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Abstract. A Vertical Bell Laboratories Layered Space-Time Multiple-Input 

Multiple Output (V-BLAST MIMO) enhanced with Unequal Error Protection 

(UEP) to achieve highly reliable wireless communication is proposed. The UEP 

scheme is based on Channel State Information (CSI) available at the transmitter 

whose calculation utilizes Singular Value Decomposition (SVD) of the MIMO 

matrix channel. Using Rate-Compatible Punctured Convolutional (RCPC), a 

different code rate is given for each sub-stream of source information, according 

to its level of transmit power. To analyze the system performance, an analytical 

BER comprising the performance of V-BLAST MIMO BPSK-modulated signals 

and the performance of RCPC codes in Rayleigh fading environment is 

presented. Simulation results show that increasing the code rate can attain a 

bandwidth efficiency of 33.3% in expense Eb/No, but this penalty is not severe as 

the high code rate is used in sub-channels with high attenuation level.  It is also 

shown that a system with 2 transmit and 4 receive antennas will have an 

improved performance within only 1 dB range compared to a system with 2 

transmit and 2 receive antennas. The performance of the proposed system is 

mostly affected by the type of puncturing matrices chosen. 

Keywords: BER; MIMO; RCPC code; singular value decomposition; V-BLAST. 

1 Introduction 

The multiple-input multiple-output (MIMO) wireless communication scheme, 

characterized with multiple antennas in both the transmitter and receiver sides, 

has gained a lot of interest in the past decade. Its potential of realizing enormous 

capacity without necessitating extra bandwidth is especially appealing for 

today‟s multimedia communication needs [1-3]. The high capacity nature of the 

MIMO scheme is attained by exploiting multipath scattering, therefore the 

scheme suits an indoor environment where a rich scattering pattern exists.   

A proper processing architecture is crucial to achieve this high capacity 

potential. Vertical Bell laboratories layered space-time (V-BLAST) is one of 

such architectures known to have spectral efficiencies of 20-40 bps/Hz at 24-34 

dB average SNR without coding [2]. It is noted however that an appropriate 

coding scheme is required to complement the high data rate of the system with a 

high diversity gain.  
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A coding approach in which diversity gain and multiplexing gain are taken into 

consideration is unequal error protection (UEP). The basic idea of this approach 

is to assign different levels of error protection to different data streams.  By 

providing different levels of error protection, a high data redundancy is 

mitigated. This will in turn contribute to bandwidth efficiency.  UEP can be 

attained using rate-compatible punctured convolutional (RCPC) codes, in which 

a single encoder and decoder structure is employed to provide different code 

rates, hence giving different levels of protection to the information source [4].  

Several researches have proposed the use of UEP with MIMO scheme [5-8].   

The UEP proposed in these researches imply the need to resend information 

repeatedly using progressively stronger code protections, and therefore are more 

suitable for systems requiring automatic repeat request (ARQ).  For wireless 

system communications where ARQ is typically not implemented, there is a 

need for a different way to implement UEP.   

It is shown in our previous research on UEP and V-BLAST MIMO that an 

RCPC-encoded V-BLAST MIMO is capable of achieving consistently better 

performance in respect to a lowered code rate [9-10].  In these works, however, 

the modulation used was QAM, which do not allow for accurate separation 

between the signal and the fading amplitudes.  As a first consequence, the 

theoretical BER presented therein is an average for an assumed equal transmit 

power scheme. In [9], the power is assumed to be constant for all transmit 

antennas, while in [10] it is calculated as a function of channel gains and the 

number of antennas. The second consequence is that in these works an 

allocation scheme for different code rates for different sub-channels in the 

MIMO system are not addressed. The RCPC codes used in [9-10] are taken 

from [4], although clearly alternate RCPC codes can be built for different 

puncturing periods.   

