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Abstract. The am of this research is to investigate source coding, the
representation of information source output by finite R bits/'symbol. The
performance of optimum quantisers subject to an entropy constraint has been
studied. The definitive work in thisareais best summarised by Shannon’s source
coding theorem, that is, a source with entropy H can be encoded with arbitrarily
small error probability at any rate R (bits/source output) as long as R>H.
Conversdly, If R<H the error probability will be driven away from zero,
independent of the complexity of the encoder and the decoder employed. In this
context, the main objective of engineersis however to design the optimum code.
Unfortunately, the rate-distortion theorem does nat provide the recipe for such a
design. The theorem does, however, provide the theoretical limit so that we
know how close we are to the optimum. The full understanding of the theorem
also helps in setting the direction to achieve such an optimum. In this research,
we have investigated the performances of two practica scaar quantisers, i.e., a
Lloyd-Max quantiser and the uniformly defined one and aso a well-known
entropy coding scheme, i.e, Huffman coding against their theoreticaly
attainable optimum performance due to Shannon’s limit R. It has been shown
that our uniformly defined quantiser could demonstrate superior performance.
The performance improvements, in fact, are more noticeable at higher bit rates.

Keywords. Lloyd-Max Quantiser; Shannon Limit; Source Coding; Uniform Quantiser.

1 Introduction

Quantisation is the process of approximating the continuous range of signal
value by rdativdy small of integer values. The input of the quantiser is the
origina data and the output is within a finite number of levels. Good quantiser
is one which represents the origina signal with minimum loss or distortion.

The quantiser output may be encoded using variable-length or fixed-length code
words due to the fact that when we code a word, we do not have to have equal
number of bits. Similarly, when we quantise a signd, we do not have to have
equal length of quantise
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2 Fendy Santoso

In general, there are two types of quantisation, i.e, scalar and vector
guantisations. In scalar quantisation, each input symbol is treated separatdy in
relation to its output, whereas in vector quantisation the input symbols are
grouped together in vectors, and processed to give the output. The upside part of
this data grouping scheme is due to the optimality increases of the vector
guantiser, but at the cost of increased computational compl exity.

A quantiser also can be specified by its reproduction points. If theinput rangeis
divided into levels of equal spacing, then the quantiser is termed as a uniform
guantiser, and if not, it is termed as a non-uniform counterpart. A non uniform
one has smaller quantisation step for small input and vice versa.

A uniform quantiser can be easly specified by its lower bound and the step size.
Also, implementing a uniform quantiser is easier than a non-uniform quantiser.
Interested readers may refer to [1-4].
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Figurel Typicd Input Output Characteristic of a Scalar Quantiser.

Scalar quantisation is the process of mapping an input value, X, into a finite
number of output valuey, givenby Q: x® y; see Figure 1 for its input-output
characteristics. The difference between the actuad andog vaue and digitally
quantised vdue is called quantisation error. This is due to rounding or
truncation. In this paper, we shall investigate two practical scalar quantisers
(LIoyd-Max and the uniformly defined one) and compare their performances
against Shannon’slimit R. Theunit for Ris bits/sample.
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The organisation of this paper is as follows. Firstly, severa backgrounds related
to information theory and the organisations of this paper are introduced in
Section I.  In Section 1l, the performances of Lloyd-Max scdar quantisers
against its Shannon limit are depicted. Entropy coded of a uniform quantiser is
givenin Section Il1. In order to investigate how close we can get to the entropy
H using Huffman coding scheme, its performances are aso depicted in Section
IV. Discussion and conclusions are accordingly drawn in last section.

2 Source Coding Theorem

Source Coding Theorem, known as noisdess coding theorem, establishes the
limits to possible data compression. Thetheoremitsdf, proved by Shannon’sin
1948, only gave necessary and sufficient conditions for the existence of the
source code. It does not provide any agorithm for the design of codes that
achieve the performance predicted by this theorem.

In the case of a continuous source, the question is how we represent it with
finite R bits/symbol. In theory, it has infinite precision which implies infinite
entropy. In representing the source output in finite discrete form, we tacitly
accept a certain amount of distortion (or quantisation error). The question then
isif we represent the source output by finite R bits/symbol, how close can the
compressed version and the origina version be? Again, it was Shannon who

did the momentous work shown below. Let X be the source output, and )A( its
reproduction. In the continuous case, we often measure the distortion by the
square-error distortion defined by:

d(X,X) =(X- X)2. D

(Not always, Hamming distortion is equally popular in communication theory).

