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Abstract. Distributed Hash Tables (DHTSs) with O(1) lookup performance strive
to minimize the maintenance traffic required for disseminating membership
changes information (events). These events dissemination allows each node in
the peer-to-peer network maintains accurate routing tables with complete
membership information. We present UnoHop, anovel DHT protocol with O(1)
lookup performance. The protocol uses an efficient mechanism to distribute
events through a dissemination tree that is constructed dynamically rooted at the
node that detects the events. Our protocol produces symmetric bandwidth usage
at al nodes whil e decreasing the events propagation delay.
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1 Introduction

DHT designers employ two approaches when choosing the size of the routing
table maintained by each node. In the first approach, each node maintains
minimal information about its neighbors in the routing table while preserving
the lookup correctness. Lookup for a key requires contacting some nodes along
the path to the node responsible for the key. This multi-hop lookup increases the
overall lookup latency.

The reason behind this approach is to minimize the communication cost
required by each node to maintain accurate routing state entries in the rapid
occurrences of membership changes. Some DHT protocols that use this
approach are Chord [8], Tapestry [9], Pastry [13], and Kademlia [6]. All these
DHTs maintain O(log N) routing states and are able to resolve a lookup via
O(log N) messages to other nodes.

In the second approach, the designers argue that when the membership changes
(churn) rate is not too high it is more efficent for each node to maintain
complete membership information [14]. The benefit that comes with this design
choice is that each lookup for a key can be resolved by contacting only one
node. This one-hop lookup can be achieved by direct communication with the
node thet is responsible for the key. When compared with DHTSs that use the
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first approach, DHTs with O(1) lookup performance consume more
communi cation bandwidth for maintaining the accurate routing entries [5].

When nodes join and |eave the network rapidly, the routing entries in other
nodes become inaccurate. To maintain high rate of successful one-hop lookup,
each node requires a mechanism to detect events and propagate events to al
other nodes in the network. The DHTS that use this approach are OneHop [4],
Kdips[11], GRBM [15], and the protocol proposed by Leong et . [12].

Application designers must consider these two approaches and the reasoning
behind the design choice before choosing one DHT protocol as the overlay
network layer for their particular application. The important considerations that
one must take into account are how big the network will grow (total number of
nodes) and the dynamic behavior of the nodes as defined by the churn rate in
the system. When the churn rateislow thenit is preferable to use DHT protocol
with compl ete membership information [14].

The main problem that has to be addressed by DHTs with O(1) lookup
performance is how to distribute membership events efficiently. When a node
detects that an event has occurred, it must notify other segments of the network
about the event, thus the routing table entries in al nodes can be updated and
corrected according to the network latest condition.

In this paper, we propose one-hop DHT protocol that uses the dynamic
dissemination tree that is constructed rooted at the node that detects the event.
Each node a each level of the tree represents a segment of the network and has
the responsibility to distribute the event to al nodes in its segment. When a
node want to forward data to the next hop, the protocol employs Proximity
Route Selection [3] to choose the node with lowest communi cation latency from
the node.

We compare our protocol i mplementation with OneHop using p2psim simulator
[5]. This is simply because OneHop is already integrated with p2psim. The
simulation results show the improvement over OneHop's [4] lookup
performance. Compared to OneHop, UnoHop has faster distribution delay
epecidly for join events. OneHop bandwidth usage is asymmetric because
dlice leaders and unit leaders consume more bandwidth (5-10 times) than
ordinary nodes. We show that by distributing the responsibility to propagate
events to the nodes that detect the event will result in symmetric bandwidth
consumption.

The rest of this paper is structured as follows. Section 2 describes some
previous work related to one-hop Distributed Hash Table (DHT). Section 3
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presents the UnoHop protocol. Section 4 describes the environmenta setup for
the ssimulation, and in Section 5 we show and discuss the simulation results.
Finally, we concludein Section 6.

