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1 Introduction  

System identification is based on study and analysis of input and output data 
collected from a system.
unavoidable. Data acquisition from
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modelling of a system based on a system identification 
approach, data acquisition is the first procedure that must be carried out. 

acquisition process from a real system typically yields large amounts of 
This may lead to unacceptable computational time during the identification 

process. Raw data may also suffer severe noise disturbance, especially in
high frequency region. In addition, bias estimation will occur if one only 
considers direct identification from a closed-loop system. To overcome 

in this paper a multivariable frequency sampling filter approach is 
input-multi-output (MIMO) raw data are analyzed in order to 

 and meaningful parameters that describe the empirical 
model of the analyzed data. By performing this procedure, compressed, cleaned 
and unbiased data are produced. The efficacy of the MIMO frequency sampling 

demonstrated by compressing two sets of data: pH neutralization 
process data and steam generator plant data. The results show that the amount of 

successfully compressed and that the output was ready for 
identification purposes with less computational time, i.e. they could be further 
used to develop a model of the system, to conduct time and frequency response 

developing a new control system design. 

compression; frequency sampling filters; multivariable process
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System identification is based on study and analysis of input and output data 
system. To perform this procedure, a data acquisition process is 

unavoidable. Data acquisition from a real system typically yields large amounts 
time data. This may lead to unacceptable computational time during 

the identification process. Also, the raw data may contain complex system 
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disturbance information, which may require a sophisticated optimization 
algorithm in order to achieve the desired results [1-5]. In addition, for data 
collected from a closed-loop system, bias estimation will occur if one only 
considers direct identification. An open-loop direct identification approach is 
applicable only if the appearance of noise disturbance is not significant and can 
be neglected. Fortunately, this problem can be solved by introducing a 
frequency sampling filter (FSF) within the first stage of the identification 
process [4-8]. 

FSF is a discrete-time model. The FSF approach is useful in addressing the 
problem of large amounts of data collected from a system. By performing an 
FSF procedure, compressed, cleaned and unbiased data can be obtained from 
the system. The information gathered from this step can be further used to 
develop a model of the system. Besides that, analysis and observation can be 
done for optimization and controller design purposes. The smaller amount of 
computational time and load due to the smaller number of data being processed 
will also help in improving the overall performance of the required procedures. 
The plot for step response and frequency response data obtained after 
performing frequency sampling can also be used to analyze the performance of 
the observed system [4-8].  

The FSF structure was first introduced into the field of system identification and 
automatic control by Bitmead and Anderson [9], Parker and Bitmead [10]. 
Research in the signal-processing field is looking at designing modified 
frequency-sampling filters that account for finite word-length effects [11]. In 
reference [12], the authors have combined this model structure with a standard 
least-squares estimator in order to directly obtain an estimate of the process 
frequency response with a frequency-domain statistical bound on the model 
uncertainty. FSF models have been used to estimate step response models along 
with their corresponding time domain confidence bounds [13].  

The step response (invariant in both discrete and continuous time) obtained 
from FSF models is gaining much interest for use in system identification, since 
it provides information regarding the stability of the system and the ability to 
reach stationary state. It also has a transparent representation in terms of gain, 
time delay and time constant. It is widely viewed as a precursor to the design of 
further experiments, as an indicator for the collection of more input-output data, 
and as a subsequent procedure for regression-based techniques to obtain more 
accurate models [6, 14].  

The use of FSF as data compression method can be found in various single 
input single output (SISO) applications [7, 8, 15-17]. However, most systems in 
control engineering are multivariable in nature. The control theory for 
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multivariable systems certainly finds immediate application in a wide variety of 
problems. The control of multivariable processes is complicated due to the 
coupling that exists between the control inputs and the outputs. For systems that 
have more than one input and output variable (especially for ill-conditioned 
processes), those inputs/outputs must be analysed together in order to foresee 
the correlation between them.  

