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Abstract. Future communication needs to be ubiquitous, broadband, convergent,
and seamless. Radio over fiber (RoF) technology is one of the most important
enabler in access network for the technologies. Adoption of RoF faces bottleneck
in optoelectronics, that they are still expensive, high power consumption, and
limited in bandwidth. To solve the problem, transceiver in remote antenna unit
(RAU) is developed, i.e. ectroabsorption transceiver (EAT) and asymmetric
Fabry-Perot modulator (AFPM). This paper compares their coverage range and
cost in providing WCDMA and WLAN services. Needed gain of RF amplifier
for supporting picocell is also discussed.
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1 Introduction

Future communi cation technologies are often called 4th Generation (4G), and
characterized to be ubiquitous (anytime, anywhere, any device), broadband
(sufficient data rate to ddiver various services), convergence (support of
various servicetypes, datarate, and user), and seaml ess (aways best connected,
global roaming across wirdess and mobile network) [1]. To meet these
demands, there must be breakthrough in customer premise equipment (CPE),
access network, as wdl as backhaul network. Access network and backhaul
need to be cheap, flexible, scalable, upgradeable and programmable. One of the
most important enabler for the access network is radio over fiber (RoF)
technology. It locates remote antenna units (RAU) at needed places to serve
customers and link the RAU to a centra station (CS) viafiber optics. The RAU
are designed to be simple, small, easy to install, a most maintenance free, and
low caost. All signal processing, resources allocation, and other complexities are
moved to CS. Figure 1 describes the basic block diagram of RoF.



mailto:razalin@fke.utm.my
http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

Coverage Range and Cost Comparison of Remote Antenna 25

4 ™
3G A=
g
WLAN 4> % ! ! « i)}
B Optical
g’ Sw:::lng Transcaivar‘ naY
3
DMB =
8
=
=
B3G - &
“— cap 4

Figurel RoF system block diagram[1].

Beside for anticipating the future needs, RoF technologies has been deployed
for cdlular microcells and in-building picocells. ABI Research reported that in-
building wireless systems markets will experience tremendous growth over the
next five years. Deployments growth of this system has accd erated to 26%, and
it is predicted that in 2013, more than 500,000 buildings will utilized in-
building wireless system producing revenue around USD 13 bhillion [2].
Commercid buildings will become primary market for this system, in which
large buildings (100,000 square feet or more) will choose distributed antenna
system (DAS) and smaller building will use repeaters, femtocdlls, or picocdlls.
RoF technology is cgpableto function as DAS, repeater, femtocell, and picocell.

However, RoF till faces some hurdles for being mass-adopted. Although RoF
superior to coaxial in performance, it is only economical for distance larger than
100 m [3]. Optoeectronics components are still expensive, high power
consumption [4], and also limited in bandwidth. To solve the problems, some
optoel ectronic transceivers have been developed: e ectroabsorption transce ver
(EAT) [4-6], and asymmetric Fabry-Perot Modulator (AFPM) [7]. This paper
summarizes the characteristics of EAT & AFPM, and compares their coverage
range and cost in providing WCDMA and WLAN services. Needed gain of RF
amplifier for supporting picocell with up to 100 m coverageis also discussed.

2 Optoelectronic Transceiver Characteristics

Optodectronics play vita role in RoF system. It convert dectrical signd to
photonic signal and vice versa. Commonly, laser diode is used to convey data
carying RF signa into modulated optica signal, aso known as optica
modulator. The reverse process is handled by photodiode, as optica
demodulator. Newly developed optoelectronics that function as both optical
modulator and demodulator are commercial dectroabsorption modulator
(EAM), dectroabsorption transceiver (EAT), optimized EAT, and asymmetric
Fabry-Perot modulator (AFPM).
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21  Electroabsorption Modulator

Electroabsorption modulator (EAM) used to externaly modulate light emitted
by laser diode. However, it aso can function as photodetector. Commercial
EAM has been measured to determine its modulator and photodetector
characteristics [8]. Because it is formerly intended for modulator, only one RF
connector available at its package. Therefore, uplink and downlink signal must
be separated by dectrical circuit outside EAM. Package and picture of EAM is
described in Figure 2.

Figure2 Package diagram of EAM module [9].

