

42

ITB J. ICT Vol. 1 C, No. 1, 2007, 42-55

Discovery of Frequent Itemsets: Frequent Item Tree-Based

Approach

A.V. Senthil Kumar1 & R.S.D. Wahidabanu2

1Senior Lecturer, Department of MCA, CMS College of Science and Commerce
Coimbatore – 641 006. Tamilnadu. India

2Head, Department of CSE, Govt. College of Engineering
Salem, Tamilnadu, India.

Abstract. Mining frequent patterns in large transactional databases is a highly
researched area in the field of data mining. Existing frequent pattern discovering
algorithms suffer from many problems regarding the high memory dependency
when mining large amount of data, computational and I/O cost. Additionally, the
recursive mining process to mine these structures is also too voracious in
memory resources. In this paper, we describe a more efficient algorithm for
mining complete frequent itemsets from transactional databases. The suggested
algorithm is partially based on FP-tree hypothesis and extracts the frequent
itemsets directly from the tree. Its memory requirement, which is independent
from the number of processed transactions, is another benefit of the new method.
We present performance comparisons for our algorithm against the Apriori
algorithm and FP-growth.

Keywords: association rules; data mining; frequent items; frequent item tree; header
table; minimum support.

1 Introduction
Recent days have witnessed an explosive growth in generating data in all fields
of science, business, medicine, military, etc. The same rate of growth in the
processing power of evaluating and analyzing the data did not follow this
massive growth. Due to this phenomenon, a tremendous volume of data is still
kept without being studied. Data mining, a research field that tries to ease this
problem, proposes some solutions for the extraction of significant and
potentially useful patterns from these large collections of data. Association
Rules, Sequential Patterns, Classification, Similarity Analysis, Summarization
and Clustering are major areas of interest in data mining. Among these, mining
association rules [1] has been a very active research area. The process of mining
association rules consists of two main steps: (1) Finding the frequent itemsets
that have a minimum support, and (2) Using the frequent itemsets to generate
association rules that meet a confidence threshold. Step 1 is the more expensive
of the two since the number of item sets grows exponentially with the number
of items. A large number of increasingly efficient algorithms to mine frequently
itemsets have been developed over the years [2], [3], [4]. There are several

Received June 18th, 2007, Revised August 18th, 2007, Accepted for publication August 18th, 2007.

 Discovery of Frequent Itemsets 43

algorithms contributed [5], [6], [7], [8] to improve the performance of the
Apriori algorithm that use different type of approaches. An analysis of the best
known algorithms can be found in [9].

There are two main strategies for mining frequent itemsets: the candidate
generation-and-test approach and the pattern growth approach. Apriori [2] and
its several variations belong to the first approach, while FP-growth [3] and H-
Mine [4] are examples of the second. Apriori algorithm [2] suffers from the
problem of spending much of their time to discard the infrequent candidates on
each level. Another problem can be the high I/O cost, which is inseparable from
the level-wise approach. In case of the Apriori algorithm the database is
accessed as many times as the size of the maximal frequent itemset is. This
problem is partly overcome by algorithms based on pattern growth.

The FP-growth (Frequent Pattern – growth) [3] algorithm differs basically from
the level-wise algorithms, that use a “candidate generate and test” approach. It
does not use candidates at all, but it compresses the database into the memory in
a form of a so-called FP-tree using a pruning technique. The patterns are
discovered using a recursive pattern growth method by creating and processing
conditional FP-trees. The drawback of the algorithm is its huge memory
requirement, which is dependent on the minimum support threshold and on the
number and length of the transactions.

In this paper, we propose a new algorithm named FIT (Frequent Item Tree) for
mining complete frequent itemsets directly from the database. The algorithm
requires only one full I/O scan of the dataset to build the prefix tree in main
memory and then mines directly this structure. Mining the FP-tree structure is
done recursively by building conditional trees that are of the same order of
magnitude in number as the frequent patterns, but mining the FIT structure is
done recursively by building conditional trees that are of less order of
magnitude in number as the frequent patterns.