This paper intends to address the above issues by BPSK modulation so that the 

signal amplitude is constant and the fading amplitude can be observed more 

accurately. This consequently allows the use of differently allocated power and 

code rates for different transmit antennas.  New RCPC codes with puncturing 

periods L = 5 and 6 are also presented. As opposed to applying different code 

rates to different data streams according to their level of urgency, in this paper 

we use Channel State Information (CSI) at the transmitter to first differentiate 

the transmit powers given to the data streams transmitted by the multiple 

antennas.  A data stream entering a sub-channel with low level attenuation will 

be given a higher transmit power than a data stream entering a sub-channel with 

high level of attenuation. Different code rates are subsequently assigned 

according to the allocated transmit power.  A high level of transmit power will 

be paired with a low code rate, meaning the information sub-stream entering a 

sub-channel with low level attenuation will benefit from both high transmit 
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power and high level error protection.  The proposed system uses m transmit 

and n receive antennas.  An analytical BER comprising the performance of V-

BLAST MIMO BPSK-modulated signals and the performance of RCPC codes 

in Rayleigh fading environment is presented and used to analyze the system 

performance. 

This paper is organized as follows. Section 2 gives the system model covering 

the RCPC code design, the V-BLAST MIMO design with CSI and the system 

performance.  Simulation results are discussed in Section 3 and the conclusion 

is given in Section 4. 

2 System Model 

2.1 RCPC Code Design 

The proposed RCPC-encoded V-BLAST MIMO with UEP system model is 

given in Figure 1. The channel is assumed to undergo Rayleigh fading and there 

exists a rich scattering paths between the transmit and receive antennas. The 

transmitter block consists of a V-BLAST demodulator and an RCPC encoder.  
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Figure 1 System model. 

The RCPC encoder enables the assignment of RCPC codes with rates Rci, 

i=1,..,m to the data streams according to the sub-channel gains.  A low rate code 

is given to a data stream entering a sub-channel with low attenuation, and vice 

versa.  This is intended to provide high level of protection only to the data 

stream entering a non-destructive sub-channel. 
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The different convolutional code rates are derived from a mother code with rate 

1/N.  For a puncturing period of L bits, the resulting punctured convolutional 

code rates are [5] 

miLN
L

L
R
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,...,1,)1(,,1, 
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 (1) 

The puncturing matrix used is [4] 
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which consists of N rows and L columns, and aij()  (0,1) in which 0 implies a 

puncturing.  The number of possibilities to form the puncturing matrix aij() is 
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where l  denotes the number of zeros in the puncturing matrix.  The division by 

factor N is due to the fact that a cyclic shift of N symbols in the puncturing 

matrix will give the same performance with the case of no cyclic shift. In the 

first simulation the parameters used are N = 3, Rc1 = 5/15 and Rc2 = 5/10 for two 

transmitted data streams with L = 5.  In the second simulation the parameters 

used are N = 3, Rc1 = 6/18 and Rc2 = 6/12 for two transmitted data streams with L 

= 6. Figure 2 shows an example of the RCPC encoder of the proposed system 

model.   
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Figure 2 Example of RCPC encoder with mother code generator polynomial 

[36 25 23] and puncturing matrices from encoders A and B depicted in Table 1. 
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There are no systematic methods available to construct good rate L/L+ codes 

[4]. Consequently, the search for good codes in this paper is based on the best-

known generator polynomial of rate 1/3. This generator polynomial yields a 

“mother code”. The bits in the mother code are then punctured to attain codes of 

rates ½, using different puncturing matrices.  

For the case of L = 5, the mother code rate is 5/15 with generator polynomial 

[36 25 23] and the puncturing matrix is shown in Table 1 as encoder A. The 

minimal Hamming distance between different codewords, termed free distance 

or dfree for this encoder is 10. Therefore the encoder does not introduce error 

weight cd in dfree < 10.  However for several values of dfree the error weight cd 

equals 0.  This is due to the fact that the Hamming distances from the resulting 

codewords and the all-zero paths are even, therefore for odd values of dfree, there 

is no cd found. 