Regarding (1), since the source output is a random variable, d(X, )A() isdsoa
random variable, we therefore define the average distortion as the expected
vaue

D = E[d(X, X)].

Shannon’s Rate-Distortion Theorem states as follows: the minimum number of
bit/source output required to reproduce a memory-less source with distortion
less than or equal to D is called rate-distortion function, denoted by R(D) and
given by:
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min %
R(D)= . 5 1(X; X),
(D) p(X|x): Ed(X, X)£D ( )
wherel (X; )A() denotes the mutual information between X and X. p(X|x) is
the conditional probability function which the code designer must find in order
to achieve the optimum result.

The proof for the general theorem is too involved to be shown here. Shannonin
the same paper derived the rate-distortion function for Gaussian source with
variance ¢° as an example:

} 0 otherwise,

The distortion measure is square-error as defined above. Interested readers are
suggested to referred to [1-2] and [4-7] for details.

The main objective, in this context, is to design the optimum code. The full
understanding of the theorem aso hdps in setting the direction to achieve such
an optimum result. Interested readers may refer to [8-16] for a more
comprehensive expl anati on.

21  Optimum Scalar Quantisation— Lloyd-Max Quantiser

Given a positive definite Gaussian function as follows (see Figure 2):

exp(- x*/2s?).

1
p(X) = T2ps

08 S S NSRS U SN S S 4

Byl = %exp(—x’)

Figure2 Sampleof Gaussian Pulsewith s =1/+/2 .
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Accordingly, the decision leves X, and the reconstruction values Y, for the

Lloyd Max quantiser for L=2, 4, 8, 16, 32 and aso 64 levels can be cal culated
using the equations (2) and (3).

As aresult, the reconstruction val ue can be cdculated by equation (2).

X1

0P, (X)dx

X

Y, = k=1,2... L (2

X1

0P, (X)dx

The decision threshold is exactly halfway between its representative levels:

1
Xy :E(Yk +V¥1) k=2,3... L )

The positive definite function (pdf) of the weghted quantisation errors for each
decisioninterva |, isgiven by:

\Xk+1

S=Q (¢ ) pa(ax. Q)

— Boundary
""" Reconstruction

Figure 3 Optimum Quantiser (by LIoyd Algorithm).

The above equations must be solved numerically using iterative dgorithm.
Firstly, an arbitrary initial sets of X, and Y, were chosen. The optimum
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soluti on must satisfy equation (2). This process was iterated until the difference
between two successive approximations is below athreshold val ue.

The problem of designing a quantiser is to determine the optimum decision
X, and reconstruction levels 'y, for agiven p,(e) optimisation criterion given

by Figure 3. Thus, the average distortionisD =S 5 , Where:
2D CI:' i+t 2

sePA g" (x- v)?p (0, (5)
k=:

1 k

=gf2®s 2.
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Figure4 An Example of Quantized Waveform.

As depicted by Figure 4, the quantised output is the replicate of the input wave.
However, due to some errors known as quantisation errors, they may not create
an exact copy of its input wave.

2.2  Quantiser Performances

The overall calculations were solved by Matlab iterativey. However, some
manual calculation will beinitialy given.
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For L=2

In order to simplify the calculation, it is assumed that s =1//2. As aresult, we
end up with the foll owing Gaussian function:
b, (X) = ——exp(- x°)
b

As aresult, according to (2) the reconstruction va ues become:

exp(- x*)dx

«OQ/“‘
Sils

Y =
A exp(- x?).dx

%?

X2

LI
. (6)

(DFD; (D~
I\)\I—‘

o
erf(X)g
o

Due to the fact that erf(¥) =1 and ef(0) = 0, we findly end up with
y, =0.5642 for L=2. Since we choose to employs =2, we need to re-

normalise y, toy2. Accordingly, the fina vaue of Yy, for L=2 becomes,
y, =0.5642y/2 =0.7979.

oz

N

e

The ca culation of y, for L=4 up to L=32, can be found iteratively using (2) and
under the assumption that X, ,, =1, we eventually obtain equation (7).

el
" Tplef (I v

= (l' e x ) .
Jp(A- erf(x)
Subsequently,

2
e

Yo ==
Jp (- erf(x,))



http://www.docu-track.com/index.php?page=38
http://www.docu-track.com/index.php?page=38

8 Fendy Santoso

Thus, the decision levds can be calcul ated as follows:

