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Abstract. In the modelling of a system based @ system identificatiol
approach, data acquisition is the first procedha tmust becarried out.The
dataacquisition process frc areal system typically yields large amounts
data.This may lead to unacceptable computational timéndithe identificatior
process. Raw data may also suffer severe noiserlogsic, especiallyin the
high frequency region. In addition, bias estimn will occur if one only
considers direct identification from a clo-loop system. To overcomthis
problem, in this paper emultivariable frequency sampling filter approact
introduced. Multimpui-multi-output (MIMO) raw data are analyzed in orde
obtain only relevantand meaningful parametetbat describe the empiric
model of the analyzed data. By performing this pthaoe, compressed, clear
and unbiased data are produced. The efficacy oMiO frequency samplin
filters was demonstrated t compressing two sets of data: pH neutraliza
process data and steam generator plant The results showhat the amount ¢
raw data wassuccessfully compressed arthat the output wageady for
identification purposes with less computationale, i.e. they couldbe further
used to develop a model of the systto conduct time and frequency respol
analysis, and also fateveloping a ne control system design.

Keywords: Data compression; frequency sampling filters; multivariable process; non-
parametric model; system identification.

1 Introduction

System identification is based on study and amalgsiinput and output da
collected from aysterr To perform this procedure data acquisition process
unavoidable. Data acquisition frca real system typically yields large amou
of discretetime data. This may lead to unacceptable compunaltibme during
the identification proces<Also, the raw data may contain complex sys
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disturbance information, which may require a soptased optimization

algorithm in order to achieve the desired result$][ In addition, for data
collected from a closed-loop system, bias estimatidgll occur if one only

considers direct identification. An open-loop dirédentification approach is
applicable only if the appearance of noise distackas not significant and can
be neglected. Fortunately, this problem can be esblby introducing a

frequency sampling filter (FSF) within the firstage of the identification

process [4-8].

FSF is a discrete-time model. The FSF approachséfulin addressing the
problem of large amounts of data collected fronystesn. By performing an

FSF procedure, compressed, cleaned and unbiasadaatbe obtained from
the system. The information gathered from this step be further used to
develop a model of the system. Besides that, asafysd observation can be
done for optimization and controller design purgosehe smaller amount of
computational time and load due to the smaller remalb data being processed
will also help in improving the overall performanckthe required procedures.
The plot for step response and frequency resporsta dbtained after

performing frequency sampling can also be usedédyae the performance of
the observed system [4-8].

The FSF structure was first introduced into thidfaf system identification and
automatic control by Bitmead and Anderson [9], Barknd Bitmead [10].
Research in the signal-processing field is lookeig designing modified
frequency-sampling filters that account for finiterd-length effects [11]. In
reference [12], the authors have combined this instdecture with a standard
least-squares estimator in order to directly obtmnestimate of the process
frequency response with a frequency-domain stedistoound on the model
uncertainty. FSF models have been used to estistepieresponse models along
with their corresponding time domain confidencerimtsi[13].

The step response (invariant in both discrete amiruous time) obtained

from FSF models is gaining much interest for ussystem identification, since

it provides information regarding the stability thie system and the ability to
reach stationary state. It also has a transpaegmésentation in terms of gain,
time delay and time constant. It is widely viewadagprecursor to the design of
further experiments, as an indicator for the caiéecof more input-output data,

and as a subsequent procedure for regression-bes®uiques to obtain more
accurate models [6, 14].

The use of FSF as data compression method canupel i@ various single
input single output (SISO) applications [7, 8, T4-However, most systems in
control engineering are multivariable in nature.eThkontrol theory for
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multivariable systems certainly finds immediate laggpion in a wide variety of
problems. The control of multivariable processesasnplicated due to the
coupling that exists between the control inputs tiedoutputs. For systems that
have more than one input and output variable (esibedor ill-conditioned
processes), those inputs/outputs must be analpgmsdher in order to foresee
the correlation between them.

Thus, the aim of this paper is to develop a newtirmput multi-output FSF

algorithm. This novel contribution will facilitatlIMO system identification,

in terms of providing cleaned and unbiased MIMO pogssed data. In
addition, the analysis of a MIMO system via the MOMpproach will definitely

give clearer observations since the involvemersllothe input/output variables
can be examined inclusively.