Table 1 Puncturing Matrices a() and cd Values for RCPC Codes with 

Puncturing Period L = 5 and Memory M = 5  
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polynomial  [36  25 
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cd     1 0 8 0 30 0 100 
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 Generator 

polynomial  [00  25 
23] 

cd 1 0 18 0 53 0 1088 0 7384 0 47734 
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 Generator 
polynomial  [36 00 

23] 

cd 2 4 8 46 142 313 726 1864 4870 12217 29890 

D  Rc1 = 5/10 cd 2 4 10 19 80 240 634 1583 4128 10621 26792 
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 Generator 
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 cd 1 0 2 0 11 0 22 0 93 0 255 
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To yield codes with rates 5/10 from this mother code, there are 5 bits that need 

to be punctured.  As stated earlier there are many possibilities as to which 5 bits 

can be punctured. For simplicity reason, in the first three simulations the 5 

punctured bits are all in the same row. As calculating the error weights cd in the 

incorrect paths of a convolutional code require extensive computer search, in 

this paper we use a polynomial generator equivalents to simplify the calculation. 

For example, for the mother code [36 25 23], the generator polynomial in binary 

form is 
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where „1‟ denotes a connection between a memory register and the 

corresponding summing points of the convolutional encoder, while „0‟ denotes 

none of such connection. In encoder B depicted in Table 1, all of the bits 

contained in the codeword yielded by the first summing point are punctured.  

This is equal to removing all of the connections between the memory registers 

and the first summing point in the encoder, so that the equivalent generator 

polynomial is 
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In octal form, the above matrix can be stated as [00 25 23]. Using this 

equivalent generator polynomial, the free distance dfree and error weights cd can 
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be calculated.  The resulting dfree  and cd values for different puncturing matrices 

with L = 5 and memory M = 5 are given in Table 1.  It is shown that several 

puncturing matrices will yield catastrophic codes, as these matrices do not 

provide an invertible feed-forward generator polynomial.  Moreover, some 

puncturing matrices will yield codes with M < 5 and therefore are not included 

in the table. 

The parameters for a mother code with rate 6/18 are L = 6 and generator 

polynomial [75 53 47] as depicted in Table 2. To yield codes with rates 6/12 

from this mother code, 6 bits of the codeword will be punctured.  Again in the 

first three simulations, the 6 punctured bits are in one row, while in the 

subsequent simulations the punctured bits are located in more than one row. The 

mother code generator polynomial [75 53 47] can be stated in binary form as 


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Similar with the previous definition, „1‟ denotes a connection between a 

memory register and the corresponding summing points of the convolutional 

encoder, while „0‟ denotes none of such connection.  In Encoder O of Table 2, 

three bits each in the first and the second row are punctured.  The positions of 

the punctured bits are in the right-most of the matrices, i.e. the least significant 

bits.  Puncturing the three least significant bits is equal to eliminating the 

connections of the last three memory registers with the corresponding summing 

points, yielding an equivalent generator polynomial in the form of  
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In octal form, the matrix in the right of the equation sign above can be stated as  

[70 50 47]. The values of dfree and cd are computed using this equivalent 

generator polynomial.  Proceeding with other possible puncturing matrices, dfree 

and cd  are computed and are given in Table 2.  As with the case of L = 5, 

several puncturing matrices will yield catastrophic codes, and some others will 

yield codes with M < 5 and therefore are omitted from the table. 

The computations of dfree and cd are limited to dfree = 16 as this number already 

represents the performance of the code with greater dfree.  Simulations with 

greater dfree have been done for this research, and it is found that greater dfree 
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values do not only require extensive resources but also do not significantly 

affect the outcomes of the results shown in Section 3. 

Tables 1 and 2 show that puncturing the data stream will shorten the free 

distance of the codes.  Nevertheless, by increasing the puncturing period L 

better codes can be achieved. As RCPC codes introduce long decision depths 

and NL ambiguity to be resolved in the incoming data stream, a proper 

termination or synchronization will be needed in systems that use this code. 