1
X = E(yk + Y1)

accordingly,

1
X :E()ﬁ +Y,).
Theresult isiterative y computed using (7).
Probability of Error

To compute the probability of error, we begin with:

X1

R = 0P, (x)dx )
As aresult, p :ka? 1 exp(- x? @X, due to s2=1/42, the equation in (8)
= O&7ps “2s7ff

finally becomes:
P =P Terf (3],

P =lerf ]

:%[erf (x(k +1) - x(K)] -

In Matlab, the error function erf(x) is given by twice the integra of the
Gaussian distribution curve with zero mean and variance of 0.5 as given by:

ef () =-2 ( etdt. (9)
Signal Power

If x corresponds to signal on one ohm resistor, then X* represent the power of
that particular signal. Hence the statistical average of power is given by:
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_ ¥

x? = ¢ p(x)dx=s?=1. (10)
¥

Matlab Simulation

The algorithm applied in Matlab to compute the values of X, andy, can be
depicted as follows. Firstly, the number of decision leve, L, and the initid
value of X, and Y, are given. Accordingly, the new representative levels and

decision threshold are iteratively computed, the computational results are
convergent enough until the vaue of threshold is reached. Otherwise, the
iteration has to be stopped. In short, itisgivenin flowchart in Figure 5.

START
How many
Lewvel (L) ?

Initialization of
xk and ¥k

w

w
Calculate New
Representative
Levels

l

Calculate Decision
Treshold

Convergen
Enough 7

Print / Display

[ = ]

Figure5 Matlab Iterationsto obtain X, and Yy, .
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22.1 Computation Results

The Matlab computational results in terms of x(K), y(k) and the probability of
error Pe (from L=2 to L=64) are graphical represented in Figures 6-8. As can be
seen, the reconstruction values 'y, increase proportionally to the va ues of k, see

Figure 6. Figures 6-10 and Figure 12 are obviously discrete events. The
continuous lines on the graphs are only meant to indicate the trend.

’ y(k) as a function of k
T T

ik}

Figure 6 The Reconstruction Vaues vs. k.

’ x(k) as a function of k

Figure7 Decision Levelsagaing k.
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Correspondingly, the decision leveds x(k) obviously follow that pattern and
given by Figure 7.

The last decision levd x(k) is dways located in infinity; therefore, they cannot
be shown in Fig 8. Also for L=2, x (1) =0 and x (2) =infinity.

Pe as a Function of k

Figure8 Probabilitiesagainst k in Semi-Log Scale .

Figure 8 apparently indicates that B, associated with interval is not identical. It

decreases as the value of k increases. In other words, they are inversdy
proportional to k.

In addition the pdf weighted quantisation errors are almost identical except for
the last interval as given by Figure 9.

Accordingly, the error variance contributions s kz are dmost the same for all

intervals k=1, 2... L, see [1] for more comprehensive explanations. The last
interval isindeed not typical of the systems.

Figure 10 depicts the average distortion as a function of bit rate R. It turns out
that the smdler the interval, the less quantisation noise or distortion is going to
exist. Distortion decreases by factor 4 (6 dB) every increase of one bit coding.
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Sigma Square as a Function of k

Figure9 The pdf weighted quantisation Error Against k .

Average Distortion
e

Distortion

1 2 3 4 ] B

Figure 10 Average Distortion asaFunction of R.

In some cases, transmitting & rate close to entropy is not possible. For instance
when the entropy of the information is greater than storage capacity, error is
indispensable. In this case some lossy compression technique must be
employed and some distortion will be introduced accordingly. It calculates the
minimum transmission bit rates R, for arequired picture quality.
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X X
Image
Sourgce ~»| Coder |-»| Decoder|——»
u Distortion
d

Figure 11l Image Transmission.

Figurell depicts the process of image transmission. A distortion can be defined
as a distance between x and its reproduction %, denoted byd(x,%). In the

discrete time system Hamming distortion is commonly used. It is depicted as
follows:

RERCERY

d,(x,%X) = e 11
n (X%) 10, otherwise 1

Wheress in the continuous case, the squared distortion is expressed as follows:

d(x,X) =(x- X)* (12)
Also, the average distortion can be defined as the expected value

D = E[d(X, X) (13)
Rate-distortion form is often used to measure the quantiser performance as
given by:

L

5208 G (x- v)*p, (k=275 (16)

k=1

where L=2R isthe number of levels, s XZ corresponds to signa power.