2 Related Work

Gupta et a. [4] presented a novel agorithm that allows each node maintains
accurate routing tables with compl ete membership information. They employ a
three-level hierarchical dissemination system that quickly enough propagates
membership changes information. The ring identifier is divided into k equa
contiguous intervals call ed slices. Each dlice has a fix dlice leader, which is the
successor of the center of the dlice’s interval. Each diceis divided into u equal
contiguos intervas called units. Each unit has a fix unit leader, which is the
successor of the center of the unit's interval. Each node runs stabilization
procedure by sending ping messages prediodicdly to its predecessor and
successor nodes at a predefined interval. Through this procedure each node can
detects membership changes around its predecessor and successor nodes. When
a node detects an event, it sends the event to its dlice leader. The dice leader
aggregates events from its dlice for atime interval. Next, the dlice leader sends
the aggregated events to dl other dice leaders. The received events are
aggregated again for a time interval. Next, the slice leader dispatches the
aggregated events to al its unit leaders. The unit leaders piggyback the events
on the ping messages to their predecessor and successor nodes. The events are
propagated to al nodes in a unit in one direction and stop when reaching the
unit boundary.

Leong e d. [12] presented token-passing mechanism for distributing
membership changes. The events detected by a node are distributed by
constructing a token that contains the events. When a node receives a token, it
can decide to send the token to its predecessor or generate g secondary tokens.
The decision depends on the policy adopted and the available resources. If all
nodes decide to generate g secondary tokens then each token will require loggn
hop to be succesfully propagated to all n nodes in the network. The tokens can
be merged or destroyed under several conditions.

Wang et al. [15] presented Grouped Random Broadcast M essages protocol for
mai ntaining global lookup table. Events are merged into notification messagein
the dispatcher node. Then notification messages are sent to al nodes using their
event dissemination algorithm.
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3 The UnoHop Protocol

UnoHop computes node's identifier by hashing its IP address using
cryptographic hash function SHA-1 [1] into 128-bit length integer value. Datais
represented with a key whose identifier is caculated using the same hash
function. Both key identifiers and node identifiers are ordered on the same
identifier space within a drcle of modulo 2'?® and creating ring-like overlay
network topology. A key k is assigned to its successor (Figure 1), which is the
first node with identifier value equas to or follows k in the identifier circle.
Each node maintains information about its successor and predecessor.

—— Successor pointer

----- Predecessor pointer
Figure1l Identifier ringwith m=6 and 12 nodes.

If node n wants to join the system, first it must contact the well-known node w
that is aready in the system and copies al the routing states from w. From the
received membership information, node n knows its predecessor and successor
and informing them about its presence. This procedure is similar to the Chord
protocal [8].

Each node runs stabilization procedure by sending ping message periodically to
its predecessor and successor a a predefined time interva (tgap). Using this
procedure, a node can know about the membership changes around its
predecessor and successor nodes. When newly joined node n sends ping
message to its successor s, node s checks its routing table whether n is its
correct predecessor. If sfindsthat nis not its correct predecessor, than it adds n
toitsrouting table. If a node does not receive any reply from its predecessor or
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successor, then it knows that its predecessor or successor has leaved the
network.

The membership changes must be propagated to al nodesin all segments of the
ring to dlow each node maintains correct and complete membership
information in its routing table. UnoHop uses a dynamic dissemination
hierarchy thet is rooted at the node that detects the event. UnoHop divides the
identifier ring into k equal and contiguous segments called slices. Each diceis
further divided into u equal contiguous segments called units. Each sliceis lead
by a node that acts as the dlice leader and each unit is led by a node that acts as
the unit leader. UnoHop does not choose a fix dlice leaders and unit leaders.
Instead, it chooses them dynamically at the occurrences of events.

