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Abstract. Mining frequent patterns in large transactional databases is a highly 
researched area in the field of data mining. Existing frequent pattern discovering 
algorithms suffer from many problems regarding the high memory dependency 
when mining large amount of data, computational and I/O cost. Additionally, the 
recursive mining process to mine these structures is also too voracious in 
memory resources. In this paper, we describe a more efficient algorithm for 
mining complete frequent itemsets from transactional databases. The suggested 
algorithm is partially based on FP-tree hypothesis and extracts the frequent 
itemsets directly from the tree. Its memory requirement, which is independent 
from the number of processed transactions, is another benefit of the new method. 
We present performance comparisons for our algorithm against the Apriori 
algorithm and FP-growth.  

Keywords: association rules; data mining; frequent items; frequent item tree; header 
table; minimum support.  

1 Introduction 
Recent days have witnessed an explosive growth in generating data in all fields 
of science, business, medicine, military, etc. The same rate of growth in the 
processing power of evaluating and analyzing the data did not follow this 
massive growth. Due to this phenomenon, a tremendous volume of data is still 
kept without being studied. Data mining, a research field that tries to ease this 
problem, proposes some solutions for the extraction of significant and 
potentially useful patterns from these large collections of data. Association 
Rules, Sequential Patterns, Classification, Similarity Analysis, Summarization 
and Clustering are major areas of interest in data mining.  Among these, mining 
association rules [1] has been a very active research area. The process of mining 
association rules consists of two main steps: (1) Finding the frequent itemsets 
that have a minimum support, and (2) Using the frequent itemsets to generate 
association rules that meet a confidence threshold. Step 1 is the more expensive 
of the two since the number of item sets grows exponentially with the number 
of items. A large number of increasingly efficient algorithms to mine frequently 
itemsets have been developed over the years [2], [3], [4].  There are several 
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algorithms contributed [5], [6], [7], [8] to improve the performance of the 
Apriori algorithm that use different type of approaches. An analysis of the best 
known algorithms can be found in [9]. 

There are two main strategies for mining frequent itemsets: the candidate 
generation-and-test approach and the pattern growth approach. Apriori [2] and 
its several variations belong to the first approach, while FP-growth [3] and H-
Mine [4] are examples of the second. Apriori algorithm [2] suffers from the 
problem of spending much of their time to discard the infrequent candidates on 
each level. Another problem can be the high I/O cost, which is inseparable from 
the level-wise approach. In case of the Apriori algorithm the database is 
accessed as many times as the size of the maximal frequent itemset is. This 
problem is partly overcome by algorithms based on pattern growth. 

The FP-growth (Frequent Pattern – growth) [3] algorithm differs basically from 
the level-wise algorithms, that use a “candidate generate and test” approach. It 
does not use candidates at all, but it compresses the database into the memory in 
a form of a so-called FP-tree using a pruning technique. The patterns are 
discovered using a recursive pattern growth method by creating and processing 
conditional FP-trees. The drawback of the algorithm is its huge memory 
requirement, which is dependent on the minimum support threshold and on the 
number and length of the transactions. 

In this paper, we propose a new algorithm named FIT (Frequent Item Tree) for 
mining complete frequent itemsets directly from the database. The algorithm 
requires only one full I/O scan of the dataset to build the prefix tree in main 
memory and then mines directly this structure. Mining the FP-tree structure is 
done recursively by building conditional trees that are of the same order of 
magnitude in number as the frequent patterns, but mining the FIT structure is 
done recursively by building conditional trees that are of less  order of 
magnitude in number as the frequent patterns. 

The structure of the rest of this paper is as follows: Section 2 defines the 
association rule mining problem. The algorithm FIT proposed for generating 
frequent itemsets is described in Section 3. Experimental results are presented in 
Section 4 and conclusion is reported in Section 5. 

