

3.2 Multiplication 

The first implementation of the multiplication operation depicted in Figure 11 is 

basically a well-known multiplier technique: the unsigned array multiplier [21]. 
It consists the following steps: 

1. Generation of partial products: The partial products generation process is 

crucial to the operation’s overall performance. Two aspects must be taken 
into account in its design: the complexity of the generating circuit and the 

number of partial products generated. The first aspect is linked to the time 

taken in generating each partial product, whereas the second one affects the 
time taken in the second step below to reduce them into two operands that 

will be added in the last step. 

2. Reduction in the number of partial products: The general way in which a 

high performance multiplier works consists of combining the partial 
products in order to reduce their number until a total of two is reached. We 

can use Wallace tree method [22] for the reduction of the partial products. 

3. Final addition: It can be implemented by well-known addition methods; 
nevertheless, due to the MFIBVP features, we have used the previously 

proposed adder, the MFIBVP adder. 

 

  

Figure 11 Block diagram of the MFIBVP multiplier. 
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The second implementation of the multiplication operation depicted in Figure 

12 uses the logaritmic-based multiplication. A multiplication of two operands: 

X and Y by this method performs as the following equation (b is the logarithmic 

base): 

 X Y anti logb(logb X logbY )  (4) 

We can use the MFIBVP adder to compute the multiplication so the same 

features will be produced by this implementation. 

We can use look-up table technique [21] or logarithmic schema [23] as the log 

and antilog blocks shown in Figure 12. The data bus width produced by the log 

blocks determines the amount of look-up table block in the MFIBVP adder, 

while the adder’s output bus width determines the approximation of the 
multiplication result produced by the antilog blocks. 

 

Figure 12 Alternative block diagram of of the MFIBVP multiplier using 

logarithmic multiplication technique. 

3.3 Division 

In this paper, the implementation of the division operation uses the same 

technique as the second approach of the multiplication: logaritmic-based 

division. A division of two operands X and Y by this method performs as the 
following equation (b is the logarithmic base): 

 X Y anti logb(logb X logbY )  (5) 

We can use the MFIBVP subtractor previously mentioned to compute the 
division so the same features will be produced by this implementation. 
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Figure 13 Block diagram of the MFIBVP divisor using logarithmic division 
scheme. 

4 Evaluation of the Proposed Architecture 

In this section, we will evaluate the operation of the MFIBVP real-time 

arithmetic unit. The objective is to determine the time needed by each 
computation unit in different path delays, and to study the computation accuracy 

that takes place as a result of the imprecise calculations when processing the 

incomplete operation. From this evaluation the information necessary will be 
obtained to establish the suitable clock cycle for the future processor and to 

relate the available time to the processed part of each function. 

4.1 Time Complexity 

The time complexity O(n,k) of each MFIBVP real-time operators in this paper 

is  measured as a function of n and k, which represents as the total amount of the 

gate’s delay (Δg) needed.  

4.1.1 MFIBVP Real-Time Adder/Subtractor 

Based on the block diagram depicted on Figures 8 and 9 the time complexity of 

the MFIBVP real-time adder/subtractor can be counted by summing the basic or 
functional gate’s delay needed by each steps as Table 1 shows. 

Table 1 Time complexity in each step of the n bit MFIBVP real-time k-adder. 

Phase 

Step 1 

(Most Significant 

k-bit) 

Step 2 Step 3 … Final Step 

LUT decoder K k k … k 

Carry Selector 1 2 3 … n/k 

Multiplexer log2(n/k) log2(n/k) log2(n/k) … log2(n/k) 

Total k+1+log2(n/k) k+2+log2(n/k) k+3+log2(n/k) … k+(n/k)+log2(n/k) 
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4.1.2 MFIBVP Real-Time Multiplier 

Based on the block diagram depicted on Figure 11 the time complexity of the 

MFIBVP real-time multiplier can be counted by summing the basic or 
functional gate’s delay needed by each step as Table 2 shows.  

Table 2 Time complexity of the n bit MFIBVP real-time k-multiplier. 