Table 2 Puncturing Matrices a() and cd Values for RCPC Codes with 

Memory M = 5 and Puncturing Period L = 6. 
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 Generator polynomial  
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 Generator polynomial  
[75 53  0] 

cd  2 36 32 62 332 701 2342 5503 12506 

O 
 Rc2 = 6/12 

 Puncturing matrix cd  1 2 6 10 6 32 73 74 147 
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 Generator polynomial  
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 Generator polynomial  

[71 51  41] 

cd   1 0 0 2 3 10 12 20 

 

2.2 V-BLAST MIMO Model with CSI 

In the proposed system model, CSI is fed onto the transmitter block so that 

different power levels can be allocated to different transmit antennas, according 

to the channel condition. The V-BLAST modulator in the transmitter block is 

basically a demultiplexer, which is used to map a single stream of information 

bits onto the multiple transmit antennas. BPSK modulation is chosen for this 

system, so that every symbol transmitted consists of one information bit. The 

elements of a signal vector s = [s1, s2,…,sm]
T
 are transmitted simultaneously 
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from first to the m-th transmit antennas, and the signal arriving at the receive 

antennas y = [y1, y2,…,yn]
T
 can be expressed as 

 y = Hs + n (3)  

where H is the matrix channel of a MIMO system whose elements are the 

channel gains between the transmit and receive antennas, and  n is a noise 

vector with complex Gaussian distribution, zero mean and variance 2
.   

One way to make the matrix channel known at the transmitter is by using 

Singular Value Decomposition (SVD).  Using SVD, the matrix channel H is 

decomposed into [3] 

 *
VDUH   (4)    

where U and V are complex unitary matrices which dimensions are m×m and 

n×n respectively , (.)
*
 denotes conjugate transpose and D is diagonal matrix 

whose dimension is m×n and can be expressed as [3], [11], [12] 
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where 1,…,l,  l =min(m,n) are the eigenvalues of HH*. Taking the definition 

[3], [9] 

 yUy ~  (6.a)     

 sVs ~  (6.b)      

  nUn ~  (6.c)  

and substituting  (4) and (6) into (3),  the received signal can be stated as 

 nsD y ~~~   (7)    

Equation (7) represents the MIMO system as m equivalent parallel Singular-

Input Singular-Output (SISO) channels with the signal powers given by 

1
 ,…, 

m
 . 
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A special signal processing is needed at the receiver side to unmix the data 

streams. The V-BLAST demodulator extracts s from y using iterative nulling 

and cancellation based on a Zero Forcing (ZF) criterion. 

In the first step of the demodulation process, a decision statistic is used as a 

threshold to estimate the received signal.  When ZF criterion is used for nulling, 

the decision statistic r  to determine s is [2] 

 ywr
T  (8)     

where w
T  

 is the transpose of  w, which is the weighting vector that satisfies [2] 

 IVDUw 





  *T  (9)    

with I as an identity matrix. Subtituting (3) and (9) into (8) will yield  

nwsr
T

  (10)     

The quantization of r will yield s and therefore the transmitted symbols are 

successfully extracted from the received signal y.  However as the signals are 

mixed in the receiver block, a cancellation process is done to detect a particular 

signal. This cancellation process will take one particular sub-stream of 

information, and the other sub-streams are assumed to be „interferers‟. Hence, 

these „interferers‟ are cancelled out from the received signals. For example, to 

detect y1 from y, the symbols y2, y3,…,ym are considered interferers and 

cancelled out from y. The cancellation process can be stated as 
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 (11) 

2.3 System Performance 

The system performance can be measured as the number of error bits in the 

receiver, which can be defined as the occurrence of (yi
’
  y ≠ si  s).  To 

analytically measure the system performance, the probability that the detected 

symbol is not equal to the transmitted symbol, P(yi
’
≠ si), has to be stated. P(yi

’
≠ 

si) is a function of the signal to noise ratio (SNR) at a particular detection step 

and the probabilities of error both in the demodulation and decoding process, 

and can be stated as 
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where  is the instantaneous signal to noise ratio (SNR), i() is the SNR pdf at 

the i-th detection step, and Bi() is the instantaneous BER that depends on the 

modulation type and the coding rate used. For the numerical simulations, the 

number of transmit antennas is m = 2.  Therefore the detection process is done 

in two steps. 