2 Problem Statement 
The problem consists of finding associations between items or itemsets in 
transactional data. The data could be retail sales in the form of customer 
transactions or any collection of sets of observations. Formally, as defined in 
[2], the problem is stated as follows: Let I={i1,i2,…im}be a set of literals, called 
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items. m is considered the dimensionality of the problem. Let D be a set of 
transactions, where each transaction T is a set of items such that T ⊆  I. A 
unique identifier TID is given to each transaction. A transaction T is said to 
contain X, a set of items in I, if X ⊆ T. An association rule is an implication of 
the form “X ⇒ Y”, where X ⊆ I, Y ⊆ I, and X ∩ Y = φ . An itemset X is said to 
be large or frequent if its support s is greater or equal than a given minimum 
support threshold σ. The rule X ⇒ Y has a support s in the transaction set D if 
s% of the transactions in D contain X ∪ Y. In other words, the support of the 
rule is the probability that X and Y hold together among all the possible 
presented cases. It is said that the rule X ⇒ Y holds in the transaction set D with 
confidence c if c% of transactions in D that contain X also contain Y. In other 
words, the confidence of the rule is the conditional probability that the 
consequent Y is true under the condition of the antecedent X. The problem of 
discovering all association rules from a set of transactions D consists of 
generating the rules that have a support and confidence greater than a given 
threshold. These rules are called strong rules. This association-mining task can 
be broken into two steps: (1) A step for finding all frequent k-itemsets known 
for its extreme I/O scan expense, and the massive computational costs, and (2) 
A straightforward step for generating strong rules. In this paper, we are mainly 
interested in the first step. 

 In this paper an algorithm is developed to discover frequent itemsets 
from the transaction database. Also FIT algorithm is compared with the Apriori 
algorithm [2] as well as FP-growth algorithm [3] which are used to discover the 
large frequent itemsets from a transaction database.  

2.1 Apriori Algorithm 
The most commonly known, and the first presented association rule mining 
algorithm is the Apriori algorithm introduced by Agrawal et al [2]. The main 
idea of the algorithm is based on the a priori hypothesis, namely, an itemset can 
only be frequent if all its subsets are also frequent. In other words, if an itemset 
is not frequent, no superset of it can be frequent. Exploiting this knowledge 
makes possible to reduce the search space efficiently when discovering the 
frequent itemsets, because using this knowledge the number of the candidates 
can be reduced. The Apriori algorithm is a level-wise method, which means that 
it discovers the k-itemsets during kth database scan. 

The algorithm works as follows. During the first database scan the items in the 
transactions are counted and the infrequent ones are discarded. In this way the 
frequent 1-itemsets are found. From these frequent items two candidates are 
generated by creating all the combination of them by keeping the lexicographic 
order. Formally, items x and y form a candidate (x,y) when x ≤ y. During the 
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second database scan the support of the 2-candidates are counted. After a 
database reading the counters of the candidates are checked whether they are 
over the minimum support threshold. If a value of a counter exceeds the 
threshold, the candidate belonging to it becomes frequent, otherwise it is filtered 
out. The 3-candidates are generated from the frequent 2-itemsets regarding the 
following rule. Let be given two itemsets (i1,i2) and (i3,i4) where i1<i2 and i3<i4 
as mentioned earlier. The two itemsets can form a 3-candidate if i1=i3 and (i2,i4) 
is also frequent. Fulfilling the second condition means that the a priori 
hypothesis is fulfilled. The resulting 3-candidate is the following: (i1,i2,i4). In 
general two k-itemsets are joined by keeping the lexicographic order to form a 
(k + 1)-itemset if the first k-1 items of them are in common and all the (k-1)-
subsets of the resulting candidate are frequent as well. The algorithm terminates 
if no candidates can be generated or no frequent itemsets are found. The pseudo 
code of the Apriori algorithm [2] is depicted in Figures 1 and 2. 

