

ITB J. ICT, Vol. 4, No. 1, 2010, 23-46 23

MSB-First Interval-Bounded Variable-Precision Real-

Time Arithmetic Unit

Yusrila Y. Kerlooza
1
, Yudi S. Gondokaryono

2
 & Agus Mulyana

3

1,3Computer Engineering Dept., UNIKOM
2School of Electrical Engineering and Informatics, Bandung Institute of Technology

Abstract. This paper presents a paradigm of real-time processing on the lowest

level of computing systems: the arithmetic unit. The arithmetic unit based on this

principle containing addition, subtraction, multiplication and division operations

is described. The development of the computation model is based on the Soft

Computing and the Imprecise Computation paradigms, combined with the MSB-

First and the Interval Arithmetic techniques. Those paradigms and techniques

give the arithmetic unit design the ability to compute with precisions as a

function of time available or accuracy needed. The predictability of processing

time and result’s accuracy are obtained by means of processing granularity of k-
bits and by using look-up tables. We present an evaluation of the operation in

time delay and computation accuracy that shows significant performance

improvement over conventional arithmetic unit architecture, that is, the ability to

produce intermediate-result during execution time, to give certainty in

computation accuracy even before the process finish time by providing two

intermediate-results, which act as the lower and upper bound of the real and

complete computation result, and finally, gain high computation accuracy from

the early time of the execution process.

Keywords: arithmetic unit; interval-bounded; MSB-first; real-time; variable-precision.

1 Introduction

1.1 The Real-Time Systems

A real-time system is one whose logical correctness is based on both the
correctness of the outputs and their timeliness [1]. From the point of view of the

real-time computation in the hardware level, most present-day strategies are

focused on increasing hardware computational performance by using
parallelism, segmentation or multiprocessing design techniques in order to

decrease the average response delay.

These strategies are not always the most suitable ones for solving certain

problems and they give rise to a multitude of questions: in the demand for
requirements of reduced size applications, is the incorporation of multiprocessor

architectures embedded in the system acceptable? For minimum timing

24 Yusrila Y. Kerlooza, et al.

constraint applications, can a logically correct decision be made only on an

imprecise numeric result? Does adaptation to changes in environmental

requirements require the system architecture to be redesigned? The

investigation described in this paper considers these questions in the current
implementations of calculation techniques and proposes a real-time architecture

for arithmetic calculations that adapts the processing delay to the required time

of the task.

1.2 Soft Computing and Imprecise Computation

Zadeh [2] claims in his paper on soft computing, that the real world is

pervasively imprecise and uncertain, and that precision and certainty carry a
cost. This statement is relevant with the issue studied in this paper, i.e., how a

real-time system can achieve accurate result in conditions that there are often

not enough time to compute all the operand’s precision. We have to design a
system that exploits the imprecision and uncertainty in order to achieve

robustness, tractability, and low solution cost.

Another idea to solve the issue comes from the imprecise computation model

studied by numerous researches [3-7]. It is a flexible technique for the design of
real-time systems scheduler that are subject to overload. Each task is

decomposed into a mandatory part followed by an optional one. The first part

represents the minimum amount of processing necessary to obtain an acceptable
result; the second one refines this result and reduces the rate of error.

The aim of this paper is to make progress in the incorporation of temporal

restrictions in arithmetical basic operators; that is, to introduce real-time
properties into the low level of arithmetic hardware, making use of the

imprecise computation model and the predictability of response time and

accuracy provided by access to look-up tables. This paper is focused on specific

aspects of adjustable calculation of the arithmetic unit architecture and the
operators it provides, which serves as a basis for designing other generic models

of low level real-time schedulers. This paper is a continuation of previous

researches on real-time arithmetic made by Mora, et al. [8], Kuspriyanto and
Kerlooza [9-15].