Thus, the aim of this paper is to develop a new multi-input multi-output FSF 
algorithm. This novel contribution will facilitate MIMO system identification, 
in terms of providing cleaned and unbiased MIMO compressed data. In 
addition, the analysis of a MIMO system via the MIMO approach will definitely 
give clearer observations since the involvement of all the input/output variables 
can be examined inclusively.  

In brief, this paper is organized as follows. Section 2 describes the frequency 
sampling filter model. Details on how to obtain step and frequency response 
data via the FSF model approach will be elaborated in Section 3. Then, the 
performance and results of the proposed approach will be elaborated in section 
4. Here, two system examples will be used: a pH neutralization process and a 
steam generator process. Finally, Section 5 concludes the paper. 

2 Frequency Sampling Filter Model 

The FSF approach used in this paper is originally obtained from [14,18]. The 
FSF model can be identified as 

 )()()()( kvkuzGky +=  (1) 

where )(),( kyku  are input and output signal respectively. )(kv is the zero mean 
disturbance term. )(zG  is obtained from linear transformation of the FIR model. 
With the assumptions that the process being identified is stable, linear and time 
invariant, the FIR transfer function model is 
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To derive the FSF model, we make use of the inverse Discrete Fourier 
Transform (DFT) relationship between the process frequency response and its 
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This relationship maps a set of discrete-time frequency response coefficients, 
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Interchanging the summations in (4) gives the transfer function in its FSF model 
form  
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Define a set of transfer functions extracting from (5) 
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m  , the above equation is referred to as the m -th FSF 

with the centre frequency of the m -th filter at 
n
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At mωω = , the following condition holds 

 0)( =ωja eH           for             ma ≠  

 1)( =ωja eH            for            ma =  
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where a  is an integer like m in the range ]
2

1
,

2
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−−− nn . In this case, the value 

of the process frequency response in (8) is reduced to the value of the process 

frequency response coefficient )(
2

n
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π
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Figure 1 FSF model structure (adapted from [14]). 

Given the discrete input signal, )(ku , the discrete measured output signal, )(ky , 
and the disturbance, )(kv , the FSF model can be explained in a block diagram, 
as shown in Figure 1. Figure 1 shows a block diagram of the frequency 
sampling filter model being used to represent the process. The process input 
first passes through the set of frequency sampling filters arranged in parallel. 
Then, the output of each filter is weighted by the discrete-time process 
frequency response evaluated at the corresponding centre frequency. Finally, 
the weighted filter outputs are summed to form the noise-free process output. 
The FSF filters are narrow band limited around their respective centre 
frequencies. All the filters have identical frequency responses except for the 
location of their centre frequencies. 

 

Define the parameter vector as 
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and its corresponding vector regressor vector as 
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where )(Τ  denotes the transpose matrix and )(kmf  is defined according to (7) 
as 

 )()( zHkmf
m=  (11) 

Thus, (1) can be rewritten as 

 )()()( kvkky += Τφθ  (12) 

For N data measurements, (12) can also be written in matrix form as 

 VY +ΘΦ=  (13) 

Eq. (13) can then be used to solve the least squares estimate of Θ given by 

 NNNN YΤ−Τ ΦΦΦ=Θ 1)(ˆ  (14) 

which minimizes the performance index of the form 
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The matrix )( NNΦΦΤ  is called the correlation matrix and the invertibility 
condition on this matrix is sometimes called the sufficient excitation condition 
for parameter estimation. In order to obtain a proper FSF parameter 
optimization, the least squares model estimates based on PRESS (predicted 
residual sum of squares) computation is used. The PRESS criterion will ensure 
that the FSF model has the greatest predictive capability among all candidate 
models [19]. 