procedure Apriori(minsup) 
L1=find frequent 1-itemsets 
for (k=2;Lk-1!=null;k++) 
     Ck=AprioriGen(Lk-1) 
     for each transaction t do 
        Ct = subset (Ck,t) 
        for each candidate c in Ct do 
             c.counter++ 
        for each c in Ck do 
            if c.counter >= minsup then 
               Lk.Add(c) 
return Ck 

Figure 1 Pseudo code of the Apriori algorithm. 

 
procedure Apriori(minsup) 
for each itemset l1 in Lk-1 do 
    for each itemset l2 in Lk-1 do 
        if l1[1] = l2[1] 
           and l1[2] = l2[2] 
           and… and  l1[k-2] = l2[k-2] 
           and l1[k-1] < l2[k-1] 
       then 
           c=l1 join l2
           if c has infrequent subset 
           then DELETE c 
           else Ck.Add(c) 
return Ck

Figure 2 Pseudo code of the AprioriGen procedure. 
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2.2 FP-Growth Algorithm 
One of the algorithms that does not use any candidates to discover the frequent 
patterns is the FP-growth (Frequent Pattern Growth) algorithm proposed in [3]. 
The other main difference to the Apriori algorithm is the number of the database 
readings. While the Apriori is a level-wise algorithm, the FP-growth is a two-
phase method. It reads the database only twice and stores the database in a form 
of a tree in the main memory. 

The algorithm works as follows. During the first database scan the number of 
occurrences of each item is determined and the infrequent ones are discarded. 
Then the frequent items are ordered descending their support. During the second 
database scan the transactions are read and the frequent items of them are 
inserted into a so-called FP-tree structure. In this way the database is pruned and 
is compressed into the memory. The aim of using FP-tree is to store the 
transactions in such a way that discovering the patterns can be achieved 
efficiently. 

procedure FPGrowth(Tree, ∝ ) 
if Tree contains a single path P then 
     for each β = comb. of nodes in P do 
        pattern = β ∪ α 
        sup = min(sup of the nodes in β ) 
else 
     for each ai in the header of Tree do 
         generatepattern =  β ∪ α 
          sup  = ai.support 
         construct β’s conditional pattern base 
         FPTree = construct β’s conditional FP-tree 
          If FPTree != 0 then 
                  FPGrowth(FPTree, β) 

Figure 3 Pseudo code of the FP-growth algorithm. 

Each node in the tree contains an item, a counter to count the support, and links 
to the child nodes, to the parent nodes and to the siblings of the node. The rule 
for constructing the FP-tree is as follows. When reading a transaction, its 
infrequent items are omitted and the frequent ones are ordered regarding their 
support. The transaction is then inserted into the tree. If the tree is empty the 
transaction is inserted as the only branch in the tree. If it is not empty, while the 
first k items of the transaction fit the prefix of one of the branches of the tree, a 
counter is incremented in each referred node in the tree. From the (k+1)th item, a 
new branch is created as a child of the node, which corresponds to the kth item 
in the transaction, and the further items in the transactions are inserted as this 
new branch with a support counter set to one. A header belongs to the FP-tree 
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which contains the sorted 1-frequent items, their supports and a pointer to the 
first occurrence of the given item in the tree. The other occurrences of the given 
item in the tree are linked together sequentially as a list. 

The FP-tree is processed recursively by creating several so-called conditional 
FP-trees. This is the recursive pattern growth method of the algorithm. When a 
conditional FP-tree contains exactly one branch the frequent itemsets are 
generated from it by creating all the combinations of each items. When 
traversing the whole FP-tree, all the frequent itemsets are discovered. The 
pseudo code of the FP-growth algorithm [3] is depicted in Figure 3. 

3 Frequent Item Tree Algorithm 
The main motivation of Frequent Item Tree algorithm is to enhance the above 
mentioned algorithms both regarding the execution time behavior and the 
memory management. The aim was to develop an algorithm whose memory 
usage is significantly lower than that of the FP-growth algorithm, and its 
execution time is smaller than the execution times of both the algorithms 
described earlier. The Frequent Item Tree algorithm is a novel method to find 
all the frequent itemsets quickly. It discovers all the frequent itemsets in only 
one database scan. 