¥

=x*= ¥’ p(X)dx=s *=1 (17)
¥

2
X

S

Then the performance factors are given as follows:

e*z =4.5 for laplacian positive definite function (pdf),
e2=1.0 for uniform distributed pdf and
e*z =2.71 for gaussi an pdf.
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Shannon derived the rate distortion function for Gaussian source with variance
2
S~ as

Fai0nS .
RD)=129 OEDEs™ (18)
t 0 otherwise
Moreover,
2 2
S\]R:SXZ:%. (19)
s

Q

Theinverse relationship for (19) is given by:
D=2%Rs? (20)
SNR=2"=s?/D .

By taking 10-based-logarithmic to convert (20) into dB, we finally obtain:

SNR=10"log, (2°%) ,
S 2
=10"log, o
=20Rlog?2 ,
=6.03R.
Accordingly, Shannon Rate Distortion (in log 10) is given by:

R=SNR/6.03 . (21)
Inverse of the above equation is given by: 22" =s?/D. However, as aready
defineds /D = SNR, accordingly, Shannon Rate Distortion (in log 2) is given
by:
1
R= EIogZ(SNR) . (22)

Theaverage distortion D =5 g isidentical to the average quantisation noise.
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The quantiser output can be regarded as a discrete-valued memory |ess source
with L-ary dphabet. The entropy H, for different quantisation levels is
depicted as follows:

L
HQ =- ké_(ila(logza(. (23)

in which P, corresponds to the probability within theinterval k, and rely on the

chosen decision regions. Figure 12 shows that entropy increase linearly
proportional to R.

Eniropy as a finction of R

IR RNy
-] R JE RS U . S— ------- ------- ,/ ----- -
A
4§/ ...................... -
1 1 R
4 5 3
L |2 4 8 16 32 64
R|1 2 3 4 5 6
H|1]191]| 283 3.77 473 | 571

Figure 12 Entropy as aFunction of R (inalinear scae).

Graphical representation of entropy-distortion characteristic of the LIoyd-Max
guantiser from L=2 to up to 64, with the Gaussian positive definite function is
given by Figure 13.
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. R:u.ls*'SNRm.a\f\A A :
4_.1_ Llyold Max b' P Y |

i i wihR i Llyold Max
: P ! with H

------------------------------------------------------------------------ —

o 3

! Shannon Limit

0 5 10 15 20 25 30 35

Figure 13 Optimality Comparison of LIoyd Max Quantiser to Shannon Limit

It turns out that at lower R Lloyd' s SNR is getting closer and approaching to its
Shannon limit. On the other hand, at higher R, its SNR is getting farther bel ow
Shannon Limit, say, for instance R=5, the difference is reasonably big, more
than 4 dB.

It is now apparent that from the set of numerical data, theoreticd Shannon limit
only can be closely approached. It cannot be surpassed irrespective of the
coding schemes applied.

3 Entropy-Coded Uniform Quantiser

The length of the interval was chosen in such a way that(L/2)D=3s . If
s =1 then L=6/D. The simulation result from Matlab is given below.
X, (the decision level) is selected to be uniformly apart and the vaue of L is
arbitrary.

_ n
Hence, the average bit rate is given by R= é_ Pb 1 log, L. Then y, asthe
i=1
reconstruction value still to be the centroid of quantisation interval, in order to
minimise the quantisation noise within the interval. Again, in practice, Figures
14-15 obviously occur in discrete domain. The continuous lines are only meant
to point out the trends.
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Figure 14 Probability asaFunction of k (Linear Scale).

Figure 14 points out that the value of P(k) decrease as the number of k increase,
the smaler the vd ue of k the bigger the value of P(k) and vice-versa

As it has dready been depicted in part one the vaue of y(k) increase
sproportionaly to the number of k. Nearly, of each interval the position of y(Kk)
isin the halfway between x(Kk).

Figure15 y(K) Against kin Linear Scale.

31 Huffman Code

Huffman codes provide a prefix code with minimum average block length. The
algorithmis given in the flowchart in Figure 16.
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Merge 2 least
Possihle

AssignOand 1 |«

Append 0 and 1

Figure16 Flowchart of Huffman Coding Algorithm.

Its code tree can be obtained as follows:

The two symbols with the lowest probability are picked and merge into a

new auxiliary symbol.
The probability of merged symboal is calculated
If more than 2 symbols remain, then, repeat the first two steps for the new

auxiliary alphabet
The codetreeis converted into prefix word.