GANDALF has been measured commercial EAM produced by OKI (part
number: OM5642W-30G) [8]. Lowest transmission loss was 5.5 dB a 0V.
Polarization dispersion loss (PLD) was measured to be 0.5 dB. Measurement
was conducted at biased voltage of 1.2 V. Bandwidth of this modulator was 34
GHz. Using wavelength of 1550 nm and photodiode of 0.85A/W responsivity
(most commercid photodiode’'s responsivity is 0.7 A/W), it was found that
modulator did not show saturation, and RF gain was about -53 dB when RF
input power was 0 dBm. Photodetection measurement with 100% modulation
and 0 dBm optical signa found that RF gain was -55 dB.

2.2  Electroabsorption Transcever

Speciadly designed dectroabsorption transceiver (EAT) has two RF ports, one
port for uplink and the other port for downlink. Microwave Photonics, Inc. has
been fabricated the device as depicted in Figure 3 [10]. Optical insertion |oss
was 5 dB, and when reverse biased a 5 V gave extinction ratio of 30 dB and
responsivity of 0.9 A/W. Modulator and photodetector bandwidth a reversed
bias of 2V was more than 10 GHz. RF loss for downlink path at optica input
power of 5 dBm was 35 dB, and slope of -2 dB per dBm optica input. The
downlink RF loss curve was obtained with high RF input power (15— 20 dBm),
frequency 2.5 GHz, and reversed bias was 2 V. RF input power of 17 dBm
produced modulation depth of 70%. Uplink needs low RF input power (< O
dBm). With RF input power of 0 dBm and reversed bias voltage of 0 V, RF
insertion loss (IL) was 39 dB at optical input power of 5dBm. Figure 4 shows
uplink loss slope-1.6 dB per dBm opticd input power [5].
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Figure 3 Prototype transceiver (EAT) unit developed by BTexact [10].
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Figure4 Downlink and uplink loss as function of optical input power [5].

23  Optimized EAT

EAT is still possible to be optimized to obtain certain goal. Hur et al.[6]
conducted a simulation to balance uplink and downlink gain by setting EAT's
chip length to 400 um. At reverse bias voltage of 0 V, responsivity was 0.8
A/W, and transmission was 0.1. Using RF input signal with Gaussian shape and
peak power of -7 dBm, and assuming photodetector with responsivity 1 A/W as
receiver, downlink and uplink loss could be calculated as depicted in Figure 5.
Typical photodetector has responsivity of 0.7 A/W, so the uplink loss must be
added by 3 dB to be used in typical application.
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Figure5 Cdculated downlink and uplink loss vs. input optical power of the
EAT for different chip length [6].
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24  Asymmetric Fabry-Perot Modulator (AFPM)

An AFPM was fabricated using InGaAsP/InGaAsP multiple-quantum-well
(MQW) and incorporating air-bridge to this modulator. At reverse bias of 3.4V,
responsivity was 0.28 A/W and modulation slope was 3.2 %/V. Opticd
insertion loss was 5 dB a 0 V bias. The new AFPM, as depicted in Figure 6,
had RF modulation bandwidth of more than 15 GHz, and optica bandwidth of
more than 17 nm [7]. With RF input power of 2 dBm, optical inddent power of
0 dBm, and using commercial photodiode with responsivity of 0.7 A/W, uplink
loss was 58 dB. Downlink loss of 49 dB was obtained when AFPM functioned
as photodetector of optical signal from Mach-Zender Modulator (MZM) with
10 dBm RF input power and 10 dBm of optical input power [8].

Figure 6 Packaged AFPM module[7].

3 Coverage Range Comparison

Indoor radio propagation is affected by layout in building, especidly if the
building is made from various materials. The transmitted signal reach the
receiver via many pahs, due to reflection, scattering, refraction, and diffraction
by objects such as walls, floors, doors, and windows inside building. Path loss
for indoor propagation must include wall attenuation factor (WAF) and floor
atenuation factor (FAF), which are affected by the number of walls or floor
traversed by the signal, and material of the walls and floor [11]. However, for
generdity and simplicity, this paper uses path loss modd that average the wall
factor, and assumes propagation at one floor. Power delay profile also must be
considered, sinceit is rdated with bandwi dth limitation of channd.

Motley and Keenan [12] reported the results of propagation experiments inside
a multi-storey office block a& 900 MHz and 1700 MHz. Power-distance law can
be expressed as

P = P+kF =S+10nlogd (1)

where P is total propagation loss (dB), P is pah loss after reduced by
attenuation from floors traversed by signal, Sis path loss at 1m from transmitter
(dB), n is power law index, d is distance between transmitter and receiver (m),
F represents the attenuation provided by each floor of the building, and k is the
number of floor traversed.
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If propagation loss is predicted for the same floor, then P = P'. At 900 MHz,
measured value for F = 10 dB, S= 16 dB, and n = 4. At higher frequency of
1700 MHz, F = 16 dB, S=21dB, and n = 3.5. Measured Sat 1700 MHz is5dB
higher than & 900 MHz, and it is d ose to 20.log(1700/900) = 5.5 dB. Extending
this fact, we can use Motley-Keenan formula for frequency above 1700MHz
using the same F and n at 1700MHz, and adding S with 20.1og(f/1700) where f
is working frequency in MHz.