The structure of the rest of this paper is as follows: Section 2 defines the
association rule mining problem. The algorithm FIT proposed for generating
frequent itemsets is described in Section 3. Experimental results are presented in
Section 4 and conclusion is reported in Section 5.

2 Problem Statement
The problem consists of finding associations between items or itemsets in
transactional data. The data could be retail sales in the form of customer
transactions or any collection of sets of observations. Formally, as defined in
[2], the problem is stated as follows: Let I={i1,i2,…im}be a set of literals, called

44 A.V. Senthil Kumar & R.S.D. Wahidabanu

items. m is considered the dimensionality of the problem. Let D be a set of
transactions, where each transaction T is a set of items such that T ⊆ I. A
unique identifier TID is given to each transaction. A transaction T is said to
contain X, a set of items in I, if X ⊆ T. An association rule is an implication of
the form “X ⇒ Y”, where X ⊆ I, Y ⊆ I, and X ∩ Y = φ . An itemset X is said to
be large or frequent if its support s is greater or equal than a given minimum
support threshold σ. The rule X ⇒ Y has a support s in the transaction set D if
s% of the transactions in D contain X ∪ Y. In other words, the support of the
rule is the probability that X and Y hold together among all the possible
presented cases. It is said that the rule X ⇒ Y holds in the transaction set D with
confidence c if c% of transactions in D that contain X also contain Y. In other
words, the confidence of the rule is the conditional probability that the
consequent Y is true under the condition of the antecedent X. The problem of
discovering all association rules from a set of transactions D consists of
generating the rules that have a support and confidence greater than a given
threshold. These rules are called strong rules. This association-mining task can
be broken into two steps: (1) A step for finding all frequent k-itemsets known
for its extreme I/O scan expense, and the massive computational costs, and (2)
A straightforward step for generating strong rules. In this paper, we are mainly
interested in the first step.

 In this paper an algorithm is developed to discover frequent itemsets
from the transaction database. Also FIT algorithm is compared with the Apriori
algorithm [2] as well as FP-growth algorithm [3] which are used to discover the
large frequent itemsets from a transaction database.

2.1 Apriori Algorithm
The most commonly known, and the first presented association rule mining
algorithm is the Apriori algorithm introduced by Agrawal et al [2]. The main
idea of the algorithm is based on the a priori hypothesis, namely, an itemset can
only be frequent if all its subsets are also frequent. In other words, if an itemset
is not frequent, no superset of it can be frequent. Exploiting this knowledge
makes possible to reduce the search space efficiently when discovering the
frequent itemsets, because using this knowledge the number of the candidates
can be reduced. The Apriori algorithm is a level-wise method, which means that
it discovers the k-itemsets during kth database scan.

The algorithm works as follows. During the first database scan the items in the
transactions are counted and the infrequent ones are discarded. In this way the
frequent 1-itemsets are found. From these frequent items two candidates are
generated by creating all the combination of them by keeping the lexicographic
order. Formally, items x and y form a candidate (x,y) when x ≤ y. During the

 Discovery of Frequent Itemsets 45

second database scan the support of the 2-candidates are counted. After a
database reading the counters of the candidates are checked whether they are
over the minimum support threshold. If a value of a counter exceeds the
threshold, the candidate belonging to it becomes frequent, otherwise it is filtered
out. The 3-candidates are generated from the frequent 2-itemsets regarding the
following rule. Let be given two itemsets (i1,i2) and (i3,i4) where i1<i2 and i3<i4
as mentioned earlier. The two itemsets can form a 3-candidate if i1=i3 and (i2,i4)
is also frequent. Fulfilling the second condition means that the a priori
hypothesis is fulfilled. The resulting 3-candidate is the following: (i1,i2,i4). In
general two k-itemsets are joined by keeping the lexicographic order to form a
(k + 1)-itemset if the first k-1 items of them are in common and all the (k-1)-
subsets of the resulting candidate are frequent as well. The algorithm terminates
if no candidates can be generated or no frequent itemsets are found. The pseudo
code of the Apriori algorithm [2] is depicted in Figures 1 and 2.