Matlab Syntax to perform Huffman Coding Automatically:

DICT = HUFFMANDICT(SYM, PROB)

In which, Sym represent symbols that are used, and prob corregponds to
probability of them. For instance, when Delta=0.3, L=20 the results (code

books) are given as follows
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dict =
[-3.0058]
[-2.5311]
[-2.2333]
[-1.9355]
[-1.6377]
[-1.3399]
[-1.0422]
[-0.7444]
[-0.4466]
[-0.1489]
[ 0.1489]
[ 0.4466]
[ 0.7444]
[ 1.0422]
[ 1.3399]
[ 1.6377]
[ 1.9355]
[ 2.2333]
[ 2.5311]
[ 3.0058]

-3.0058
-2.5311
-2.2333
-1.9355
-1.6377
-1.3399
-1.0422
-0.7444
-0.44664
-0.14888
0.14888
0.44664
0.7444
1.0422
1.3399
1.6377
1.9355
2.2333
25311
3.0058

[1x13 doubl€]
[1x12 doubl€]
[1x10 doubl€]
[1x8 doubl€]
[1x6 doubl€]
[1x5 doubl€]
[1x4 doubl€]
[1x3 doubl€]
[1x3 doubl€]
[1x3 doubl€]
[1x3 double]
[1x3 double]
[1x3 double]
[1x4 double]
[1x5 double]
[1x5 double]
[1x7 double]
[1x9 double]
[1x11 doubl €]
[1x13 doubl €]

<1x13 double>
<1x12 double>
[1111010100]
[11110100]
[111100]
[11101]
[1001]

[110]

[011]

[001]

[000]

[010]

[1017]

[1000]
[11100]
[11111]
[1111011]]
[1111010117]
<1x11 double>
<1x13 double>

19
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Subsequently, For L=12 delta=0.5

-2.8272 [001010110]
-2.2045 [001010101]
-1.7143 [0010100]

-1.2243 [00100]
-0.7345 [000]
-0.2448 [0 1]

0.2448 [10]
0.7345 [11]

1.2243 [0011]

1.7143 [001011]
2.2045 [001010100]
2.8227 [001010111]

dict =
[-2.8272] [1x9 doubl €]
[-2.2045] [1x9 doubl €]
[-1.7143] [1x7 doubl€]
[-1.2243] [1x5 doubl €]
[-0.7345] [1x3 doubl €]
[-0.2448] [1x2 doubl€]
[ 0.2448] [1x2 doubl €]
[ 0.7345] [1x2 doubl €]
[ 1.2243] [1x4 doubl €]
[ 1.7143] [1x6 doubl €]
[ 2.2045] [1x9 doubl €]
[ 2.8227] [1x9 doubl €]

- n
The average hit rate can be calculated by equation R = é_ Pb . The coding
i=1
efficiency is represented by # = H / R. For example, when L=.3 and L=20 the
coding efficiency is 0.986664, whereas for L=.5 and L=12 the coding efficiency
is about 0.976856.

The dashed line represents the distortion rate of the non-uniform quantiser, the
triangl e point shows entropy of non uniform quantiser (LIoyd Max), whilst the
line between them and Shannon Limit represent the performance of optimal
uniform quantiser, with entropy coding and Huffman coding. According to
Source-Coding Theorem [1], “A source with entropy rate can be encoded with
arbitrarily small error probability a any rate R output aslong as R>H.”
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6 : : ! ! ! A
i i i Lloyd Max Q@ _ .-
with R e
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Figure1l7 The performance of Non-Uniform (Lloyd Max) and Uniform
Quantiser Against its Shannon Limit (Q stands for Quantisers).

As can be seen, the performance of uniform quantiser has successfully
outperformed the non-uniform quantiser (L1oyd Max), as indicated by D and H
which are closer to Shannon limit, compared to non-uniform quantiser.

4 Concluding Remarks

Experimental results indicate that in terms of signd to noise ratio, the uniform
quantiser has successfully outperformed the performance of the non-uniform
quantiser, as indicated by its closer rate in approaching the Shannon limit. Y et
the performance improvements are more noticeable a higher bit rates rather
than the lower ones.

In this research, Huffman coded uniform quantiser has successfully achieved
reasonably close rate to Shannon limit. Subsequently, it is closdy followed by
entropy coded uniform quantiser H. In generd, the uniform quantiser has
demonstrated its superior performance compared to the non-uniform quantiser,
represented by LIoyd Max.
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