As WLAN commonly works on 20 MHz channel and WCDMA uses 5 MHz
bandwidth, wideband channel model must be considered. According to
measurement by Saleh and Valenzuela[13], the measured median val ue for rms
delay spread (¢, ) within rooms is 25 ns and maximum value of 50 ns. Poon

and Ho [14] did measurement for office and townhouse indoor channel and
found that rms delay spread is between 10 to 30 ns. Using the maximum value,
coherence bandwidth (B, =1/t _)is 20 MHz. Therefore, indoor office and

townhouse channel is flat as long as the wireless communicati on use bandwidth
no more than 20 MHz, as the case with our two examples ( 1 Mbps WLAN at
2.4 GHz and 2048 kbps WCDMA a 2 GHz).

Schematic diagrams of passive picocel using EAT and AFPM are depicted in
Figure 7 and 8, respectively. WLAN access point is connected to CS, and
WLAN card is atached to laptop (as mobile station, MS). In order to be
comparable with previous report [15], WLAN access point and WLAN card are
assumed to have 17 dBm RF output power and sensitivity of -82 dBm (1 Mbps),
antenna gain for RAU is 8 dBi and, and MS's antenna has gain of 2 dBi.
Working at 2.4 GHz, S (path loss at distance of 1 m) for WLAN is 24 dB and
propagation loss for 100 mis 94 dB.
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Figure 7 Passive picocell using AFPM [16].
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Figure 8 Passive picocell using EAT [16].

Table 1 shows coverage rage comparison of “passive” RAU design using OV
biased EAT (EAT 0 V), -2 V biased EAT (EAT -2 V), OKIl's EAM (OKIl),
optimized passive EAT (Optim-EAT), AFPM, and commercial laser diode (LD)
and photodiode (PD) (LD/PD). Typical vaue for link loss of LD/PD is 39 dB
[4]. Note that EAT 0V, EAT -2 V, Optim-EAT, and AFPM have asymmetric
range for uplink and downlink. In this case coverage is determined by the
shorter range a downlink or uplink. Therefore, EAT at OV is predicted to
provide coverage of 15 m, EAT biased at -2 V covers 12 m, OKI EAM only
sarves 7 m, PD/LD rangeis 21 m. Optimized passive EAT gives furthest range,
i.e. 40 m; and AFPM provides shortest coverage, 6 m. There are wasteful ranges
caused by asymmetric link budget. Hence, design of optoel ectronics transcei ver
need to balance link loss for uplink and downlink. This requirement may not be
needed in “active’ picocdl, as discussed in subsequent section.

Tablel WLAN Coverage Comparison.
EAT EAT OKI Optim- AFPM LD/

ov -2V EAT PD
Uplink  Loss(dB) 39 47 55 29 58 39
Power Margin(dB) 70 62 54 80 51 70
Range (m) 21 12 7 40 6 21
Downlink  Loss (dB) 4 36 55 28 49 39
Power Margin(dB) 65 73 54 81 60 70
Range (m) 15 25 7 43 11 21

WCDMA transce vers at CS and MS are assumed to have the same values with
WLAN, except sensitivity which is -103 dBm (2048 kbps) [10]. Propagation
lossat 1 mfor 2 GHz is 22 dB, and at 100 mis 92 dB. Table 2 tabulates the
predicted coverage range. As with WLAN, AFPM gives the shortest range (26
m) and optimized passive EAT provides the furthest range (176 m).
Asymmetric servicerangeis aso an issue here
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Table2 WCDMA Coverage Comparison.
EAT EAT OKI Optim- AFPM LD

oV -2V EAT /PD

Uplink  Loss(dB) 39 47 55 29 58 39
Power Margin(dB) 91 83 75 101 72 9

Range (m) 91 54 32 176 26 91

Downlink  Loss (dB) 44 36 55 28 49 39
Power Margin(dB) 86 94 75 102 81 o1

Range (m) 66 111 32 188 47 9l

4 RF Amplifier Gain for Picocell

Picocell has coverage range up to 100 m. To achieve this distance, the RAU
needs to operate in active mode, by inseting RF amplifier between
optoelectronic photodetector and antenna for downlink path, and inserting LNA
between antenna and optoelectronic modulator. Table 1 and 2 show that
WCDMA has longer distance than WLAN, because its sendtivity is much
better than WLAN, and its path loss is smaller than WLAN. WLAN rece ver
sensitivity becomes range limiter; therefore, needed gain is calculated using
WLAN, as shownin Table 3.