Phase 

Step 1 

(Most Significant 

k-bit) 

Step 2 Step 3 … Final Step 

Partial product k k k … k 
Wallace tree 1+ log2(n/k) 1+ log2(n/k) 1+ log2(n/k) … 1+ log2(n/k) 

MFIBVP adder k+1+log2(n/k) k+2+log2(n/k) k+3+log2(n/k) … k+(n/k)+log2(n/k) 

Total 1+1+2k+ 2log2(n/k) 
2+1+2k+ 
2log2(n/k) 

3+1+2k+ 
2log2(n/k) 

… 
(n/k)+1+2k+ 
2log2(n/k) 

4.1.3 MFIBVP Real-Time Divider 

If the logarithmic precision stored in the LUT ROM for Logarithmic and 

Antilog block depicted in Figure 13 is m-bit, then the time complexity of the 
MFIBVP real-time divider can be counted by summing the basic or  functional 

gate’s delay needed by each step as Table 3 shows. 

Table 3 Time complexity of the n bit MFIBVP real-time k-divider. 

Phase 

Step 1 

(Most Significant 

k-bit) 

Step 2 Step 3 … Final Step 

LOG 
(LUT decoder) 

n n n … n 

MFIBVP 
substractor 

k+1+ log2(m/k) k+2+ log2(m/k) k+3+ log2(m/k) … 
k+(m/k)+ 
log2(m/k) 

ANTILOG 
(LUT decoder) 

m m m … m 

Total 
1+n+m+k+ 
2log2(m/k) 

2+n+m+k+ 
2log2(m/k) 

3+n+m+k+ 
2log2(m/k) 

… 
(m/k)+n+m+k
+ 2log2(m/k) 

4.2 Accuracy Comparison 

In this section we will compare the computation accuracy of each architecture 
of the MFIBVP real-time arithmetic operation previously described with well-

known architecture arithmetic operation along with computation time. The 

accuracy of the MFIBVP real-time operation A(t)MFIBVP is computed in Equation 

(6) and Equation (7). 

 A(t)comp.MFIBVP (t)MFIBVP.up (t)MFIBVP.low  (6) 



38 Yusrila Y. Kerlooza, et al. 

 A(t)MFIBVP 1
A(t)comp.MFIBVP

Dmax

100%  (7) 

where: 

Dmax is value between the lowest and highest value that can be produced 

by particular arithmetic operation, 

(t)MFIBVP.upand (t)MFIBVP.up
 are upper and lower intermediate-result 

produced by particular MFIBVP real-time arithmetic operation at t 
time. 

Because of the original nature of the conventional, although well-known, 

architecture arithmetic operation that only produces single numeric result at the 
end of operation, we have to assume that they can produce intermediate-result 

along the computation time thus we can calculate the accuracy of the operation 

A(t)conv as shown in Equation (8) and Equation (9). 

 A(t)comp.conv Biggest computation value (t)conv  (8) 

 A(t)conv 1
A(t)comp.conv

Dmax

100%  (9) 

where: 

(t)conv  are intermediate-result produced by particular conventional 

arithmetic operation at t time. 

4.2.1 MFIBVP Real-Time Adder 

By using k-bit as the computation granularity and LUT with both lower and 

upper computation result stored in ROM, there is novel advantage in the 
architecture of the MFIBVP real-time adder designed in this research. The 

advantage is in determining the accuracy of computation regardless the value of 

both operands. By referring to Figure 6, the difference between the lowest and 
highest value produced in single LUT block is 1. Based on Equation 1 and 

Equation 6 we can define the difference between the lowest and highest 

intermediate-result at computation time t produced by the MFIBVP real-time 

addition of n bit operands with granularity k: 

 A(t)comp.MFIBVP

n

k

t ta
ct .MFIBVP

@1

base 2k

 (10) 

The @ symbol represents repetitive value of the right hand side by the value of 
the left hand side of the @ symbol, for example 4@1 means 1111. 
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By knowing the accuracy of the intermediate-result produced during 

computation, based on application-specific computation we can determine its 

error propagation. 

According to Equation (7) and Equation (10), Figure 14 shows the propagation 
of computation accuracy gained by the MFIBVP real-time adder with k=4 

compared with the one gained by the Carry Look-ahead Adder and Carry 

Propagation Adder technique. 

 

Figure 14   Performance comparison between the MFIBVP real-time adder vs 

Carry Look-ahead Adder and Carry Propagate Adder on 50 pairs of 64-bit 
random numbers. 