2.1 Multivariable FSF 

In order to take full advantage of the orthogonal decomposition algorithm for 
parameter estimation, we chose the multivariable system to be identified. For 
the MIMO system, p inputs are denoted as ( ) ( ) ( )kukuku p,,, 21 …  and q outputs 

are denoted as
 

( ) ( ) ( )kykyky q,,, 21 … , the times to steady state for each subsystem 

are given by pΝΝΝ ,,, 21 … , and the reduced orders for each subsystem are 

represented by its own FSF model are chosen to be pnnn ,,, 21 … . For the MISO 

system, the q outputs are denoted as( )ky . For the multivariable system, the 

matrix representation is dictated as follows: 
 
1. The first input ( )ku1  is passed through a set on 1n FSF based on1Ν , to form 

the first 1n columns of the data matrix. 
2. The next input is passed accordingly to form the next columns of the data 

matrix. 
3. The associated parameters comprising of all the subsystems will be justified 

in the multivariable form.  
4. The least squares algorithm is then applied to estimate the FSF model 

parameters with respect to each subsystem. 

2.2 The PRESS Criterion 

The idea of PRESS is to set aside each data point, estimate a model using the 
rest of the data, and then evaluate the prediction error at the point that was 
removed. The PRESS statistic can be applied as a criterion for model structure 
detection in dynamic system identification. 

Define the prediction error as 
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where Nkke k ,...,2,1),( =−  are called the PRESS residuals and θ̂  has been 
estimated according to (14) without including )(kφ  and )(ky . The PRESS 
residuals )(ke k− represent the true prediction errors and can be calculated 
according to the following equation 

 
)()()(1
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The PRESS statistic is defined as 
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The average PRESS is calculated as 
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Both (18) and (19) provide measures of the predictive capability of the 
estimated model. In terms of model structure selection, the chosen structures are 
based on the smallest PRESS value. 

3 Step and Frequency Response Estimate Using FSF Model 

In the estimation of step response, the description of the system using the FSF 
model can be described as follows: 
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where for a suitable choice of )(
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n
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 and )(zH m  are defined as in (4) and 
(7) respectively. Upon obtaining the estimate of the frequency response 
parameters (according to the FSF model and PRESS criterion), the estimate of 
the step response at sampling instant m  can be expressed by 

 ∑
−

=

=
1

0

ˆˆ
m

i
im hg  (21) 

where the estimated impulse response coefficients 1210
ˆ,...,ˆ,ˆ,ˆ

−mhhhh  are related 
to frequency response via 
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By substituting (22) into (21), the estimated step response coefficient can be 
rewritten as 
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Although the FSF approach is cast in the discrete-time domain and the 
corresponding z -transform domain, the resultant model can be used to obtain 
continuous time step response. The system impulse response )(ˆ tg  can be 
approximately computed using the continuous time equivalent as 
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where T  is a sampling period. The step response is determined as 
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The frequency response estimate is obtained over a transformation of ∆= ωjez . 
Thus, in frequency domain form, the equations can be rewritten as 
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 ( ) ( ) Ωℵ<= ∆ ωω ω for          j
kk eHjH  (28) 

where n is odd and the frequency sampling interval 
T

π2=Ω , ( )zH k  is the k-th 

FSF and kθ  is the corresponding (complex) parameter for the frequency range 
of Ωℵ≤≤ ω0  . 
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3.1 Confidence Bounds for the Step Response Model 

The confidence bounds for the step response model derived from the FSF model 
using (23) can be obtained. The basic idea is to represent the step response 
coefficients as a linear transformation of the estimated FSF parameters. 

Theorem 1. Let the estimated step response be represented by: 

 θ̂)(ˆ lSgm =  (29) 

where 
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By considering the following assumptions: 

A1.  The process is stable, linear and time invariant with finite settling time 

sT and the parameter n  is chosen to be greater than or equal to 
t

Ts

∆
 . 

A2. The disturbance v  is zero mean, normally distributed white noise with 
variance 2σ . 

A3. nN = , or N is chosen such that the neglected frequency parameters are 
negligible in magnitude relative to the parameters being retained in the 
model. 