The goal of Frequent Item Tree algorithm is to build a compact data structure 
called FI tree. The construction is done in two phases, where the first phase 
requires a full I/O scan of the dataset and the second phase requires only a full 
scan of frequent 2-itemsets. The first initial scan of the database identifies the 
frequent 2-itemsets. The goal is to generate an ordered list of frequent 2-
itemsets that would be used when building the tree in the second phase. 

The first phase starts by arranging the entire database in the alphabetical order 
using MSD Radix sort. Various string sorting algorithms have been intensively 
studied based on their speed, property of stability and order (relationship 
between the number of keys to be sorted and the time required). When 
compared with Quick sort, Ternary Quick sort and MSD Radix sort the speed of 
Merge sort is less, its order is N log N but it is stable. Quick sort when 
compared with Ternary Quick sort and MSD Radix sort its speed is less, order 
is N log N and it is not stable. Speed of Ternary Quick sort is less than MSD 
Radix sort, order is N log N but is it stable. MSD Radix sort which is a 
specialized one for strings is faster than Ternary Quick sort, order is O(N) and it 
is stable. Since MSD Radix sort doesn’t work by comparing keys as used by 
other string sorting algorithms, the time taken for sorting strings is linearly 
proportional to the number of items which makes FI-tree algorithm more 
efficient.  During the database scan the number of occurrences of frequent 2-
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itemsets is determined and infrequent 2-itemsets with the support less than the 
support threshold are weeded out. Then the frequent 2-itemsets are ordered in 
the alphabetical order using MSD Radix sort. 

procedure FI Tree(Tree, F ) 
add first item of the first freq2 list to H; 
     for each 2-itemset entry (top down order) in freq2 list  do 
        if  F(I) >= minsup, then 
 create a link to the second item of freq2; 
       if the first item of freq2 changes then 
 add first item of freq2 to H; 
             create a link to the second item of freq2; 
       if  both the item of freq2 is not available in H then 
             call buildsubtree(F); 
   end procedure                            
 
procedure buildsubstree (F ) 

add first item of freq2 list to H; 
create a new node for this first item; 
create a link to the second item of freq2;  

end procedure 

Figure 4 Pseudo code of the Frequent Item Tree algorithm. 

Phase 2 of constructing FI tree structure is the actual building of this compact 
tree. This phase requires a complete scan of the ordered frequent 2-itemsets.  
The ordered frequent 2-itemsets are used in constructing the FI tree as follows: 
The first item in the first frequent 2-itemset in the frequent 2-itemsets list is 
added to the header file and this item will be the root for the child node. The 
support of frequent 2-itemset is assigned as the support to the item in the header 
table. In the first step, for each frequent 2-itemset, read the first item and 
compare with the item in the header table. If the item is already present in the 
header table a link is assigned to the second item in the frequent 2-itemset with 
the item in the child node. The support for the item in the header table will be 
compared with the support of the frequent 2-itemset and the highest support will 
be assigned to the item in the header table. The first step is repeated until the 
first item in the frequent 2-itemset list changes. If the first item in the frequent 
2-itemset list changes, then the corresponding first item in the frequent 2-
itemset is added to the header table with the support of the frequent 2-itemset 
and the first step is continued until the first item in the frequent 2-itemset 
changes.  If both the items in the corresponding 2-itemset are not available in 
the header table, then the first item of the frequent 2-itemset is added to the 
header table with the support of the frequent 2-itemset and a new node is added 
as child for the root node, in which the first item of frequent 2-itemset acts as 
child for the root node and a link is assigned to the second item of the frequent 
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2-itemset. The process used in first step will be continued till the first item in 
the frequent 2-itemset changes. The above procedure will be repeated until the 
end of the frequent 2-itemset list. Finally the second item in the last frequent 2-
itemset is added to the header table, assigned its maximum support from the 
frequent 2-itemset list and corresponding link is made. The pseudo code of the 
algorithm is depicted in Figure 4. 