A node n that detects membership changes notifies al the dice leaders and
sends the events notification to them. Node n seects the slice leader s from all
nodes in dlice i that is the closest from n. Next, dice leader s dispatches the
eventsto all unit leadersin its slice. Sliceleader 5 sdects the unit leader u; from
all nodesin unit j that is the closest from s. Finally, when unit leader u; runsits
stabilization procedure, it piggybacks the events on the ping messages to the
predecessor and successor. Each node that runs the stabilization procedure
forwards the events to its predecessor or successor in one direction. If a node
receives events from its successor, it piggybacks the events on the ping message
to its predecessor. Otherwise, it piggybacks the events on the ping message to
its successor.

The mechanism to distribute events is depicted in Figure 2. The network in
Figure 2 contains 10 nodes. The identifier ring is divided into 3 dices. Each
dliceis further divided into 3 units. When a node n detects an event (node f has
leaved the network) by running the stabilization procedure (step 1), it notifies
all other segments about the event induding its own segment. To distribute the
event to its own dlice, it sdects a node that acts as the dice leader that will
further distribute the event inits slice. The dice leader is sdected as the closest
nodein a slice from node n. After n found a node that acts as its dice leader, it
sends the event to that dice leader. To propageate the event to other dlices, node
n chooses the slice leader of a slice as the closest node in the slice from n and
sends the event to all selected slice leaders (step 2).

Upon receiving an event notification, a dlice leader dispatches the event to its
entire unit leaders. To do this, a slice leader sdects a unit leader as the d osest
nodein a unit from it and sends the event to all selected unit leaders (step 3). A
unit leader aggregates al events it receives. When a unit leader runs the
stabilization procedure, it piggybacks the events on the ping message to its
predecessor and successor (step 4). Finadly, the events then piggyback one ping



http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

UnoHop: Efficient Distributed Hash Table with O(1) Performance 69

message from one node to other nodes in one direction until it reaches the unit
border. If a node receives the events from its predecessor then it will piggyback
the events on the ping message to the successor. Otherwise, it piggybacks the
events on the ping message to the predecessor. This mechanism avoids
duplication in communication traffic.

@ Unitleader
O Ordinary node

Figure2 Hierarchica eventsdistribution.

31 Characterizing Closeness

Our dgorithm depends on the definition of closeness between nodes. The
simple approach for characterizing closeness between nodes is the
communication latency. A dlice leader is sdected as the node in a slice with the
lowest latency from the node that detects an event. A unit leader is selected as
the node in the unit with the lowest latency from its dice leader. We will
describe severa criteriathat we used to characterize cl oseness between nodes.

Recent research uses the probability p of a neighbor being dive for
characterizing the freshness of entries in the routing table [10]. In real systems,
the distribution of node lifetimes follows a heavy-tailed Pareto distribution,
where nodes that have been alive for along time are more likely to stay aive for
an even longer time. The probability of anode dying beforetimetis

.a
Pr(lifetime <t) =1- 8‘39 )
et g
To simplify our analysis we set the scale parameter o with 1 (rounded from
0.83) and the shape parameter  with 1560 sec. Those values come from the

results described by Saroiu et al. when studying the Gnutella network [7]. In
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heavy-tailed Pareto distribution, a node lifetime distribution is estimated using
both how long the node has been in the network Dt and the time duration the

node entry exists in the routing table Dt

entry *
neighbor i being alive as seen by node n [10]:

The conditional probability p; of a

p = (I Pri\lifetime > (Dta“\,e entry)|| ifetime > IJ:al|ve)
_ Pr(“fetlrne > (Dtalive + Dtentry))
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We use the probability of a node being alive as one of the criteria for
characterizing closeness. This leads to the selection of nodes that have the large
[, thus decreasi ng the probability of forwarding events to dead nodes.

When node n wants to forward the events to a slice leader s, of sice y, node n
sdectsanodei from all nodesin the slicey with the largest value of wi:

w = B .
delay(n,i)

where p; is the probability of node i being dive and delay(n, i) is the
communication latency from node n to nodei.