 
The error between the true process step response weight mg  and the estimated 
step response weight mĝ is bounded by  

 )(*|ˆ| lpgg mm δ≤−  (31) 

with probability )( pP  , where )(lδ is given by 

 212 )())(()( σδ mSlSl Τ−ΤΦΦ=  (32) 

Based on assumptions A1-A3, the following properties of the least square 
estimate θ̂  obtained from (13) can be stated: 

• Bias: The estimate θ̂  is unbiased. 
• Variance: The covariance of the parameter estimates is given by 

 [ ] 21)()ˆ)(ˆ( σθθθθ −ΤΤ ΦΦ=−−E  (33) 
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• Distribution properties:  Since only a linear operation is involved in 
estimating the parameters, θ̂  will follow a normal distribution. 

 
Proof 1. Under assumption A1, the true process step response can be 
represented by  

 θ)(lSgm =  (34) 

From assumptions A1-A3, we know that θ̂  is an unbiased and normally 
distributed estimate of θ . Therefore, mĝ  is an unbiased and normally 
distributed estimate ofmg . The variance of the estimated step response 
coefficient at the sampling instant m  is given by 
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and the bounds in (31) follow directly. 

Applying (31), the trajectory of the true step response mg  for 1,...,1,0 −= nm  lies 
inside the envelope given by )(*ˆ lpg m δ±  with probability )( pP . This 
envelope provides the confidence bound on the estimated step response model. 

4 Results and Discussion 

The overall flow of the process is shown in Figure 2. Two sets of multivariable 
real system data have been used to demonstrate the efficacy of the developed 
multivariable FSF. Firstly, multi input single output (MISO) data from a 
simulation of a pH neutralization process in a stirring tank. Secondly, multi 
input multi output (MIMO) data from a model of a steam generator at a power 
plant. Both of these data sets are industrial system process data obtained from 
[20]. 
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Figure 2 Overall procedure. 
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4.1 Example 1 – pH Neutralization Data 

The volume of the tank used in the pH neutralization process was 1100 litres. 
This process is a highly non-linear system. The acid and the base solution were 
mixed together in a constant-volume stirring tank and the pH neutralization 
process data were simulated. The concentration of the acid solution (HAC) was 

lMol /0032.0  and the concentration of the base solution (NaOH) was 
lMol /05.0 . About 2000=N  data were measured in s10 . The inputs were acid 

solution flow in litres and base solution flow in litres, while the output of the 
system was the pH solution in the tank (See Figure 3).   
 

  
Figure 3 Input and output plot for pH neutralization data system. 

The two inputs and one output of the pH neutralization system were defined by 
the following configuration 

 ( ) [ ] ( )
( )

1
1 1 1 2

2

u t
y t G G

u t

 
=    

 

 

Figure 4 and Figure 5 illustrate the step response and the frequency response 
obtained from the process data. The number of successfully compressed data of 
the process is described in Table 1. 
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Figure 4 Step response obtained from FSF model of Example 1. 

 

Figure 5 Frequency response obtained from FSF model of Example 1; (a) G11 
(b) G12. 

4.2 Example 2 – Steam Generator Data 

These data come from a model of a steam generator at the Abbott Power Plant 
in Champaign IL (refer to Figure 6).  A detailed description of this model can be 
obtained from [21]. About 9600=N  data were measured in s3 . The inputs for 
this model were fuel (scaled 0-1), air (scaled 0-1), reference level in inches, and 
disturbance defined by load level. The outputs were drum pressure, excess 
oxygen in exhaust gases (%), level of water in the drum and steam flow (Kg/s). 
Figure 7 illustrates the inputs and the outputs of this plant. The four inputs and 
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four outputs of the steam generator system were defined by the following 
configuration 

 

( )
( )
( )
( )

( )
( )
( )
( )

1 11 12 13 14 1

2 21 22 23 24 2

3 31 32 33 34 3

4 41 42 43 44 4

y t G G G G u t

y t G G G G u t

y t G G G G u t

y t G G G G u t

  
  
  =
  
  
    

 

 

 
Figure 6 Industrial steam generator plant (adapted from [12]). 