For illustration, we use an example with the transactions shown in Table 1. Let 
the minimum support threshold set to 2. Various steps used in phase 1 are 
shown in Figure 5. Phase 1 starts by accumulating the support for all possible 2-
itemsets that occur in the transactions. Step 2 of phase 1 removes all non-
frequent 2-itemsets, in our example (ab,ae and af), leaving only the frequent 2-
itemsets (be,ac,ag,bc,bf,bg,ce,cf,cg,ef,eg and fg). Finally all frequent 2-itemsets 
are sorted alphabetically to generate the sorted frequent 2-itemset list. This last 
step ends phase 1 of the FI tree algorithm and starts the second phase. In phase 
2, the first item a of the first frequent 2-itemset ac is added to the header table. 
The 2-itemset ac generates the first path of FI tree with item a as root node and 
item c as the child node with support for a as 2 in the header table. A link is 
established between items a and c and its corresponding item entry a in the 
header table. Since the first item a of the second 2-itemset in the frequent 2-
itemset list is already present in the header table, a link is established between 
items a,c and g. Both the items band c of the next 2-itemset bc are not present in 
the header table item b is added to the header table and forms the second path of 
the FI tree with item b as the root node and item c as the child node with 
support of b as 2 in the header table. A link is established between items b and c 
and its corresponding item entry b in the header table. For the next frequent 2-
itemset, the first item b is already in the header table, so a link is established 
between b, c and e. The support 3 for 2-itemset be will be assigned for item b in 
the header table. The same process occurs for all frequent 2-itemsetss until we 
build the FI tree for the transactions given in Table 1. At last item g from the 
frequent 2- itemset fg is added to the header table and assigned a support of 3. 
Figure 6 shows the result of the tree building process. 

Table 1 Transactional database. 

T.No Items 

T1 

T2 

T3 

T4 

b e 

a b c e f g 

b c e f g 

a c g 
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                  Step 1 

Figure 5 Steps of Phase 1. 

 
Figure 6 Frequent Item Tree. 

4 Experimental Results 
Experiments were conducted to test the efficiency of the FI-tree approach by 
comparing our approach with two well-known algorithms namely: Apriori and 
FP-growth. All experiments are performed on a 1.88 GHz P-IV Core 2DUO 
with 1 GB DDR2 800 MHz main memory, 80 GB HDD running on Microsoft 
Windows XP. All programs are written in Microsoft Visual Basic 6.0. We used 

Item Freq 
be 3 
ab 1 
ac 2 
ae 1 
af 1 
ag 2 
bc 2 
bf 2 
bg 2 
ce 2 
cf 2 
cg 3 
ef 2 
eg 2 
fg 2 

Item Freq 
  be 3 
ac 2 
ag 2 
bc 2 
bf 2 
bg 2 
ce 2 
cf 2 
cg 3 
ef 2 
eg 2 
fg 2 

     Step 2 

Item Freq 
ac 2 
ag 2 
bc 2 
be 3 
bf 2 
bg 2 
ce 2 
cf 2 
cg 3 
ef 2 
eg 2 
fg 2 
    Step 3 
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synthetic transactional databases generated using IBM Quest synthetic data 
generator [10]. All the experiments were conducted using T20I7D200k dataset. 
The naming conventions of the datasets are shown in Table 2. The number of 
the items that can occur in the transactions is 1000. 

Table 2 Meaning of the parameters in the names of the datasets. 

Parameter Meaning 

T Average length of the 
transactions 

I Average size of maximal 
frequent itemsets 

D Number of transactions 
K Thousands 
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Figure 7 Performance at various support levels. 