procedure Apriori(minsup)
L1=find frequent 1-itemsets
for (k=2;Lk-1!=null;k++)
 Ck=AprioriGen(Lk-1)
 for each transaction t do
 Ct = subset (Ck,t)
 for each candidate c in Ct do
 c.counter++
 for each c in Ck do
 if c.counter >= minsup then
 Lk.Add(c)
return Ck

Figure 1 Pseudo code of the Apriori algorithm.

procedure Apriori(minsup)
for each itemset l1 in Lk-1 do
 for each itemset l2 in Lk-1 do
 if l1[1] = l2[1]
 and l1[2] = l2[2]
 and… and l1[k-2] = l2[k-2]
 and l1[k-1] < l2[k-1]
 then
 c=l1 join l2
 if c has infrequent subset
 then DELETE c
 else Ck.Add(c)
return Ck

Figure 2 Pseudo code of the AprioriGen procedure.

46 A.V. Senthil Kumar & R.S.D. Wahidabanu

2.2 FP-Growth Algorithm
One of the algorithms that does not use any candidates to discover the frequent
patterns is the FP-growth (Frequent Pattern Growth) algorithm proposed in [3].
The other main difference to the Apriori algorithm is the number of the database
readings. While the Apriori is a level-wise algorithm, the FP-growth is a two-
phase method. It reads the database only twice and stores the database in a form
of a tree in the main memory.

The algorithm works as follows. During the first database scan the number of
occurrences of each item is determined and the infrequent ones are discarded.
Then the frequent items are ordered descending their support. During the second
database scan the transactions are read and the frequent items of them are
inserted into a so-called FP-tree structure. In this way the database is pruned and
is compressed into the memory. The aim of using FP-tree is to store the
transactions in such a way that discovering the patterns can be achieved
efficiently.

procedure FPGrowth(Tree, ∝)
if Tree contains a single path P then
 for each β = comb. of nodes in P do
 pattern = β ∪ α
 sup = min(sup of the nodes in β)
else
 for each ai in the header of Tree do
 generatepattern = β ∪ α
 sup = ai.support
 construct β’s conditional pattern base
 FPTree = construct β’s conditional FP-tree
 If FPTree != 0 then
 FPGrowth(FPTree, β)

Figure 3 Pseudo code of the FP-growth algorithm.

Each node in the tree contains an item, a counter to count the support, and links
to the child nodes, to the parent nodes and to the siblings of the node. The rule
for constructing the FP-tree is as follows. When reading a transaction, its
infrequent items are omitted and the frequent ones are ordered regarding their
support. The transaction is then inserted into the tree. If the tree is empty the
transaction is inserted as the only branch in the tree. If it is not empty, while the
first k items of the transaction fit the prefix of one of the branches of the tree, a
counter is incremented in each referred node in the tree. From the (k+1)th item, a
new branch is created as a child of the node, which corresponds to the kth item
in the transaction, and the further items in the transactions are inserted as this
new branch with a support counter set to one. A header belongs to the FP-tree

 Discovery of Frequent Itemsets 47

which contains the sorted 1-frequent items, their supports and a pointer to the
first occurrence of the given item in the tree. The other occurrences of the given
item in the tree are linked together sequentially as a list.

The FP-tree is processed recursively by creating several so-called conditional
FP-trees. This is the recursive pattern growth method of the algorithm. When a
conditional FP-tree contains exactly one branch the frequent itemsets are
generated from it by creating all the combinations of each items. When
traversing the whole FP-tree, all the frequent itemsets are discovered. The
pseudo code of the FP-growth algorithm [3] is depicted in Figure 3.