Table3 Needed RF Amplifier Gain for 100m Picocell.
EAT EAT OKIl Optim- AFPM LD/

oV -2V EAT PD

Uplink  Pa(dBm) 67 67 67 67 67 67
Optical Link Loss(dB) 39 47 55 29 58 39

Ps (dBm) 43 35 27 53 24 43

Gina (dB) 24 32 40 14 43 24

Downlink Pcs (dBm) 17 17 17 17 17 17
Optical Link Loss(dB) 44 36 55 28 49 39

P (dBm) 27 19 38 -1 32 2

Pe (dBm) 10 10 10 10 10 10

Gpa (dB) 29 21 40 13 ¥ 2

RF amplifier calculation is based on block diagram in Figure 9. P, is RF power
a RAU antenna port (point “A”), received from mobile station (MS). To
produce uplink signal power at CS to sensitivity level, P, isamplified by LNA
(G,.) to B, leve. B, ispower leve at point “B,” i.e. output of LNA and input
of opticd modulator. In downlink path, P.. is output power from WLAN

cs

router. After attenuated by Optical Link Loss, the signd level becomes P, at
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photodetector output. Ideal EIRP to cover 100 m range is P., and to provide
this, the signd power level a antennas input port should be
P, (P.,, =P.- 8dBi). Needed gain of RFPA to amplify P, to P,, is G,,. To
ensure linearity, both RFPA and LNA are operated at 6 dB backoff from 1 dB
compression point (Pygg).

UPLINK
Optical Receiver Optical Modulator
WLAN (‘) ‘B WLAN
Access Point -E 0SS Al ] Network Card
Sensitivity
Pes Sensitivity

17 0Bm e

Network Card

WLAN
Access Point

Optical Modulator Optical Receiver ~ RF Power Amplifier
DOWNLINK

Figure 9 Block diagram for ca culating RF amplifier and LNA gain.

Requirement for downlink RF amplifier gain for various optical transceivers
and distances is described in Figure 10. Pygs required for 100 m is 8 dBm,
allowing low power and low cost amplifier to be used. Largest gain is required
by OKI that need 40 dB for 100 m range. For uplink, LNA gain requirement is
shown in Figure 11. Pygg Of the LNA is-18 dBm or less. Gain with zero value
means that LNA or RFPA are not needed by the transceiver at that distance.
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Figure 10 Downlink RF power amplifier gain requirement for WLAN.
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Figure1l Uplink LNA gain requirement for WLAN.

5 Cost Comparison

Main-component cost of CS and RAU is shown in Table 4 [17]. CS of EAT-
RAU consists of wideband directly modulated laser (DML) and wideband
photodiode (WB-PD). EAT, OKI-EAM, and optimized EAT are assumed to
have the same price. All CS have the same design, except CS for AFPM that
use optical circulator to separate downlink and uplink optica signa from single
optical fiber. Usudly, EAT and LD/PD use two optical fibers, but single fiber
can also be used if EAT is modified to reflective mode and LD/PD use different
wave ength for downlink and uplink.

Mgjor differentiator of cost is optoelectronics transceiver at RAU. EAT is very
expensive dueto packaging cost. EAT devices use very high confinement active
layer to improve device efficiency, resulting in complex coupling procedure and
opticstype used. The cost is doubled since EAT has two optical port. To reduce
the cost, the device must use waveguide modulator with one port operating in
reflective mode [17]. AFPM has got this advantage, so that its cost is the
cheapest.

To obtain needed coverage, RF amplifier must be inserted between
optoelectronic transceiver and antenna a& RAU. RF amplifiers models are
products of Mini-Circuits [18]. The RF amplifiers considered in this paper are
coaxia type that indudes complete circuit (RFIC, passive drcuit, PCB,
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connectors, and enclosure). The RFIC done does not represent total price,
because it is often cheaper than inductors, connectors, and enclosure.