2 Design Principles

Our design objective for the arithmetic unit is to build an architecture that
includes features to support timing and accuracy constraints. The proposal

consists of combining three techniques:

 MSB-First Interval-Bounded Variable-Precision Real-Time 25

1. Computing from the most significant bit (MSB-First) and increasing the

granularity of the elemental operator,

2. Producing two values that indicate lower and upper bounds of the actual

numeric result, and
3. Obtaining the result in an incremental way.

2.1 MSB-First Computation and Greater Operator Granularity

Conventionally, computation process is carried out by a computer from the least
significant bit first (LSB-First) just like we calculate, thus this technique gives

slow numeric accuracy escalation throughout the process (see Figure 1).

Nielsen and Kornerup [16] conducted research on MSB-First digit serial
arithmetic and our previous research on MSB-First arithmetic architecture [11-

15] shows the potential advantage of this technique over conventional ones.

Those previous researches also show the need of the intermediate-result: a
successive product of ongoing arithmetic process execution that can be accessed

by other computation tasks or elements during process time.

Figure 1 The calculation concept of LSB-First vs MSB-First.

Let’s define the first and second operand as X and Y consecutively. Each

operand consists of n bits and denotes the arithmetic operations, ct.ars as the

time constant to process single pair of operands’ bit needed by the ars
arithmetic unit, and ta and tf.ars as the start and finish time of the arithmetic

execution of the ars arithmetic unit, then we can find m(t) the total bits that have

been computed as a function of time:

 m(t)
t ta
ct..ars

for ta t t f .ars
 (1)

We can also define the numeric value of the arithmetic computation carried out

by the ars arithmetic unit (t)ars for the LSB-First and MSB-First computation

as Equation (2) and Equation (3) consecutively.

26 Yusrila Y. Kerlooza, et al.

 (t)LSB xi yi
i 0

m(t) 1

 (2)

 (t)MSB xi yi
i n m(t)

n 1

 (3)

Based on Equation (2) dan Equation (3), we can predict how the two technique

performance in gaining numeric value in arithmetic operation as depicted in

Figure 2. To maximize the advantage of the MSB-First computation, the
incomplete result (we call it the intermediate-result) should be able to be

accessed during the computation time.

Figure 2 The performance of LSB-First and MSB-First computation.

Figure 3 Bit-to-bit vs k-operator [2].

As Mora [8] said, most elementary operators consider a bit to be the minimum

unit of information that can be processed. They are called bit-to-bit operators. A

forward step consists of increasing the granularity and taking a group of bits as

the minimum unit of operation. In this paper, we consider k-operators as the
elementary operators that take a k-bit as the minimum unit of information that

can be processed. Figure 3 schematically shows the functionality of a generic k-

operator. The fundamental idea lies in obtaining advantages in the design of the
generic arithmetic operators by using k-operator elements in their construction,

 MSB-First Interval-Bounded Variable-Precision Real-Time 27

which contribute to their adjustable processing. The k-operator designs may

offer inherent improvements in bit-to-bit operations: the structure of the

arithmetical unit is simplified when using fewer individual processing units to

process groups of bits. The bit-to-bit operators are a particular example of k-
operators with k=1.

The k-operators present several design alternatives, the most intuitive one

consists of making a design based on combinational logic. The combinational
circuit will produce the result of the function for k-size operands. Alternatively,

we must make the most of electronic technology by searching for new proposals

that would probably have been prohibitive some time ago, but not at present.

We search for an implementation that provides a predictable operator response
time. So, a general design technique for the k-operators resides in using look-up

tables (LUT) to make the effective calculation. In this way, for any pair of

blocks of k bits, the memory structure contains the direct result of its operation.
These look-up tables must store all the results for k-size operands so that it is

only necessary to select the cell that contains the result. The operand value itself

is used to address the table. The nature of the stored data will depend on the
function to be calculated. Figure 4 schematically shows a k-bit adder based on

memory-oriented designs.

Figure 4 (a) Block diagram of a k-bit adder. (b) Table content for k-bit adder,

with k=2 [2].

In this way the computation delay for each pair of blocks is similar, irrespective
of its value, and, what is more important for our purposes, the time delay of the

complete operation is a multiple of this time delay.