In brief, this paper is organized as follows. Smtt2 describes the frequency
sampling filter model. Details on how to obtainpstend frequency response
data via the FSF model approach will be elaborate8ection 3. Then, the
performance and results of the proposed approakibevelaborated in section
4. Here, two system examples will be used: a pHrakzation process and a
steam generator process. Finally, Section 5 cossltite paper.

2 Frequency Sampling Filter Model

The FSF approach used in this paper is origindiaioed from [14,18]. The
FSF model can be identified as

y(k) =G(2)u(k) +v(k) @

where u(k), y(k) are input and output signal respectivelk) is the zero mean
disturbance termg(z) is obtained from linear transformation of the FlRRdal.

With the assumptions that the process being idedtif stable, linear and time
invariant, the FIR transfer function model is

G(2)=5hz" )

To derive the FSF model, we make use of the invéserete Fourier
Transform (DFT) relationship between the procesguency response and its

impulse response, under the assumption dligtan odd number
1 "1 om omi

h=1 foE e ®)

2
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This relationship maps a set of discrete-time fezqy response coefficients,

j2m n-1
Ge " )m=0tLt2...+

into the set of discrete-time unit impulse

response coefficientsy ,i = Q...,n—1. Substituting (3) into (2) gives

n-1
2 27m

G(z)—z ZG(e e n oz (4)

Interchanging the summations in (4) gives the fearfsinction in its FSF model
form

m

6= % o L (5)
n1 =
2 1 eJ n 2"
where
n-1 j2mmi . 1—Z_n
Se nzl=— (6)
i=0 =
l1-e "z

Define a set of transfer functions extracting fr(on

m 1 1-z2"
H™(2) LT (7
1-¢ n 2!
for m=0x1+2,...x n_21 the above equation is referred to as heth FSF
with the centre frequency of the -th filter at 2/m radians. Letz=e?, (5)
n
will become
= -
.w 2 1 1-¢'*
G(e') = z_le( N )—— ®)
Ty 1 e nele

At @ =@, the following condition holds
H2(e*)=0 for azm

H2(e“) =1 for a=m
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n _1,% . In this case, the value

wherea is an integer likem in the rangc—:[—7

of the process frequency response in (8) is redtwéke value of the process
.2rm

frequency response coeﬁicie@l(eJT) .

ulk)

Figure 1 FSF model structure (adapted from [14]).

Given the discrete input signal(k) , the discrete measured output signgk) ,
and the disturbancey(k) , the FSF model can be explained in a block diagram

as shown in Figure 1. Figure 1 shows a block diagd the frequency

sampling filter model being used to represent thexgss. The process input
first passes through the set of frequency samglitegs arranged in parallel.

Then, the output of each filter is weighted by ttiscrete-time process
frequency response evaluated at the correspondingecfrequency. Finally,

the weighted filter outputs are summed to form ribhése-free process output.
The FSF filters are narrow band limited around rtheispective centre

frequencies. All the filters have identical freqagmesponses except for the
location of their centre frequencies.

Define the parameter vector as
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Ge ") 9)

. in—l)n
ol ])

_((n)m
o]
and its corresponding vector regressor vector as
| f(K*u(k) |

f,(K) * u(k)

(K *u(k)
Ak) = : (10)
faa(K) *u(k)

(9% u(k)

2

where (") denotes the transpose matrix &pgl(k) is defined according to (7)
as

fm(k) =H"(2) (11)
Thus, (1) can be rewritten as

y(k) = 8"@(k) +v(K) (12)
For N data measurements, (12) can also be written irxrfatm as

Y=0b+V (13)
Eq. (13) can then be used to solve the least sgje@aténate of given by

O =(PL®,) " PLY, (14)

which minimizes the performance index of the form

J(N,é):ZN]Y—nq:F (15)
k=0
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The matrix (#f®y) is called the correlation matrix and the invelitpi

condition on this matrix is sometimes called th#&isient excitation condition

for parameter estimation. In order to obtain a propg-SF parameter
optimization, the least squares model estimategsdban PRESS (predicted
residual sum of squares) computation is used. REeSS criterion will ensure
that the FSF model has the greatest predictivebilitpeamong all candidate
models [19].