Table4 Component Cost of CS and RAU (USD).
EAT, Optim EAT, OKI EAM

Ccs RAU
DML 911.25 EAT 3,869.10
WB-PD 1,215.00 Antenna 13.50
Subtotal 2,126.25 Subtotal 3,882.60
TOTAL 6,008.85
AFPM
Ccs RAU
DML 911.25 AFPM 236.52
WB-PD 1,215.00 Antenna 13.50
Circulator 346.28
Subtotal 2,472.53 Subtotal 250.02
TOTAL 2,722.55
LD/PD
Ccs RAU
DML 911.25 DML 911.25
WB-PD 1,215.00 WB-PD 1,215.00
Antenna 13.50
Subtotal 2,126.25 Subtotal 2,139.75
TOTAL 4,266.00

Among Mini-Circuits amplifier products that cover WCDMA and WLAN
frequency (2.4 GHz) and fulfill Pigs requirement, coaxial — low noise type is
chosen as candidate for LNA and coaxial — wideband is chosen for RFPA.
Scatter plot of WLAN LNA and RFPA prices versus gainis described in Figure
12 and 13. LNAs with the best gain-price ratio are ZX60-33LN-S+ (13.11 dB,
USD 79.95), ZRL-2400LN (24.76 dB, USD 139.95), ZQL-2700MLNW (30.63
dB, USD 281.95), and ZHL-1724HLN (38.68 dB, USD 399.5). The LNAs are
located at the bottom of gain-price scatter plot in Figure 12. RFPA with the best
gain-price ratio are ZX60-3018G-S+ (19.66 dB, 40.95), ZX60-2522M-S+
(21.79 dB, USD 50.95), and ZX60-2534M-S+ (35.96 dB, USD 56.95). The
RFPAs arelocated at the bottom of gain-pri ce scatter plot in Figure 13.
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LNA Price vs Gain (WLAN 2.4 GHz)
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Figure 12 LNA pricesvs. gain for WLAN 2.4 GHz.
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Figure 13 RF power amplifier prices vs. gain for WLAN 2.4 GHz.

As shown in Figure 12 and 13, LNA and RFPA are not available with gainin 1
dB increment. Otherwise, the gain value is discrete and amost random.
Therefore, some required gain values are covered by LNA or RFPA which have
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the nearedt, higher gain. As example, EAT OV a 20 m downlink channel need 5
dB RFPA gain and covered by ZX60-3018G-S+ which has gain value of 19.66
dB. ZX60-33LN-S+ (13.11 dB) is used by Optimized EAT for uplink distance
of 50-90 m.

RF amplifier costs versus distance are shown in Figure 14 and 15. It is noted
here that gain value above 35.96 dB to 40 dB is covered by ZX60-3018G-S+
cascaded with ZX60-2534M-S+ as the case in downlink side of RAU using
OKI. LNA with type of ZQL-2700MLNW is cascaded with ZX60-33LN-S+ to
provide required gain for AFPM RAU for uplink distance of 80 — 100 m and
OKI RAU at 100 m. Note that the price of the cascaded LNA is lower than
ZHL-1724HLN (38.68 dB). Nevertheess, the cascaded LNA is not taking into
account the price of matching circuit needed and the gain degradati on caused by
it.

LKA Price vs Distance (WLAN 2.4 GHz)
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Figure 14 LNA price vs. distance for uplink channel of WLAN 2.4 GHz.

The combination of RFPA and LNA prices for each type of RAU for varied
distances is described in Figure 16. Optimized EAT requires the lowest totd
amplifier cost, followed by LD/PD, EAT 0V, EAT -2V, AFPM, and OKI EAM.
First factor to explain RF amplifier cost is link loss. OKI and AFPM need more
expensive RF amplifiers since their link losses are high hence require higher
gain RF amplifier. Second factor is commonly, LNA price is more expensive
than RFPA which has the same gain and Pigs. EAT -2V and AFPM have more
link losses in uplink (around 10 dB), so that their LNA prices are much more
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expensive. Whereas, the RFPA prices of EAT -2V and AFPM are comparable
with Optim-EAT, LD/PD, and EAT QV.

WLAN RF Power Amplifier Price vs Distance
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Figure 15 RF power amplifier price vs. service distance for downlink channel
of WLAN 2.4 GHz.
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Figure 16 Tota RF amplifier cost at each type of RAU vs. distance.
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Total cost consists of optical components and optoe ectronics used in CS and
RAU as listed in Table 4 added by total RF amplifier cost as mentioned in
Figure 16. The result is described in Figure 17 and Table 5. As the optical
components and optodectronics become major part of the total cost, RF
amplifier insertion to the RAU only increase the graph slightly. AFPM becomes
the lowest cost, whereas LD/PD is the second. EAT 0V, EAT -2V, OKI, and
Optimized EAT are forming clustered cost, since they are built from basically
the same device.