2.2 Interval Bounded

If we look again to Figure 2, both LSB-First and MSB-First techniques cannot

tell us its computation accuracy before tf. We can add the ability to predict

28 Yusrila Y. Kerlooza, et al.

where the final computation value lies by using the same idea of the interval

arithmetic methodology introduced by Moore and Yang [17], Moore [18], and

Boche [19]. The interval arithmetic produces two values for each arithmetic

operations. The two values correspond to the lower and upper endpoints
(bounds) of an interval, such that the true result is guaranteed to lie on this

interval. The width of the interval, i.e., the distance between the two endpoints,

indicates the accuracy of the result. Interval arithmetic was originally proposed
as a tool for bounding rounding-off errors in numerical computation [18]. It is

also used to determine the effects of approximation errors and errors that occur

due to non exact inputs. Interval arithmetic is especially useful for scientific

computations in which data ara uncertain or can take a range of values.

We can produce lower and upper bounds for LSB-First and MSB-First by

adopting several algorithms. One of the simplest thing to compute the upper

bound is by subtracting the maximum value of the arithmetic operation with the
lower bound (computed by the original algorithm) in parallel. In this way during

computation time, there will be two intermediate-results, which denote the

lower and upper bounds of the true values. Figure 5 depicts the basic idea of
the interval bounded concept.

Figure 5 The interval bound concept of self-accuracy estimation by providing

lower and upper bound value.

Using LUT-based computation we can actually make the difference between the
lower and upper bounds (the accuracy) is predictable and no further

computation needed to produce the upper bound value. The upper bound value

in each k-operator can be stored on the same address with the lower bound

value. Figure 6 shows the modification of the LUT content in Figure 4(b). In

 MSB-First Interval-Bounded Variable-Precision Real-Time 29

each address, the left three bits are the lower bound and the right three bits are

the upper bound value of k=2 addition.

Figure 6 Modification of the table content for k-bit adder, with k=2.

2.3 Variable Precision

The delay adjustment ability and the variable quality of the result of each

function depends on the possibility of partially executing its implementation. In
general, each operator has a part that must be executed obligatorily and another

that can be partially calculated [5,20]. The execution control of this optional

part will allow us to adjust the function performance according to the
application requirements (accuracy needed or available time). In this aspect, the

implemented partial execution technique (stages or iterations) must provide

capabilities for successive refinement of the solution and thus, support real-time

requirements. Response delay is related to the number of calculated stages or
iterations of the operations. Normally, a shorter process time results in less

accuracy in the results. If the computation accuracy is met or the time left for

computation is up, the execution can be stopped and intermediate-result can be
accessed by other processes. This is the basic concept of variable precision

computation covered in this paper.

3 Architecture

In this section, we develop an architecture of three basic arithmetic operations:

addition/subtraction, multiplication and division in which timing constraints are

present. Figure 7 shows the block diagram of the MSB-First Interval-Bounded
Variable-Precision (MFIBVP) arithmetic unit.

30 Yusrila Y. Kerlooza, et al.

Figure 7 Block diagram of the MFIBVP arithmetic unit.

3.1 Addition and Subtraction

Similar to [8], the proposed addition method is based on the carry-select adder

scheme and is made up of the following steps:

1. Fragmentation of operands into k-size blocks: It is immediate from the
original operands. For operands with numbers of n bits (with n > k), we can

divide the number into n/k blocks of k bits.

2. Addition of the corresponding pairs of blocks. The partial additions are
obtained directly from a compound k-adder grid. This block contains a few

k-adder operators that add the parts of the operands in parallel. Considering

the reduced size of k, it is feasible to fit multiple k-adder operators into the

grid block. The carry process is performed directly by obtaining the sum
and its successor from the k-operator. An array of look-up tables is used in

this paper as the k-adder operators.