©)

When dlice leader s, wants to dispatch the events to a unit leader I, of unit z,
node s, seects anodej from al nodes in the unit z with the largest value of v;:

V. = P,
" od(m,, j)delay(s,, j)

(4)
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where p; is the probability of node j being alive, delay(s,,j) is the latency from
slice leader s, to node j, and d(m,,j) is the identifier distance from node j to the
center of the unit z (my).

procedure find_dice leader(y)
Ngart = Y * dlice size
Neng = (Y + 1) * dlice size
N = successor (Nggart)
w=20
whilen = ng and N > Nggt and N < Ngyg
P = taive/(taive + tentry)
w = p; /latency(me, n)
ifw>=w
W= W
dlice leader = n
n= next(n)
return slice |leader

Figure3 Psudo-code for finding adlice leader in adice.

procedure find_unit_leader(y, 2)
Ngart = Y * dlice_size+ z* unit_size
Neng = Y * dlice Size + (z+ 1) * unit_sze
m, = successor(y * dice size+ z* unit_size+ unit_size/2)
N = SUCCESSOr (Netart)
w=20
whilen = ngg and N > Nggt and N < Ngyg
Pi = taive/(taive * tsince)

d=|m-n|
wi =/ (d* latency(me, n))
ifw>=w
W= W,
unit_leader = n
n= next(n)

return unit_leader

Figure4 Psudo-code for finding aunit leader in a unit.

Equation 3 shows that the agorithm prefers a node that is closest to the center
of a unit as the unit leader. This is because the propagation in a unit starts from
the unit leader and is directed to 2 directions, its predecessor and successor. If a
unit leader is doseto the center of a unit, then the communication cost required
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for propagating the events can be decreased. Figure 3 and Figure 4 show the
pseudo-code for finding the slice leader and the unit leader respectively.

4 Experimental Setup

We use p2psim [5] packet levd simulator to simulate both UnoHop and
OneHop agorithms. For fair comparison, we use 10 slices and 5 units for both
UnoHop and OneHop. The stabilization interval for both algorithms are chosen
as 1 second. We use some network topologies for the simulation. First, our
simulation uses network that cong sts of 1024 nodes. The latency matrix of 1024
nodes are collected using King technique that uses recursive DNS queries to
approximate the | atency between nodes [3].

Second, our simulation uses network that consists of 400, 600, and 3000 nodes
where each node has the Euclidean coordinate chosen randomly. The latency
between nodes are calculated as the Euclidean distance between nodes. Both
network topologies have round trip delay with mean 178 ms. We aso generate
lookup events for each node to lookup random key a a randomly chosen
interval. The lookup interval is calculated by following exponentid distribution
with mean 1 lookup per second.

5 Simulation Results

To show how efficient the events distribution mechanism used by both
algorithms when some nodes crash, we generate crash events at 200 seconds
from the start of the simulation, triggering 40% of the nodes in the network that
are chosen randomly to leave the network (crashed). One node crashed at atime
every 1 ms. For the nework topology consisting of 1024 nodes, all 40%
randomly chosen nodes completely crashed after 410 ms. After the nodes crash,
al lookup to those nodes will fail, increasing failure rate of the system and
decreasing lookup performance.
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Figure5 Lookup failure rate comparisons after crashing 40% nodes.

Figure 5 shows the failure rate of both OneHop and UnoHop at interva 180
second to 450 second. The graphic shows that our algorithm decreases the
lookup failure rate faster then OneHop. For example a time 250 second (50
seconds after the crashes) the failure rate of OneHop still in 0.292 (about 30%
of one-hop lookup have been fail ed) while our agorithm aready reaches 0.038
(about 4% of one-hop lookup have been failed). OneHop reaches lookup failure
rate back to around 0% after 100 seconds after the crashes while UnoHop
reaches faster after 70 seconds.