4.2.2 MFIBVP Real-Time Multiplier 

The performance of the MFIBVP real-time multiplier is measured by plotting 

the accuracy of the intermediate result (Equation (7) and Equation (10)) gained 
during computation time t, compared with the performance of the same 

multiplier technique (array multiplier) that uses Carry Look-ahead Adder and 
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Carry Propagate Adder as the final partial product adder. The performance 

measured in Figure 15 is based on the multiplication of 50 pairs of 32-bit 

random numbers. 

 

Figure 15 Performance comparison between the MFIBVP real-time multiplier 

which uses MFIBVP real-time adder as the final partial product adder vs array 

multiplier that uses Carry Look-ahead Adder and Carry Propagate Adder. 

4.2.3 MFIBVP Real-Time Divider 

The performance of the MFIBVP real-time divider is measured by plotting the 

accuracy of the intermediate result (Equation (7) and Equation (10)) gained 

during computation time t, compared with the performance of a well-known 

division technique: the Carry look-ahead cellular array divider [21] with time 
complexity O(n)=(10n+11)Δg. The performance measured in Figure 16 is based 

on the division of 50 pairs of 32-bit random numbers. 
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Figure 16   Performance comparison between the MFIBVP real-time divider vs 

Carry Look-ahead cellular array divider over 50 pairs of 32-bit random numbers. 

4.3 Application Example 

The development of a real-time arithmetic processor has interesting applications 

in which the adjustment and determination of the features play a crucial role in 

the correct computational resolution. This section describes a simple example 
that illustrates the specific application of the proposed arithmetic unit, the same 

case as application example presented in [8]. The application consists in 

controlling the position of object B whose objective is to closely pursue object 

A. The pursuing object B will have to constantly correct its trajectory in order to 
adapt to the changes of detected direction in the followed object A. The 

movement management of B only considers the aspects of tracking A. In the 

application example, other more distant obstacles or factors are not considered. 
The determination of the movement is based on the value of the direction 

tangents of the moving object A with regard to the reference system axes of B. 

Object A will travel and make correction of its course based on the conventional 
arithmetic 32-bit computation, and B will try to catch A based on MFIBVP real-

time arithmetic technique to compute the angle between B and A in 2D space: 

 arctan B A
BA

B A

X X

Y Y
 (11) 

Evidently, it is a basic approach; we have simplified the number of variables in 

order to offer a clear use of the prototype. Figure 17 shows the simplified 

algorithm in this application to measure the accuracy of MFIBVP real-time 
arithmetic computation. By changing the computation granularity p, we can 

compare the cycles needed by the object B to catch the object A. Figure 18 
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shows that starts from the computation with 20 bit of its operand’s width (out of 

32) with MFIBVP real-time arithmetic the total cycles needed by object B to 

catch the object A is just the same with computation with greater precision. 

 

Figure 17   Simplified algorithm of the object tracking application, the cycle 

needed by object B to catch object A reflects the accuracy of B’s MFIBVP real-

time arithmetic unit. 
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The accuracy of computation in the object B based on the processed operand’s 

width p: 

 A(p)

cycle(p)

cycle(32)

100%              (12) 

 

Figure 18 MFIBVP real-time arithmetic performance in the pursuing object 
application. 

5 Conclusion 

We can conclude that the MSB-First Interval-Bounded Variable-Precision 

(MFIBVP) real-time arithmetic unit gives better computation performance by 
it’s ability to: 

1. Produce intermediate-result during execution time, 

2. Give certainty in computation accuracy even before the process finish time 
by providing two intermediate-results which act as the lower and upper 

bound of the real and complete computation result, 

3. Gain high computation accuracy from the early time of the execution 

process. 

Nomenclature 

 = arithmetic operations 

A(t)ars = accuracy of the operation by the by the ars arithmetic unit at t 

time of computation 

A(t)comp.ars = difference between the upper and lower numeric value produced 

by the ars arithmetic unit at t time of computation 
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ct.ars = time constant to process single pair of operands’ bit needed by 

the ars arithmetic unit 

Dmax = difference between the maximum and minimum numeric value 

possible on a particular arithmetic operation 

K = operation’s granularity 

m(t) = total bits that have been compute as a function of time 

n = operand’s width 

(t)ars  
= numeric value of the arithmetic computation carried out by the 

ars arithmetic unit at t time of computation 

ta = start time of the arithmetic execution of the ars arithmetic unit 

tf.ars = finish time of the arithmetic execution of the ars arithmetic unit 

Tp.ars = period of the process time needed by the ars arithmetic unit to 

finish its arithmetic operation 
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