3. Ordered concatenation of the partial additions taking the carry logics into
account: The selection of each block is a function of the carry bit of the

preceding block, selected according to the algorithm carry-select adder. For

example, Figure 8 shows the operation scheme for operands fragmented
into four parts. The resulting formation by means of successive selections of

the partial sums can be observed.

The detailed schematic of the carry-select adder scheme for Figure 8 is depicted

in Figure 9 (a-d). The MFIBVP adder can be converted into a subtractor with
the same features by employing XORs with two fan-in in each bit of the second

operand (assuming the first operand acts as the subtrahend). The first XORs

input pins are connected to the second operand’s bits and the others to the c0. If
the value of c0=0 it will act as an adder, otherwise it will act as a subtractor,

since the value of the second operand will be converted to its 2
’s
 complement.

 MSB-First Interval-Bounded Variable-Precision Real-Time 31

Figure 10 shows the position of XORs in the adder’s first step of its block

diagram.

Figure 8 The basic concept of successive refinement of intermediate result of

the MFIBVP addition.

Figure 9 The MFIBVP adder schematic with n/k=4; (a to d) the fastest but least

accurate to the slowest but most accurate computation (continued).

32 Yusrila Y. Kerlooza, et al.

Figure 9 (continue) The MFIBVP adder schematic with n/k=4; (a to d) the

fastest but least accurate to the slowest but most accurate computation.

 MSB-First Interval-Bounded Variable-Precision Real-Time 33

Figure 9 (continue) The MFIBVP adder schematic with n/k=4; (a to d) the

fastest but least accurate to the slowest but most accurate computation.

Figure 10 Additional XORs on the second operand will change the MFIBVP

adder to a subtractor.

The MFIBVP adder design is based on the previous algorithm, with the special

feature that only part of the blocks obtained from the operands are combined
according to the time availability. As the Figure 8 depicts, the operation control

line will select the appropriate result for each application. We propose that the

sum and combination of the blocks will begin with the last block by considering

the value of cn
k

1

0
 for determining the lower bound and the value of cn

k
1

1
 for

determining the upper bound as shown in Figure 10(a), depending on timing

constraints, and move towards the left. The rest of the blocks of the results are

34 Yusrila Y. Kerlooza, et al.

taken directly from the LUT array without being combined, causing no

additional delay. Thus, depending on the application requirements, the system

will adapt the quality-delay of the response. Of course, according to the increase

in the number of selection stages, the error computation will decrease.

3.2 Multiplication

The first implementation of the multiplication operation depicted in Figure 11 is

basically a well-known multiplier technique: the unsigned array multiplier [21].
It consists the following steps:

1. Generation of partial products: The partial products generation process is

crucial to the operation’s overall performance. Two aspects must be taken
into account in its design: the complexity of the generating circuit and the

number of partial products generated. The first aspect is linked to the time

taken in generating each partial product, whereas the second one affects the
time taken in the second step below to reduce them into two operands that

will be added in the last step.

2. Reduction in the number of partial products: The general way in which a

high performance multiplier works consists of combining the partial
products in order to reduce their number until a total of two is reached. We

can use Wallace tree method [22] for the reduction of the partial products.

3. Final addition: It can be implemented by well-known addition methods;
nevertheless, due to the MFIBVP features, we have used the previously

proposed adder, the MFIBVP adder.

Figure 11 Block diagram of the MFIBVP multiplier.

 MSB-First Interval-Bounded Variable-Precision Real-Time 35

The second implementation of the multiplication operation depicted in Figure

12 uses the logaritmic-based multiplication. A multiplication of two operands:

X and Y by this method performs as the following equation (b is the logarithmic

base):

 X Y anti logb(logb X logbY) (4)

We can use the MFIBVP adder to compute the multiplication so the same

features will be produced by this implementation.

We can use look-up table technique [21] or logarithmic schema [23] as the log

and antilog blocks shown in Figure 12. The data bus width produced by the log

blocks determines the amount of look-up table block in the MFIBVP adder,

while the adder’s output bus width determines the approximation of the
multiplication result produced by the antilog blocks.