3 Frequent Item Tree Algorithm
The main motivation of Frequent Item Tree algorithm is to enhance the above
mentioned algorithms both regarding the execution time behavior and the
memory management. The aim was to develop an algorithm whose memory
usage is significantly lower than that of the FP-growth algorithm, and its
execution time is smaller than the execution times of both the algorithms
described earlier. The Frequent Item Tree algorithm is a novel method to find
all the frequent itemsets quickly. It discovers all the frequent itemsets in only
one database scan.

The goal of Frequent Item Tree algorithm is to build a compact data structure
called FI tree. The construction is done in two phases, where the first phase
requires a full I/O scan of the dataset and the second phase requires only a full
scan of frequent 2-itemsets. The first initial scan of the database identifies the
frequent 2-itemsets. The goal is to generate an ordered list of frequent 2-
itemsets that would be used when building the tree in the second phase.

The first phase starts by arranging the entire database in the alphabetical order
using MSD Radix sort. Various string sorting algorithms have been intensively
studied based on their speed, property of stability and order (relationship
between the number of keys to be sorted and the time required). When
compared with Quick sort, Ternary Quick sort and MSD Radix sort the speed of
Merge sort is less, its order is N log N but it is stable. Quick sort when
compared with Ternary Quick sort and MSD Radix sort its speed is less, order
is N log N and it is not stable. Speed of Ternary Quick sort is less than MSD
Radix sort, order is N log N but is it stable. MSD Radix sort which is a
specialized one for strings is faster than Ternary Quick sort, order is O(N) and it
is stable. Since MSD Radix sort doesn’t work by comparing keys as used by
other string sorting algorithms, the time taken for sorting strings is linearly
proportional to the number of items which makes FI-tree algorithm more
efficient. During the database scan the number of occurrences of frequent 2-

48 A.V. Senthil Kumar & R.S.D. Wahidabanu

itemsets is determined and infrequent 2-itemsets with the support less than the
support threshold are weeded out. Then the frequent 2-itemsets are ordered in
the alphabetical order using MSD Radix sort.

procedure FI Tree(Tree, F)
add first item of the first freq2 list to H;
 for each 2-itemset entry (top down order) in freq2 list do
 if F(I) >= minsup, then
 create a link to the second item of freq2;
 if the first item of freq2 changes then
 add first item of freq2 to H;
 create a link to the second item of freq2;
 if both the item of freq2 is not available in H then
 call buildsubtree(F);
 end procedure

procedure buildsubstree (F)

add first item of freq2 list to H;
create a new node for this first item;
create a link to the second item of freq2;

end procedure

Figure 4 Pseudo code of the Frequent Item Tree algorithm.

Phase 2 of constructing FI tree structure is the actual building of this compact
tree. This phase requires a complete scan of the ordered frequent 2-itemsets.
The ordered frequent 2-itemsets are used in constructing the FI tree as follows:
The first item in the first frequent 2-itemset in the frequent 2-itemsets list is
added to the header file and this item will be the root for the child node. The
support of frequent 2-itemset is assigned as the support to the item in the header
table. In the first step, for each frequent 2-itemset, read the first item and
compare with the item in the header table. If the item is already present in the
header table a link is assigned to the second item in the frequent 2-itemset with
the item in the child node. The support for the item in the header table will be
compared with the support of the frequent 2-itemset and the highest support will
be assigned to the item in the header table. The first step is repeated until the
first item in the frequent 2-itemset list changes. If the first item in the frequent
2-itemset list changes, then the corresponding first item in the frequent 2-
itemset is added to the header table with the support of the frequent 2-itemset
and the first step is continued until the first item in the frequent 2-itemset
changes. If both the items in the corresponding 2-itemset are not available in
the header table, then the first item of the frequent 2-itemset is added to the
header table with the support of the frequent 2-itemset and a new node is added
as child for the root node, in which the first item of frequent 2-itemset acts as
child for the root node and a link is assigned to the second item of the frequent

 Discovery of Frequent Itemsets 49

2-itemset. The process used in first step will be continued till the first item in
the frequent 2-itemset changes. The above procedure will be repeated until the
end of the frequent 2-itemset list. Finally the second item in the last frequent 2-
itemset is added to the header table, assigned its maximum support from the
frequent 2-itemset list and corresponding link is made. The pseudo code of the
algorithm is depicted in Figure 4.