Step response and frequency response obtained for these inputs and outputs data 
are shown in Figure 8 and Figure 9. The number of successfully compressed 
data is shown in Table 1.  

Table 1 Number of data before and after performing FSF. 

Types of data Number of raw 
data 

Number of 
compressed data 

MISO – Example 1 2000 1000 

MIMO – Example 2 9600 3000 
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(a) 

 

(b) 

Figure 7 Input (a) and Output (b) plot for steam generator data system. 
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Figure 8 Step response obtained from FSF model of 

Figure 9 Frequency response obtained from FSF model of Example 2 
Input/Output 1 (b) Input/Output 2 (c) Input/Output 3 and (d) Input/Output 4

MIMO Frequency Sampling Filters for Modelling  

Step response obtained from FSF model of Example 2. 

(a) 

Frequency response obtained from FSF model of Example 2 for
Input/Output 1 (b) Input/Output 2 (c) Input/Output 3 and (d) Input/Output 4

 89 

 

 

for (a) 
Input/Output 1 (b) Input/Output 2 (c) Input/Output 3 and (d) Input/Output 4. 
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Figure 9 Continued. 
2 for (a) Input/Output 1 (b) Input/Output 2 (c) Input/Output 3 and (d) 
Input/Output 4. 
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(b) 

(c) 

Continued. Frequency response obtained from FSF model of Example 
2 for (a) Input/Output 1 (b) Input/Output 2 (c) Input/Output 3 and (d) 

 

 

Frequency response obtained from FSF model of Example 
2 for (a) Input/Output 1 (b) Input/Output 2 (c) Input/Output 3 and (d) 
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Figure 9 Continued. 
2 for (a) Input/Output 1 (b) Input/Output 2 (c) Input/Output 3 and (d) 
Input/Output 4. 

4.3 Discussion 

As mentioned earlier, the MIMO FSF model involves a process of data 
compression in which the system step response in non
obtained. The significance

1. The large amounts 
reduced or compressed into 

2. The process frequency parameters 
region of the system are neglected as the information 
region normally has severe noise corruption.

3. A relative noise-free step response is obtained as compared to an actual step 
response test. Thus, it can be 

The number of compress
about the system will 
compressed, the step response estimate plot 
at the step response 
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Continued. Frequency response obtained from FSF model of Example 
/Output 1 (b) Input/Output 2 (c) Input/Output 3 and (d) 

As mentioned earlier, the MIMO FSF model involves a process of data 
compression in which the system step response in non-parametric form is 

significance of this approximation lies in the fact that: 

 of data that have been collected from the system can be 
or compressed into smaller numbers of data. 

The process frequency parameters that correspond to the higher frequency 
he system are neglected as the information content from that 

region normally has severe noise corruption. 
free step response is obtained as compared to an actual step 

response test. Thus, it can be judged intuitively by the process enginee

The number of compressed data must be chosen correctly so that no information 
 be lost. To decide the amount of data that needs to be 

step response estimate plot plays an important role. By 
at the step response estimation plot, we can see whether the number of 
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Frequency response obtained from FSF model of Example 
/Output 1 (b) Input/Output 2 (c) Input/Output 3 and (d) 

As mentioned earlier, the MIMO FSF model involves a process of data 
parametric form is 

of data that have been collected from the system can be 

higher frequency 
from that 

free step response is obtained as compared to an actual step 
intuitively by the process engineer. 

information 
needs to be 
By looking 

whether the number of 
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compressed data is enough or too large or maybe too small. For instance, Figure 
4 shows that for the pH neutralization system, 1000 data are already enough to 
be compressed. If, for example, we compressed these to 500 data only, the FSF 
model would be unable to capture the steady state mode of the system. Thus, 
part of the overall system information may be lost. Figure 10 shows the 
compression of Example 1 to 500 data.   