2.1 Multivariable FSF

In order to take full advantage of the orthogonatamposition algorithm for
parameter estimation, we chose the multivariabtesy to be identified. For
the MIMO systemp inputs are denoted as(k),u,(k)....,u,(k) andq outputs

are denoted ag; (k). y,(k)...., y4(k), the times to steady state for each subsystem

are given byN,,N,,...,N_, and the reduced orders for each subsystem are

p 1
represented by its own FSF model are chosen ta og....,n,. For the MISO
system, theg outputs are denoted wgk). For the multivariable system, the
matrix representation is dictated as follows:

1. The first inputu, (k) is passed through a set apFSF based oN, , to form
the first n, columns of the data matrix.

2. The next input is passed accordingly to form thet melumns of the data
matrix.

3. The associated parameters comprising of all theystiéms will be justified
in the multivariable form.

4. The least squares algorithm is then applied tanesti the FSF model
parameters with respect to each subsystem.

2.2 The PRESS Ciriterion

The idea of PRESS is to set aside each data mstimnate a model using the
rest of the data, and then evaluate the predictivor at the point that was
removed. The PRESS statistic can be applied agegi@n for model structure

detection in dynamic system identification.

Define the prediction error as

e, (k) = y(k) - 8" @(k)

16
= Y =90 e
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where e_, (k),k=12..,N are called the PRESS residuals afdhas been
estimated according to (14) without includingk) and y(k). The PRESS
residuals e_, (k) represent the true prediction errors and can beuleéd
according to the following equation

e, (k)= e(k) _ (17)
1- (k)" (T P) " ¢AK)

The PRESS statistic is defined as

N
PRESS =) e, (k)® (18)

k=1

The average PRESS is calculated as
N
Z e, (k)?

PRESS,, =& 19
SS,, = (19)

Both (18) and (19) provide measures of the predictcapability of the
estimated model. In terms of model structure s@lecthe chosen structures are
based on the smallest PRESS value.

3 Step and Frequency Response Estimate Using FSF Madde

In the estimation of step response, the descrigifathe system using the FSF
model can be described as follows:

n-1

V)= 366 " H (D) +v(k) (20

m=
2

.2rm
where for a suitable choice m}‘(eJ n ) and H™(2) are defined as in (4) and

(7) respectively. Upon obtaining the estimate oé tliequency response
parameters (according to the FSF model and PRES&Sianm), the estimate of
the step response at sampling instantan be expressed by

~ _l -~

0,=> h (21)

3

1l
o

where the estimated impulse response coefficigpts,, h,.....h,,, are related
to frequency response via
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(22)

By substituting (22) into (21), the estimated stepponse coefficient can be
rewritten as

2 A -@ —_ n
g,= Y6 )it (23)
1

Although the FSF approach is cast in the disciate-tdomain and the
correspondingz -transform domain, the resultant model can be tgeubtain
continuous time step response. The system impusponseg(t) can be

approximately computed using the continuous timéwadent as

n1

2 A A
g(t) = gfsf (t) = Zemhm (t) (24)
n-1
2
and
R 1 1.27mi
h,(t) = ?e T for t<TA (25)
whereT is a sampling period. The step response is datedras
y.(t) = [ §(r)dr (26)

The frequency response estimate is obtained otranaformation ofz = e/“* .
Thus, in frequency domain form, the equations arelvritten as

>

-1

6(1)=Gu ()= 361, (o) @)
H(jw)=H, (&) for w<0Q (28)

wheren is odd and the frequency sampling interva#z%r, H,(z) is thek-th

FSF andg, is the corresponding (complex) parameter for teguency range
of 0sa<0Q .
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3.1 Confidence Bounds for the Step Response Model

The confidence bounds for the step response medieled from the FSF model
using (23) can be obtained. The basic idea is poesent the step response
coefficients as a linear transformation of thereated FSF parameters.

Theorem 1.Let the estimated step response be represented by:

Gy, = S()0 (29)
WhereS(l):[S(o,l) sS@ly - S(—nT_l,l)} with s@,m) defined as
[2m
s(my) :;W (30)
1-¢e

By considering the following assumptions:
Al. The process is stable, linear and time invarigith finite settling time
T.and the parameter is chosen to be greater than or equ%tto.

A2. The disturbance; is zero mean, normally distributed white noisehwit

varianceo?.

A3. N=n, or Nis chosen such that the neglected frequency paeasnate
negligible in magnitude relative to the parameteeing retained in the
model.