Figure 6 shows the average of maintainance bandwidth usage per node for
OneHop and UnoHop. The figure shows the bandwidth usage of |eaders and
ordinary nodes with OneHop agorithm compared with nodes with UnoHop
algorithms. Because our agorithm does not choose the specific leaders then the
bandwi dth usage is symmetri c between nodes.

Figure 6 shows that after 10 seconds UnoHop's nodes bandwidth usage
increases rapidly. The reason is because our agorithm choose dynamic
dissemination tree rooted a the node that detects the events and directly
distributes the events to other nodes that represent slices, which further
distribute eventsto al nodes in their slices. Nodes that act as leadersin OneHop
algorithms consume 6-10 times bandwidth than ordinary nodes, this asymmetric
behavior is problematic because special nodes with higher bandwidth capacity
arerequired to become |eaders.
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Figure 6 Average bandwidth usage of OneHop's dice leaders and ordinary
nodes compared with UnoHop' s ordinary nodes after crashing 40% nodes.

To show how efficient each agorithm when distributing join events, we
generate rgoin events for previoudy crashed nodes. One node is rgoined at a
time with interval 1 ms at time around 1000 second. After rgoin, there are dso
some movement of the keys. Some keys are reassigned to the newly joined
nodes. Because all other nodes still have old entries in the routing table and do
not know about newly joined nodes, then a fraction of one-hop lookup failure
will increase again.
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Figure7 Lookup failure rate comparison after rejoining previously crashed 40%
of nodes.
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Figure 7 shows that UnoHop has significant performance improvement over
OneHop when there are lots of join events. Each time a node joins the network,
it dso notifies al the dlice leaders to distribute its join event. With this
mechanism, the one-hop lookup failure rate decreases and returns faster back to
almost 0%. Figure 8 shows the bandwidth usage of OneHop's slice leaders and
ordinary nodes compared with UnoHop's ordinary nodes. It shows that the
UnoHop's nodes consume much less bandwidth when distributing join events.
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Figure 8 Average bandwidth usage of OneHop's dice leaders and ordinary
nodes compared with UnoHop' s ordinary nodes after rgoin of 40% nodes.

Figure 9 shows the one-hop lookup failure rates of OneHop and UnoHop from
the simulation with different number of crashed nodes. In this simulation we
generate different crash events for 20%, 30%, 40%, and 50% nodes. The
increase of fraction of one-hop lookup failure rate is proportional with the
number of crashed nodes. The lookup performance of UnoHop (Figure 9b)
protocol shows slighter variation when compared with OneHop (Figure 9a) that
has more distribution delay when the crashes are increased.

Figure 10 shows the one-hop lookup failure rates from the simulation with
different number of nodes (network size). In this simulation we use networks
with 400, 600, 1024, and 3000 nodes. The simulation results show that UnoHop
(Figure 10b) has dlighter variation when the network size increases. This is
different from OneHop (Figure 10a) where the performance degrades
significantly as the network sizeis increased.
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Figure9 Comparison of different crashes.
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Figure 10 Comparison of different network sizes.
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6 Concluson

DHT dgorithms that use routing table with complete membership information
are suitable for applications that have low membership changes rate and with
moderate network size up to thousands nodes. Fixed di ssemination tree used by
OneHop will produce asymmetri ¢ bandwi dth usage among dice and unit leaders
when compared with ordinary nodes. The randomly chosen |eaders must have
the required bandwidth to distribute events. The communication bandwidth
consumed by |eaders will grow proportionally with the size of the network.

Our a gorithm empl oys proximity route selection to construct the dissemination
tree dynamically rooted a the node that detects the events. This technique
avoids the asymmetric bandwidth usage at dice leaders as the result of
OneHop's design for using fixed dissemination tree. The simulation results
show that as the networks grow bigger, UnoHop outperforms OneHop
significantly. The improvement is shown by faster events distribution delay of
our agorithm.
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