To test the behavior of the FI-tree vis-à-vis different support thresholds, a set of 
experiments was conducted. The mining process tested different support levels, 
which are 0.0025% that revealed almost 110k frequent patterns, 0.005% that 
revealed nearly 75k frequent patterns, 0.0075% that generated 40k frequent 
patterns and 0.01% that returned 22k frequent patterns. Figure 7 depicts the time 
needed in seconds for each one of these runs. It is clear that FI-tree algorithm is 
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the fastest of all the three methods. The execution time of the FI-tree method is 
always smaller than that of the Apriori and FP-growth algorithms. Figure 8 
shows the execution times in seconds for the various datasets with transaction 
sizes 50, 100, 150, 200 and 250 of the three algorithms. It can be easily 
concluded that the execution time dependency of the Apriori algorithm on the 
number of transactions is linear. FP-growth algorithm reads the database twice 
and stores the database in the form of a tree in the main memory. FI-tree 
algorithm reads the entire database only once and the frequent 2-itemsets of 
them are used to build a tree structure so-called FI-tree structure. 
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Figure 8 Execution time of the tree algorithm as a function of the number of 
transactions by 0.8% minimum support threshold.  

In Figure 9 the peak memory sizes in megabytes are illustrated as a function of 
the number of transactions when the average size of the maximal frequent items 
is 7 and the average size of the transactions is 20. The minimum support 
threshold is set to 0.7%. The memory requirement for FI-tree algorithm is less 
for all datasets with transaction sizes 50, 100, 150, 200 and 250 when compared 
to FP-growth algorithm. The memory requirement of the FP-growth algorithm 
increases significantly with the growth of the number of transactions. The 
reason for this can be found when examining the sizes of the trees generated by 
the algorithm. If the algorithm mines two datasets with the same statistical 
properties but the one contains an order of magnitude more transactions than the 
other, the first FP-tree built by the FP-growth algorithm contains an order of 
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magnitude more nodes in the former case than in the latter. However the rules 
that have been found are nearly the same. From this fact we can draw the 
conclusion that several redundant nodes are in the FP-tree when increasing the 
number of the transactions. Its drawback is, however, that the memory 
requirement of the algorithm is huge. The memory requirement of the FI-tree 
algorithm depends only on the number of frequent 2-itemsets in the given 
transactions. Since FI-tree algorithm stores only the items needed for finding 
frequent 2-itemsets which are then used to form a tree in the main memory, the 
memory requirement of the FI-tree algorithm does not depend on the number of 
transactions. 
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Figure 9 Peak memory of the algorithms as a function of transactions by 0.7% 
minimum support threshold. 

The sizes of the first generated FP-trees in bytes are depicted in case of the FP-
growth and of the FI-tree algorithms when used T20I7D200k dataset as a 
function of the minimum support threshold is illustrated in Figure 10. 
Apparently the sizes of the tree in case of all seven support thresholds are less in     
FI-tree algorithm when compared with FP-growth algorithm.  
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Figure 10   Sizes of the first generated tree of the FP-Growth and of the FI-Tree 
algorithm when using T20I7D200K. 

5 Conclusion 
This paper is concerned with the problem of efficiently discovering frequent 
itemsets in transactional databases. The algorithm identifies the main problem 
of the FP-growth algorithm which is the recursive creation and mining of many 
conditional pattern trees, and which are equal in number to the distinct frequent 
patterns generated. We have replaced this step by creating one FI-tree by 
scanning the database only once and by using the frequent 2-itemsets. The FI-
tree algorithm is even faster than Apriori and FP-growth algorithms, and the 
memory requirement of the novel method does not depend on the number of 
transactions.   

The advantage of the FI-tree algorithm is the quick mining process that does not 
use candidates. Its drawback is however, that the time needed to build an FI-tree 
and the memory requirement depends upon the number of frequent 2-itemsets. 
If the algorithm mines two datasets with the same number of transactions but 
the one contains more frequent 2-itemsets than the other, the first needs more 
time to build an FI-tree and the memory requirement will be more than in the 
latter. We are currently studying the possibility of using hashing techniques to 
find the efficient frequent 2-itemsets in order to reduce the time and memory 
requirements to build an FI-tree. 
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