The SNR pdf for the first and second detection steps are [13] 
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where 0 is the average pre-processing SNR per transmit antenna, which is 

assumed to be equal for both transmit antennas, and the outage probabilities of 

the first and second detections steps are [13] 
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where the general form of outage probability 








0



h

F  can be stated as [13] 
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In case of a system where the number of transmit antennas is 2 and the number 

of receive antennas is n > 2, the outage probabilities can be stated as [13] 
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where [13] 
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The outage probability for the second detection step is given by (16), where  
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F  for this case is [13] 
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The instantaneous BER of the system Bi() is upperbounded by the Viterbi‟s 

upperbound on error event probability [14]. As an RCPC code is used instead of 

a convolutional code, Bi() can be stated as 
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where cd is the the total number of error bits contained in the incorrect paths in 

the convolutional trellis and Pd is the probability of selecting a wrong path at 

distance d.  For a Rayleigh fading channel with soft decision on y and full CSI, 

Pd can be upperbounded by [4] 
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3 Simulation Results 

For the simulation we use m=2, encoder memory M = 5 and puncturing periods 

L = 5 and 6. In the first simulation the code rates used are Rc1 = 5/15 and Rc2 = 

5/10 for the first and the second detected data stream, respectively. The lower 

code rate is given to a data stream entering a non-destructive sub-channel. In the 

second simulation, the code rates used are Rc1 = 6/18 and Rc2 = 6/12 for the data 

stream entering a non-destructive and a destructive sub-channel, respectively. 

For the first simulation we use encoders A, B, C and D depicted in Table 1.  

The simulation result is given in Figure 3. Encoder A provides Rc1 = 5/15 and 

therefore gives a high level of protection intended for the data stream of 

information entering a sub-channel with low attenuation.  Encoders B, C and D 

provide Rc2 = 5/10 for the other data streams of information that enter a sub-

channel with high attenuation.  It is shown that the different puncturing matrices 

used in encoders B, C and D give similar performances. In fact, the 

performances yielded by encoders C and D almost match each other.  This is 

due to their equal dfree = 6 and comparable cd values.  It is also shown that with a 

single encoder and decoder structure, the proposed system can achieve up to 2 

dB coding gain by increasing the code rate.  Hence for a sub-channel with high 

attenuation, Rc2 can be used to save 2 dB of bandwidth requirement at the 

expense of lower performance. 

 

Figure 3 Results for RCPC-encoded V-BLAST MIMO using encoders A, B, C 

and D. 



82 Lydia Sari, Gunawan Wibisono & Dadang Gunawan 

 

Figure 4 Results for RCPC-encoded V-BLAST MIMO using encoders A, E 

and F. 

The system performance yielded by encoders E and F are given in Figure 4.  In 

these encoders the 5 punctured bits are dispersed, 4 bits in one row and an 

additional bit in another row.  Puncturing is done only to the least significant 

bits, leaving the most significant bits (the bits in the left-most side) intact. 

Although the maximum gain variation of 2 dB is still retained, encoders E and F 

yield better performances compared to encoders B, C and D.  This is due to the 

fact that puncturing 5 bits in a row essentially means inactivating one summing 

point in the encoder thus degrading the performance noticeably. 

The system performances of encoders H and I are given in Figure 5.  The 

punctured bits are also dispersed in two rows for these encoders, and the results 

are similar to the ones shown in Figure 4.  This implies that dispersing the 

punctured bits in a varied manner will yield similar performance.  It is noted 

however that puncturing the most significant bits will not enable us to attain 

equivalent generator polynomials, therefore we do not include puncturing 

matrices where the most significant bits are punctured. 
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Figure 5 Results for RCPC-encoded V-BLAST MIMO using encoders A, H 

and I. 