Figure 12 Alternative block diagram of of the MFIBVP multiplier using

logarithmic multiplication technique.

3.3 Division

In this paper, the implementation of the division operation uses the same

technique as the second approach of the multiplication: logaritmic-based

division. A division of two operands X and Y by this method performs as the
following equation (b is the logarithmic base):

 X Y anti logb(logb X logbY) (5)

We can use the MFIBVP subtractor previously mentioned to compute the
division so the same features will be produced by this implementation.

36 Yusrila Y. Kerlooza, et al.

Figure 13 Block diagram of the MFIBVP divisor using logarithmic division
scheme.

4 Evaluation of the Proposed Architecture

In this section, we will evaluate the operation of the MFIBVP real-time

arithmetic unit. The objective is to determine the time needed by each
computation unit in different path delays, and to study the computation accuracy

that takes place as a result of the imprecise calculations when processing the

incomplete operation. From this evaluation the information necessary will be
obtained to establish the suitable clock cycle for the future processor and to

relate the available time to the processed part of each function.

4.1 Time Complexity

The time complexity O(n,k) of each MFIBVP real-time operators in this paper

is measured as a function of n and k, which represents as the total amount of the

gate’s delay (Δg) needed.

4.1.1 MFIBVP Real-Time Adder/Subtractor

Based on the block diagram depicted on Figures 8 and 9 the time complexity of

the MFIBVP real-time adder/subtractor can be counted by summing the basic or
functional gate’s delay needed by each steps as Table 1 shows.

Table 1 Time complexity in each step of the n bit MFIBVP real-time k-adder.

Phase

Step 1

(Most Significant

k-bit)

Step 2 Step 3 … Final Step

LUT decoder K k k … k

Carry Selector 1 2 3 … n/k

Multiplexer log2(n/k) log2(n/k) log2(n/k) … log2(n/k)

Total k+1+log2(n/k) k+2+log2(n/k) k+3+log2(n/k) … k+(n/k)+log2(n/k)

 MSB-First Interval-Bounded Variable-Precision Real-Time 37

4.1.2 MFIBVP Real-Time Multiplier

Based on the block diagram depicted on Figure 11 the time complexity of the

MFIBVP real-time multiplier can be counted by summing the basic or
functional gate’s delay needed by each step as Table 2 shows.

Table 2 Time complexity of the n bit MFIBVP real-time k-multiplier.

Phase

Step 1

(Most Significant

k-bit)

Step 2 Step 3 … Final Step

Partial product k k k … k
Wallace tree 1+ log2(n/k) 1+ log2(n/k) 1+ log2(n/k) … 1+ log2(n/k)

MFIBVP adder k+1+log2(n/k) k+2+log2(n/k) k+3+log2(n/k) … k+(n/k)+log2(n/k)

Total 1+1+2k+ 2log2(n/k)
2+1+2k+
2log2(n/k)

3+1+2k+
2log2(n/k)

…
(n/k)+1+2k+
2log2(n/k)

4.1.3 MFIBVP Real-Time Divider

If the logarithmic precision stored in the LUT ROM for Logarithmic and

Antilog block depicted in Figure 13 is m-bit, then the time complexity of the
MFIBVP real-time divider can be counted by summing the basic or functional

gate’s delay needed by each step as Table 3 shows.

Table 3 Time complexity of the n bit MFIBVP real-time k-divider.

Phase

Step 1

(Most Significant

k-bit)

Step 2 Step 3 … Final Step

LOG
(LUT decoder)

n n n … n

MFIBVP
substractor

k+1+ log2(m/k) k+2+ log2(m/k) k+3+ log2(m/k) …
k+(m/k)+
log2(m/k)

ANTILOG
(LUT decoder)

m m m … m

Total
1+n+m+k+
2log2(m/k)

2+n+m+k+
2log2(m/k)

3+n+m+k+
2log2(m/k)

…
(m/k)+n+m+k
+ 2log2(m/k)

4.2 Accuracy Comparison

In this section we will compare the computation accuracy of each architecture
of the MFIBVP real-time arithmetic operation previously described with well-

known architecture arithmetic operation along with computation time. The

accuracy of the MFIBVP real-time operation A(t)MFIBVP is computed in Equation

(6) and Equation (7).