For illustration, we use an example with the transactions shown in Table 1. Let
the minimum support threshold set to 2. Various steps used in phase 1 are
shown in Figure 5. Phase 1 starts by accumulating the support for all possible 2-
itemsets that occur in the transactions. Step 2 of phase 1 removes all non-
frequent 2-itemsets, in our example (ab,ae and af), leaving only the frequent 2-
itemsets (be,ac,ag,bc,bf,bg,ce,cf,cg,ef,eg and fg). Finally all frequent 2-itemsets
are sorted alphabetically to generate the sorted frequent 2-itemset list. This last
step ends phase 1 of the FI tree algorithm and starts the second phase. In phase
2, the first item a of the first frequent 2-itemset ac is added to the header table.
The 2-itemset ac generates the first path of FI tree with item a as root node and
item c as the child node with support for a as 2 in the header table. A link is
established between items a and c and its corresponding item entry a in the
header table. Since the first item a of the second 2-itemset in the frequent 2-
itemset list is already present in the header table, a link is established between
items a,c and g. Both the items band c of the next 2-itemset bc are not present in
the header table item b is added to the header table and forms the second path of
the FI tree with item b as the root node and item c as the child node with
support of b as 2 in the header table. A link is established between items b and c
and its corresponding item entry b in the header table. For the next frequent 2-
itemset, the first item b is already in the header table, so a link is established
between b, c and e. The support 3 for 2-itemset be will be assigned for item b in
the header table. The same process occurs for all frequent 2-itemsetss until we
build the FI tree for the transactions given in Table 1. At last item g from the
frequent 2- itemset fg is added to the header table and assigned a support of 3.
Figure 6 shows the result of the tree building process.

Table 1 Transactional database.

T.No Items

T1

T2

T3

T4

b e

a b c e f g

b c e f g

a c g

50 A.V. Senthil Kumar & R.S.D. Wahidabanu

 Step 1

Figure 5 Steps of Phase 1.

Figure 6 Frequent Item Tree.

4 Experimental Results
Experiments were conducted to test the efficiency of the FI-tree approach by
comparing our approach with two well-known algorithms namely: Apriori and
FP-growth. All experiments are performed on a 1.88 GHz P-IV Core 2DUO
with 1 GB DDR2 800 MHz main memory, 80 GB HDD running on Microsoft
Windows XP. All programs are written in Microsoft Visual Basic 6.0. We used

Item Freq
be 3
ab 1
ac 2
ae 1
af 1
ag 2
bc 2
bf 2
bg 2
ce 2
cf 2
cg 3
ef 2
eg 2
fg 2

Item Freq
 be 3
ac 2
ag 2
bc 2
bf 2
bg 2
ce 2
cf 2
cg 3
ef 2
eg 2
fg 2

 Step 2

Item Freq
ac 2
ag 2
bc 2
be 3
bf 2
bg 2
ce 2
cf 2
cg 3
ef 2
eg 2
fg 2
 Step 3

 Discovery of Frequent Itemsets 51

synthetic transactional databases generated using IBM Quest synthetic data
generator [10]. All the experiments were conducted using T20I7D200k dataset.
The naming conventions of the datasets are shown in Table 2. The number of
the items that can occur in the transactions is 1000.

Table 2 Meaning of the parameters in the names of the datasets.

Parameter Meaning

T Average length of the
transactions

I Average size of maximal
frequent itemsets

D Number of transactions
K Thousands

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00
90

00
10

00
0

0.0025% 0.0050% 0.0075% 0.0100%

Support

Ti
m

e
in

 s
ec

on
ds

Apriori FP-Growth FI-Tree

Figure 7 Performance at various support levels.