 

Figure 6 Results for RCPC-encoded V-BLAST MIMO using encoders K, M 

and N. 
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Figure 7 Results for RCPC-encoded V-BLAST MIMO using encoders K, O, P, 

Q and S. 

The simulation results of RCPC codes with puncturing period L = 6 are given in 

Figures 6 and 7. The encoders used are listed in Table 2. It is shown that the 

system with L = 6 outperforms the system with L = 5.  This is due to the 

increased dfree attained by increasing the puncturing period.  The gain variation 

attained by using encoders K, M, and N is higher than the variation attained by 

using encoders O, P, Q and S.  In general it is shown that large gain variation is 

attainable by choosing a large puncturing period L.  As in the case of L = 5, the 

dispersed punctured bits yield better performance compared to puncturing bits 

in one row.  It is also further confirmed that dispersing the punctured bits in a 

varied manner will yield similar performances.  

The numerical results thus far have shown that increasing the code rate by 

33.3% from Rc1 = 5/15 or 6/18 to Rc2 = 6/10 or 6/12 causes the system 

performance to decrease. This increase in the code rate also means that the 

bandwidth efficiency is increased by 33.3%. We note that the best performing 

code is given by puncturing matrix S, where increasing the code rate by 33.3% 

from Rc1 = 6/18 to Rc2 6/12, at the cost of decreasing the system performance by 

approximately 2 dB. However this penalty is not severe because Rc2 = 6/12 will 

only be used in sub-channels where the attenuation gain is high. 
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As the puncturing period L = 6 improves the system performance compared to L 

= 5, in the next numerical simulations we use L = 6 for a system with m = 2 and 

n = 4.  The parameter  n = 4 is chosen because in 3GPP it has been stated that 

advanced MIMO techniques could employ up to 4 receive antennas, while 

keeping the codewords transmitted to 2 layers [15]. 

 

Figure 8 Results for RCPC-encoded V-BLAST MIMO using encoders K, M, 

and N with m = 2 and n = 4. 

The system performance for encoders K, M, and N is depicted in Figure 8. 

Compared to the system with m = n = 2, the performance improvement is 

within 1 dB for a BER level of 10
-10

. The result of further simulation using 

encoders K, O, P, Q and S for a system with m = 2 and n = 4 is given in Figure 

9. It is shown that the addition of receive antennas in this system also only 

improves the system performance within 1 dB range for a BER level of 10
-10

. 

These results are in accordance to [13] which states that optimal ordering 

implemented in V-BLAST MIMO would not contribute to the diversity gain of 

the system, yet it improves the post-processing SNR for each detection step. 

Consistent with the results depicted in Figures 3-7, the dispersion of punctured 

bits will slightly improve the performance of systems with additional receive 

antennas. It is also noted that for systems with n = 2 and n = 4, the dispersion of 

punctured bits will improve the system performance in the low Eb/No region. 
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Figure 9 Results for RCPC-encoded V-BLAST MIMO using encoders K, O, P, 

Q and S with m = 2 and n = 4. 

4 Conclusion 

An RCPC-encoded V-BLAST MIMO system with m transmit and n receive 

antennas have been proposed and simulated.  Simulation results show that for a 

BER level of less than 10
-7

 the single encoder and decoder structure can provide 

users with close to 4 dB gain variation. Thus RCPC-encoded V-BLAST allows 

for bandwidth preservation by increasing the code rate, at the expense of system 

performance.  Numerical simulations show that a 33.3% bandwidth efficiency 

can be attained by increasing the code rate, from 5/15 or 6/18 to 5/10 and 6/12, 

respectively. This increase in bandwidth efficiency will decrease the system 

performance.  However as the increased code rate is utilized for the data stream 

entering a sub-channel with high attenuation, this disadvantage is not severe. It 

is also shown that in general dispersing the punctured bits will yield better 

performances as opposed to puncturing more than one whole row of data 

stream, although the code rate is maintained. Further, it is shown that additional 

receive antennas (n = 4) would improve the system performance within 1 dB 

range compared to a system with n = 2. Therefore, the performance 

improvement provided by the additional antennas might not be significant 

enough in light of the increased cost and complexity they introduce. As the 

puncturing matrices used in the RCPC codes evidently affect the system 
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performance, further researches regarding the optimal puncturing matrices for 

an RCPC-encoded V-BLAST MIMO system are needed.  