 A(t)comp.MFIBVP (t)MFIBVP.up (t)MFIBVP.low (6)

38 Yusrila Y. Kerlooza, et al.

 A(t)MFIBVP 1
A(t)comp.MFIBVP

Dmax

100% (7)

where:

Dmax is value between the lowest and highest value that can be produced

by particular arithmetic operation,

(t)MFIBVP.upand (t)MFIBVP.up
 are upper and lower intermediate-result

produced by particular MFIBVP real-time arithmetic operation at t
time.

Because of the original nature of the conventional, although well-known,

architecture arithmetic operation that only produces single numeric result at the
end of operation, we have to assume that they can produce intermediate-result

along the computation time thus we can calculate the accuracy of the operation

A(t)conv as shown in Equation (8) and Equation (9).

 A(t)comp.conv Biggest computation value (t)conv (8)

 A(t)conv 1
A(t)comp.conv

Dmax

100% (9)

where:

(t)conv are intermediate-result produced by particular conventional

arithmetic operation at t time.

4.2.1 MFIBVP Real-Time Adder

By using k-bit as the computation granularity and LUT with both lower and

upper computation result stored in ROM, there is novel advantage in the
architecture of the MFIBVP real-time adder designed in this research. The

advantage is in determining the accuracy of computation regardless the value of

both operands. By referring to Figure 6, the difference between the lowest and
highest value produced in single LUT block is 1. Based on Equation 1 and

Equation 6 we can define the difference between the lowest and highest

intermediate-result at computation time t produced by the MFIBVP real-time

addition of n bit operands with granularity k:

 A(t)comp.MFIBVP

n

k

t ta
ct .MFIBVP

@1

base 2k

 (10)

The @ symbol represents repetitive value of the right hand side by the value of
the left hand side of the @ symbol, for example 4@1 means 1111.

 MSB-First Interval-Bounded Variable-Precision Real-Time 39

By knowing the accuracy of the intermediate-result produced during

computation, based on application-specific computation we can determine its

error propagation.

According to Equation (7) and Equation (10), Figure 14 shows the propagation
of computation accuracy gained by the MFIBVP real-time adder with k=4

compared with the one gained by the Carry Look-ahead Adder and Carry

Propagation Adder technique.

Figure 14 Performance comparison between the MFIBVP real-time adder vs

Carry Look-ahead Adder and Carry Propagate Adder on 50 pairs of 64-bit
random numbers.

4.2.2 MFIBVP Real-Time Multiplier

The performance of the MFIBVP real-time multiplier is measured by plotting

the accuracy of the intermediate result (Equation (7) and Equation (10)) gained
during computation time t, compared with the performance of the same

multiplier technique (array multiplier) that uses Carry Look-ahead Adder and

40 Yusrila Y. Kerlooza, et al.

Carry Propagate Adder as the final partial product adder. The performance

measured in Figure 15 is based on the multiplication of 50 pairs of 32-bit

random numbers.

Figure 15 Performance comparison between the MFIBVP real-time multiplier

which uses MFIBVP real-time adder as the final partial product adder vs array

multiplier that uses Carry Look-ahead Adder and Carry Propagate Adder.

4.2.3 MFIBVP Real-Time Divider

The performance of the MFIBVP real-time divider is measured by plotting the

accuracy of the intermediate result (Equation (7) and Equation (10)) gained

during computation time t, compared with the performance of a well-known

division technique: the Carry look-ahead cellular array divider [21] with time
complexity O(n)=(10n+11)Δg. The performance measured in Figure 16 is based

on the division of 50 pairs of 32-bit random numbers.

 MSB-First Interval-Bounded Variable-Precision Real-Time 41

Figure 16 Performance comparison between the MFIBVP real-time divider vs

Carry Look-ahead cellular array divider over 50 pairs of 32-bit random numbers.