To test the behavior of the FI-tree vis-à-vis different support thresholds, a set of
experiments was conducted. The mining process tested different support levels,
which are 0.0025% that revealed almost 110k frequent patterns, 0.005% that
revealed nearly 75k frequent patterns, 0.0075% that generated 40k frequent
patterns and 0.01% that returned 22k frequent patterns. Figure 7 depicts the time
needed in seconds for each one of these runs. It is clear that FI-tree algorithm is

52 A.V. Senthil Kumar & R.S.D. Wahidabanu

the fastest of all the three methods. The execution time of the FI-tree method is
always smaller than that of the Apriori and FP-growth algorithms. Figure 8
shows the execution times in seconds for the various datasets with transaction
sizes 50, 100, 150, 200 and 250 of the three algorithms. It can be easily
concluded that the execution time dependency of the Apriori algorithm on the
number of transactions is linear. FP-growth algorithm reads the database twice
and stores the database in the form of a tree in the main memory. FI-tree
algorithm reads the entire database only once and the frequent 2-itemsets of
them are used to build a tree structure so-called FI-tree structure.

0

50

10
0

15
0

20
0

25
0

30
0

35
0

50 100 150 200 250

number of transactions

tim
e

(s
ec

)

Apriori FP-growth FI-tree

Figure 8 Execution time of the tree algorithm as a function of the number of
transactions by 0.8% minimum support threshold.

In Figure 9 the peak memory sizes in megabytes are illustrated as a function of
the number of transactions when the average size of the maximal frequent items
is 7 and the average size of the transactions is 20. The minimum support
threshold is set to 0.7%. The memory requirement for FI-tree algorithm is less
for all datasets with transaction sizes 50, 100, 150, 200 and 250 when compared
to FP-growth algorithm. The memory requirement of the FP-growth algorithm
increases significantly with the growth of the number of transactions. The
reason for this can be found when examining the sizes of the trees generated by
the algorithm. If the algorithm mines two datasets with the same statistical
properties but the one contains an order of magnitude more transactions than the
other, the first FP-tree built by the FP-growth algorithm contains an order of

 Discovery of Frequent Itemsets 53

magnitude more nodes in the former case than in the latter. However the rules
that have been found are nearly the same. From this fact we can draw the
conclusion that several redundant nodes are in the FP-tree when increasing the
number of the transactions. Its drawback is, however, that the memory
requirement of the algorithm is huge. The memory requirement of the FI-tree
algorithm depends only on the number of frequent 2-itemsets in the given
transactions. Since FI-tree algorithm stores only the items needed for finding
frequent 2-itemsets which are then used to form a tree in the main memory, the
memory requirement of the FI-tree algorithm does not depend on the number of
transactions.

0

50

10
0

15
0

20
0

25
0

30
0

35
0

50 100 150 200 250
number of transactions

pe
ak

 m
em

or
y

(M
by

te
)

FP-Growth FI-Tree

Figure 9 Peak memory of the algorithms as a function of transactions by 0.7%
minimum support threshold.

The sizes of the first generated FP-trees in bytes are depicted in case of the FP-
growth and of the FI-tree algorithms when used T20I7D200k dataset as a
function of the minimum support threshold is illustrated in Figure 10.
Apparently the sizes of the tree in case of all seven support thresholds are less in
FI-tree algorithm when compared with FP-growth algorithm.

54 A.V. Senthil Kumar & R.S.D. Wahidabanu

0

0.5

1

1.5

2

2.5

3

0.5% 0.6% 0.7% 0.8% 0.9% 1.0% 1.1%
minimum support

si
ze

 o
f t

he
 fi

rs
t g

en
er

at
ed

 tr
ee

s
(M

ill
io

ns
)

FP-Growth FI-Tree

Figure 10 Sizes of the first generated tree of the FP-Growth and of the FI-Tree
algorithm when using T20I7D200K.