Reference 

[1] Foschini, G.J, Layered Space-time Architecture for Wireless 

Communication in a Fading Environment when Using Multi-Element 

Antenna, Bell Laboratories Technical Journal, 41-59, 1996.  

[2] Wolniansky, P.W., et al, V-BLAST: An Architecture For Realizing Very 

High Data Rates Over The Rich-Scattering Wireless Channel, in URSI 

International Symposium on Signals, Systems and Electronics, pp. 295-

300, 1998. 

[3] Kulakowski, P., The Multiple-Input Multiple-Output Systems in Slow and 

Fast Varying Radio Channels, Ph.D dissertation, Department of 

Telecommunication, AGH University of Science and Technology, 

Krakow, 2007. 

[4] Hagenauer, J., Rate-Compatible Punctured Convolutional Codes (RCPC 

Codes) And Their Applications, IEEE Trans. on Communications, 8(4), 

389-400, 1988. 

[5] Farooq, M.S., et al., An Unequal Error Protection Scheme For Multiple 

Input Multiple Output Systems, in 36
th
 Asilomar Conference on Signals, 

Systems and Computers, pp 575-579, 2002. 

[6] Guo, R., et al., BER Performance Analysis Of RCPC Encoded MIMO-

OFDM In Nakagami-M Channels, in International Conference on 

Wireless Communications, Networking & Mobile Computing, pp 1416 – 

1420, 2006. 

[7] Noh, Y., et al., Design of Unequal Error Protection For MIMO-OFDM 

Systems, in 61
st
 IEEE Vehicular Technology Conference, pp. 1058 – 

1062, 2005. 

[8] Yang, G., et al., Unequal Error Protection for MIMO Systems With A 

Hybrid Structure, in IEEE International Symposium on Circuits and 

Systems, pp. 682-685, 2006. 

[9] Sari, L., Wibisono, G. & Gunawan, D.  BER Performance Analysis of V-

BLAST MIMO System with Joint Source and Channel Coding, in IEEE 

Pacific-Asia Workshop on Computational Intelligence and Industrial 

Application, pp. 733-737, 2008. 

[10] Sari, L., Wibisono, G. & Gunawan, D. An Enhanced V-BLAST MIMO 

System Using Joint Source and Channel Coding, in Proc. IEEE Int. Conf. 

On Advanced Communication Tech. (ICACT 09), pp. 635-639, 2009. 

[11] Gesbert, D., et al., From Theory To Practice: An Overview of MIMO 

Space-Time Coded Wireless Systems, IEEE Journal on Selected Areas in 

Communications, 21(3), 281-302, 2003. 



88 Lydia Sari, Gunawan Wibisono & Dadang Gunawan 

[12] Wenstrom, M., On MIMO Systems and Adaptive Arrays for Wireless 

Communication: Analysis and Practical Issues, Ph.D dissertation, 

Department of Material Science, Uppsala University, Stockholm, 2002. 

[13] Loyka, S. & Gagnon, F., Performance Analysis Of The V-BLAST 

Algorithm: An Analytical Approach, IEEE Trans. on Wireless 

Communications, 3(4),  pp. 1326-1337, 2004 

[14] Viterbi, A.J. & Omura J.K., Principles of Digital Communication and 

Coding, McGraw Hill, 1979. 

[15] Virtej, E., Kuusela, M. & Tuomaala, E. System Performance of Single-

User MIMO in LTE Downlink, in 19
th
 IEEE Personal, Indoor and Mobile 

Radio Conference, pp. 1-5 , 2008. 