4.3 Application Example

The development of a real-time arithmetic processor has interesting applications

in which the adjustment and determination of the features play a crucial role in

the correct computational resolution. This section describes a simple example
that illustrates the specific application of the proposed arithmetic unit, the same

case as application example presented in [8]. The application consists in

controlling the position of object B whose objective is to closely pursue object

A. The pursuing object B will have to constantly correct its trajectory in order to
adapt to the changes of detected direction in the followed object A. The

movement management of B only considers the aspects of tracking A. In the

application example, other more distant obstacles or factors are not considered.
The determination of the movement is based on the value of the direction

tangents of the moving object A with regard to the reference system axes of B.

Object A will travel and make correction of its course based on the conventional
arithmetic 32-bit computation, and B will try to catch A based on MFIBVP real-

time arithmetic technique to compute the angle between B and A in 2D space:

 arctan B A
BA

B A

X X

Y Y
 (11)

Evidently, it is a basic approach; we have simplified the number of variables in

order to offer a clear use of the prototype. Figure 17 shows the simplified

algorithm in this application to measure the accuracy of MFIBVP real-time
arithmetic computation. By changing the computation granularity p, we can

compare the cycles needed by the object B to catch the object A. Figure 18

42 Yusrila Y. Kerlooza, et al.

shows that starts from the computation with 20 bit of its operand’s width (out of

32) with MFIBVP real-time arithmetic the total cycles needed by object B to

catch the object A is just the same with computation with greater precision.

Figure 17 Simplified algorithm of the object tracking application, the cycle

needed by object B to catch object A reflects the accuracy of B’s MFIBVP real-

time arithmetic unit.

 MSB-First Interval-Bounded Variable-Precision Real-Time 43

The accuracy of computation in the object B based on the processed operand’s

width p:

 A(p)

cycle(p)

cycle(32)

100% (12)

Figure 18 MFIBVP real-time arithmetic performance in the pursuing object
application.

5 Conclusion

We can conclude that the MSB-First Interval-Bounded Variable-Precision

(MFIBVP) real-time arithmetic unit gives better computation performance by
it’s ability to:

1. Produce intermediate-result during execution time,

2. Give certainty in computation accuracy even before the process finish time
by providing two intermediate-results which act as the lower and upper

bound of the real and complete computation result,

3. Gain high computation accuracy from the early time of the execution

process.

Nomenclature

 = arithmetic operations

A(t)ars = accuracy of the operation by the by the ars arithmetic unit at t

time of computation

A(t)comp.ars = difference between the upper and lower numeric value produced

by the ars arithmetic unit at t time of computation

44 Yusrila Y. Kerlooza, et al.

ct.ars = time constant to process single pair of operands’ bit needed by

the ars arithmetic unit

Dmax = difference between the maximum and minimum numeric value

possible on a particular arithmetic operation

K = operation’s granularity

m(t) = total bits that have been compute as a function of time

n = operand’s width

(t)ars
= numeric value of the arithmetic computation carried out by the

ars arithmetic unit at t time of computation

ta = start time of the arithmetic execution of the ars arithmetic unit

tf.ars = finish time of the arithmetic execution of the ars arithmetic unit

Tp.ars = period of the process time needed by the ars arithmetic unit to

finish its arithmetic operation

References

[1] Laplante, P.A., Real-Time Systems Design and Analysis, IEEE Press
Wiley Interscience, 2004.

[2] Zadeh, L.A., Soft Computing and Fuzzy Logic, IEEE Software, 11, 48-56,
Nov. 1994,

[3] Liu, J.W.S., Lin, K., Shih, W. & Yu, A.C., Algorithms for Scheduling
Imprecise Computations, Computer, 24, 56-68, May. 1991.

[4] Lim, C.C. & Zhao, W., Performance analysis of dynamic multitasking

imprecise computation system, IEE Proceedings of Computers and

Digital Techniques, 138, pp. 345-350, Sep. 1991.