5 Conclusion
This paper is concerned with the problem of efficiently discovering frequent
itemsets in transactional databases. The algorithm identifies the main problem
of the FP-growth algorithm which is the recursive creation and mining of many
conditional pattern trees, and which are equal in number to the distinct frequent
patterns generated. We have replaced this step by creating one FI-tree by
scanning the database only once and by using the frequent 2-itemsets. The FI-
tree algorithm is even faster than Apriori and FP-growth algorithms, and the
memory requirement of the novel method does not depend on the number of
transactions.

The advantage of the FI-tree algorithm is the quick mining process that does not
use candidates. Its drawback is however, that the time needed to build an FI-tree
and the memory requirement depends upon the number of frequent 2-itemsets.
If the algorithm mines two datasets with the same number of transactions but
the one contains more frequent 2-itemsets than the other, the first needs more
time to build an FI-tree and the memory requirement will be more than in the
latter. We are currently studying the possibility of using hashing techniques to
find the efficient frequent 2-itemsets in order to reduce the time and memory
requirements to build an FI-tree.

 Discovery of Frequent Itemsets 55

References
[1] R.Agrawal, T.Imielinski, and A.Swami, “Mining Association Rules

between Sets of Items in Large Databases”, Proc. Of ACM
SIGMOD,Washington DC, 1993.

[2] R.Agrawal and R.Srikant, “Fast Algorithms for Mining Association
Rules”, Proc.of the 20th Intl. Conf. on VLDB, Santiago, Chile, 1994.

[3] J.Han, J.Pei, and Y.Yin, “Mining Frequent Patterns without Candidate
Generation”, Proc. Of the ACM SIGMOD, Dallas, TX, 2000.

[4] J.Pei, J.Han, H. Lu, S.Nishio, S.Tang, and D.Yang, “H-Mine: Hyper-
Structure Mining of Frequent Patterns in Large Databases”, Proc. Of
IEEE ICDM, San Jose, California, 2001.

[5] M.H. Zaki, “Scalable Algorithms for Association Mining”, IEEE
Transactions on Knowledge and Data Engineering, May/June 2000, 372-
390.

[6] V.S. Ananthanarayana, D.K.Subramanian and M.N. Murty, “Scalable,
distributed and dynamic mining of association rules”, Proc.of the 7th
Intl.Conf. on High Performance Computing, Bangalore, India, pp.559-
566.

[7] R.J. Bayardo, “Efficiently mining long patterns from databases”, Proc. Of
the ACM SIGMOD Intl. Conf.on Management of Data,Seatle, WA, pp.
85-93.

[8] P.Shenoy, J.R.Haritsa, S.Sundarshan, G.Bhalotia, M.Bawa and D.Shah,
“Turbo-charging vertical mining of large databases”, Proc.of the ACM
SIGMOD, Dallas, TX, pp.22-33.

[9] R.Ivancsy, F.Kovacs and I.Vajk, “An Analysis of Association Rule
Mining Algorithms”, In CD-ROM Proc.of Fourth International ICSC
Symposium on Engineering of Intelligent Systems (EIS 2004), Island of
Madeira, Portugal.

[10] I.Almaden. Quest synthetic data generation code.
http://www.almaden.ibm.com/cs/quest/syndata.html

R.S.D. Wahidabanu is presently Head, Department of CSE, Government College of
Engineering, Salem, Tamilnadu, India. She has 24 years of teaching experience. Her
research area includes Pattern Recognition, Artificial Intelligence and Data Mining.

A.V. Senthil Kumar is presently working as a Lecturer in the Department of MCA,
CMS College of Science and Commerce, Coimbatore, Tamilnadu, India. He has more
than 10 years of teaching and 5 years of industrial experience. During August 2006, he
has participated and presented two papers in the area of Data Mining in an International
Conference, ICTS 2006 in Indonesia and two papers in an International Conference,
IMECS 2007 in Hongkong during March 2007. His research area include Data Mining
and Image Processing.

	1 Introduction
	2 Problem Statement
	2.1 Apriori Algorithm
	2.2 FP-Growth Algorithm

	3 Frequent Item Tree Algorithm
	4 Experimental Results
	5 Conclusion