 
Figure 10 Step response obtained from FSF model of Example 1 with 500 
compressed data. 

On the other hand, if we compress the data from Example 1 to more than 1000 
data, the data will still contain all the information about the system. However, a 
larger number of data will definitely affect computational time during the 
system identification process. Figure 11 shows the compression of the Example 
1 data from 2000 data to 1500 data. In this figure, it can be seen that the step 
response estimate has reached the steady state condition at around 1000 data. 
Compression of data higher than this number should be ignored in order to 
optimize the computational time during the system identification procedure. 
Thus, in dealing with different types of plants and systems, one must make a 
wise judgment so as to make sure that all the information of the system is 
captured/modelled, and at the same time optimize the overall computational 
time.   



 MIMO Frequency Sampling Filters for Modelling  93 
 

 
Figure 11 Step response obtained from FSF model of Example 1 with 1500 
numbers of compressed data. 

As mentioned in Section 2 and 3, the FSF approach assumes that the system is 
stable or asymptotically stable. Therefore, the produced step response will also 
become constant or asymptotically constant. Another assumption has to be made 
in order to use the FSF model for unstable systems. As discussed in [16], the 
same method can be used to unstable systems by introducing exponential 
weighting ( ( ) ( ) ( ) ( ) ( ) ( );  ;  at at at

a a ay t e y t u t e u t g t e g t− − −= = = ). And so the 

Laplace transformation will become ( ) ( ) ( ) ( ) ( ) ( );  a a aY s G s U s Y s G s U s= =  

and ( ) ( )aG s G s a= + . If the unstable system, ( )G s  (relating ( )tu  to ( )ty ) has 

all poles ip  such that ( ) api <Re , the system ( )asG +  is stable and relates the 

exponentially windowed signals (relating ( )tua  to ( )tya ). 

By having this, the performance index as in Eq. 15 has to be replaced with 

 ( )∑
=

∆ ΠΦ−=Θ
N

k

bk
b YeNJ

0

2||)ˆ,(  (35) 

Using b = a, the effect of the exponential weighting will be taken care of, and all 
the data can be used. However, this method should be used with caution to 
avoid numerical rounding problems, and the minimum appropriate value of a 
should be considered [16]. 

Another issue that can be raised is how to validate whether the step response 
estimates or the frequency response estimates that have been produced are 
accurate and informative enough to represent the true system. One solution is to 
have simulated data with a known model structure. Once the data are run using 



94 M.H.R.A. Aziz & R. Mohd-Mokhtar 

the FSF approach, the validation process can be performed by obtaining a 
mathematical model of the system using any standard system identification 
method. Standard verification tests (e.g. the mean square error (MSE) test, the 
R2 test, best fit test, variance test etc.) in the system identification procedure can 
also be used as a way to verify its accuracy. Other than that, the developed 
model from the estimates can also be used together with the controller. The 
control performance can be observed, in which good control performance 
resembles a good model of the controlled system. 

5 Conclusion and Future Works 

Most real system applications involve the usage of a multiple number of input 
and output variables. This includes the large number of data to be collected and 
used for identification purposes. The novel approach of the MIMO FSF model 
proposed in this paper has three distinct advantages: 

1. It investigates a true system application incorporating all possible 
input/output variables together.  

2. It produces a clean and unbiased empirical model that can be used for 
system identification.  

3. It reduces the amount of data for further study and analysis of the overall 
system. 

 
For future works, the step and frequency response estimates (empirical model) 
can be used in identifying the mathematical model of both of these applications. 
The obtained model of the applications can be used for further research on 
control analysis. By having the model and observing the control performance, 
one may verify the efficacy of having the FSF filter prior to the system 
identification procedure as compared to direct use of the raw data to obtain the 
model of the system. 
 
In addition, future work is also considered in setting up automated system 
configuration and data compression, in which assessing the optimal number of 
data to be compressed, and the tuning and the verification can be done 
simultaneously. 
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