[5] Liu, J.W.S., Shih, W.S., Lin, K., Bettati, R. & Chung, J., Imprecise

Computations, Proceedings of the IEEE, 82, Jan. 1994.

[6] Huang, X. & Cheng, A.M.K., Applying imprecise algorithms to real-time

image and video transmission, Proceedings of the Real-Time Technology
and Applications Symposium, pp. 96, 1995.

[7] Shih, W. & Liu, J.W.S., Algorithms for Scheduling Imprecise
Computations with Timing Constraints to Minimize Maximum Error,

IEEE Transactions on Computers, 44, 466, , Mar. 1995.

[8] Mora-Mora, H., Mora-Pascual, J., Garcia-Chamizo, J.M. & Jimeno-

Morenilla, A., Real-time arithmetic unit, Real-Time Systems, 34, 53-79,

2006.

 MSB-First Interval-Bounded Variable-Precision Real-Time 45

[9] Kuspriyanto & Kerlooza, Y.Y., Multiple Operand Real-Time Adder,

Proceeding of SIK 2003, 2003.

[10] Kuspriyanto & Kerlooza, Y.Y., Menuju Prosesor Waktu-Nyata: Dual

Algorithms Real-Time Adder, Prosiding Seminar on Electrical

Engineering (SEE), Univ. Ahmad Dahlan Yogyakarta, 2003.

[11] Kuspriyanto & Kerlooza, Y.Y., Keandalan Unit Multioperand MSB-First

Real-Time Adder Pada Operasi Penjumlahan Data Acak, Proceeding:
Seminar on Intelligent Technology and Its Applications 2004

(SITIA'2004), 2004.

[12] Kuspriyanto & Kerlooza, Y.Y., Towards New Real-Time Processor: The

Multioperand MSB-First Real-Time Adder, Proceedings of the

EUROMICRO Systems on Digital System Design (DSD'04), pp. 524
529, Aug. 2004.

[13] Kerlooza, Y.Y. & Kuspriyanto, Towards Real-Time Processor:
Multioperand MSB-First Minimax Addition, International Conference on

Electrical Engineering and Informatics (ICEEI2007), 2007.

[14] Kerlooza, Y.Y. & Kuspriyanto, Towards Real-Time Processor: The

Implementation of Multioperand MSB-First Adder Arithmetic Unit on the

Computation of y =Σ ai bi, International Conference on Electrical
Engineering and Informatics (ICEEI2007), Jun. 2007.

[15] Kerlooza, Y.Y. & Kuspriyanto, Real-Time dan Adjustable Computing, e-
Indonesia Initiative 2008 (eII2008), May. 2008.

[16] Nielsen, A.M. & Kornerup, P., MSB-First Digit Serial Arithmetic,

Journal of Universal Computer Science, 1, 1995.

[17] Moore, R.E. & Yang, C.T., Interval analysis I, Lockheed Missiles and

Space Co., 1959.

[18] Moore, R.E., Interval Arithmetic and Automatic Error Analysis in Digital

Computing, Department of Mathematics, Stanford University, Stanford,

California, 1962.

[19] Boche, R.E., An Operational Interval Arithmetic, IEEE-Illinois Inst. of

Tech.-Northwestern Univ., Univ. of Illinois. Abstract of a paper given at
National Electronics Conference, 1963.

[20] Deng, Z. & Liu, J.W., Scheduling real-time applications in an open
environment, in Proceedings of the 18th IEEE Real-Time Systems

Symposium, IEEE Computer, Society Press, pp. 308–319, 1997.

[21] Lu, Mi., Arithmetic and Logic in Computer Systems, John Wiley & Sons

Inc., 2004.

[22] Wallace C.S., A Suggestion for a Fast Multiplier, IEEE Transaction on

Computers, 13, 14-17, 1964.

46 Yusrila Y. Kerlooza, et al.

[23] Parhami, B., Computer Arithmetic: Algorithms and Hardware Designs,

Oxford University Press, USA, 1999.