7.,000.00
e e B =y
BO00.00 s —— " ——
5,000.00
" " " " " ——EAT O
2 400000 =EAT-2Y
£ oKl
o U —_— —e— AFPM
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Figurel7 Total cost of CS and RAU (including optodectronics and RF
amplifier) vs. distance.

Table5 Tota cost (USD) of CS and RAU (including optoelectronics and RF
amplifier) vs. distance.

Distance 10 m 20m 30m 40m 50m 60 m 70m 80 m 90 m 100 m

EAT OV 6,008.85 6,049.80 6,129.75 6,129.75 6,129.75 6,199.75 6,205.75 6,205.75 6,205.75 6,205.75
EAT -2V 6,008.85 6,088.80 6,189.75 6,189.75 6,189.75 6,189.75 6,331.75 6,331.75 6,331.75 6,459.30
OKI 6,129.75 6,189.75 6,205.75 6,347.75 6,347.75 6,465.30 6,465.30 6,506.25 6,506.25 6,468.65
Optim-
EAT

AFPM  2,802.50 2,903.45 3,045.45 3,055.45 3,179.00 3,179.00 3,179.00 3,141.40 3,141.40 3,141.40

LD/PD  4,266.00 4,266.00 4,386.90 4,386.90 4,386.90 4,446.90 4,446.90 4,456.90 4,462.90 4,462.90

6,008.85 6,008.85 6,008.85 6,008.85 6,129.75 6,129.75 6,129.75 6,129.75 6,129.75 6,189.75
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6 Discussion

Optica components and optoelectronics become mgor portion of RoF cost,
although the systems use optoelectronics transcever. Cost portion from
additional RF amplifier is marginal because picocdls require low power and
therefore lower cost RF amplifier. As comparison, high power amplifier’s price
can reach USD 3,000 [15]. Hence, cost reduction of optoel ectronics transce ver
while maintai ning good optical link lossis still anissuein picocell RoF system.

AFPM is the cheapest transceiver, and although it needs optical circulator at CS
and reguire more expensive RF amplifier, the total cost is till the cheapest.
Cogt reduction offered by AFPM is dignificant, and can overcome additional
cost of higher gain RF amplifier. But, to the authors' knowledge, there is no
report of AFPM operated at O V bias to form truly passive picocdl. However,
cost reduction and simplification offered by AFPM can overcome power supply
cost, since power line can be found easily in every building.

EAT isthe most expensive, but still very attractive due to its ability to serve up
to 40 m coverage range a OV bias to create truly passive picocell. In voltage
biased RAU, EAT aswel as AFPM offer low power consumption, therefore its
operationd cost can be comparable with LD/PD which consume high power [4].

It is important to balance optodectronics transceiver’'s link loss in passive
picocell. However, active picocels use RF amplifier that has asymmetric cost in
uplink and downlink. LNA used in uplink is more expensive than RFPA used in
downlink. Therefore, uplink loss should be lower than downlink loss. Design of
optoel ectronics transceiver in active picocell should be optimized to overcome
this problem. One indication of success of this approach is EAT OV which has
uplink lossthat is 5 dB lower than its downlink loss. EAT OV total RF amplifier
cost isjust USD 196.9, much lower than EAT -2V which require USD 450.45
for its RFPA and LNA to serve 100 m coverage. EAT -2V has uplink |oss that
is 11 dB higher than its downlink loss.

Optodlectronics transceivers operated in passive mode may be provide
acceptable service range for certain application. Due to RF amplifier cost
marginality compared with optoel ectronics prices, operation in active mode is
preferable to maximize coverage range in picocell.

7 Conclusion and Further Works

Coverage range and cost comparison of RoF system using EAT, AFPM, and
LD/PD has been presented. The calculation is only based on power budget.
Actually, noise, intermodulation, and other kind of nonlinearities should be
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taken into account (noise budget). AFPM potentially provides the cheapest
solution if its photodetection efficiency can be increased. Further cost reduction
to AFPM solution can be done by employing low cost laser emitter (VCSEL)
and cheaper fiber such as multimode fiber (MMF). Nevertheess, AFPM has to
be redesigned to work at 850 nm, or the VCSEL must be designed for 1.3 and
1.5 um application.
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