The error between the true process step respongétwg, and the estimated
step response weigldt, is bounded by

|8 =9 s P* (1) (31)
with probability p(p) , wheres(l) is given by
o =s()(@ d)*S"(m)o? (32)

Based on assumptions A1-A3, the following propsrt@# the least square
estimated obtained from (13) can be stated:

+ Bias: The estimated is unbiased.
* Variance: The covariance of the parameter estimates is diyen

El@-6@-67|= @ )"0 (33)
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» Distribution properties: Since only a linear operation is involved in
estimating the parameterg,will follow a normal distribution.

Proof 1. Under assumption Al, the true process step respcase be
represented by

9 =S(1)6 (34)

From assumptions A1-A3, we know that is an unbiased and normally
distributed estimate ofgé. Therefore, g,, iIs an unbiased and normally

distributed estimate af,. The variance of the estimated step response
coefficient at the sampling instant is given by

El(d, - 9.)*| = E[s)@-6)@-67s"()
=S()(@'®)*S™(1)o? (35)
=0()?
and the bounds in (31) follow directly.

Applying (31), the trajectory of the true step @sgeg,, for m=01...n-1 lies
inside the envelope given by, + p*d() with probability p(p). This
envelope provides the confidence bound on the astitnstep response model.

4 Results and Discussion

The overall flow of the process is shown in Figlr&'wo sets of multivariable
real system data have been used to demonstratdffiba&cy of the developed
multivariable FSF. Firstly, multi input single outp (MISO) data from a
simulation of a pH neutralization process in aristiy tank. Secondly, multi
input multi output (MIMO) data from a model of a&atn generator at a power
plant. Both of these data sets are industrial aygieocess data obtained from
[20].
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[ Input: MIMO Raw Data

Process: MIMO FSF Model

|

Process: PRESS Criteria

Extract:

Significant
Candidates

Change
number of data
to be
compressed

Based on E:

!

Display:
Step & Freguency
Response Estimates

Sufficient number of
compressed data’

F

Output:
1) Step & Freguency Response Estimates
2) Number of compressed data

End

Figure 2 Overall procedure.
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4.1 Example 1 — pH Neutralization Data

The volume of the tank used in the pH neutralizafioocess was 1100 litres.
This process is a highly non-linear system. Thd aad the base solution were
mixed together in a constant-volume stirring tamkl ahe pH neutralization
process data were simulated. The concentratioheofitid solution (HAC) was
0.0032Mol /I and the concentration of the base solution (NaQt8s
005Mol /1. About N =2000 data were measured iffs. The inputs were acid
solution flow in litres and base solution flow iitrés, while the output of the
system was the pH solution in the tank (See Figre

Acid solution fow in lters oH of the salution in the tank

i 1 ali NWW

| | Il | |
400 600 B00 1000 1200 f400 9GO0 1RO 2000 6

=
=
=

Output

=]

ase solution flaw in [iters

Input 2

4

D | | 3 | | | | | | 1 | 1
0 20 400 60 600 1000 1200 1400 160D 1800 2000 0 200 400 600 600 1000 1200 1400 1BD0 1600 2000

Figure 3 Input and output plot for pH neutralization datatsyn.

The two inputs and one output of the pH neutrabrasystem were defined by
the following configuration

SRR

Figure 4 and Figure 5 illustrate the step resparg® the frequency response
obtained from the process data. The number of safudey compressed data of
the process is described in Table 1.
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Step Response for pH Data

25

BO0 700 00 S00 1000

Figure 4 Step response obtained from FSF model of Example 1.

Bode Diagram ) Botle Diagram

\

Fhase (deg)
Phase (deg)

jl'

435 1 [ 1
10" 10° 1o/ 10 10 10 1w
Frequency (radisec) Frequency (radisec)

@ )

Figure 5 Frequency response obtained from FSF model of Ebkatip(a) G,
(b) Grz.

4.2 Example 2 — Steam Generator Data

These data come from a model of a steam generatbe &bbott Power Plant

in Champaign IL (refer to Figure 6). A detailedsdeption of this model can be
obtained from [21]. AboutN = 9600 data were measured 8%. The inputs for

this model were fuel (scaled 0-1), air (scaled Ordference level in inches, and
disturbance defined by load level. The outputs wdmem pressure, excess
oxygen in exhaust gases (%), level of water indihem and steam flow (Kg/s).
Figure 7 illustrates the inputs and the outputthsf plant. The four inputs and
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four outputs of the steam generator system werenetbfby the following
configuration

Y1 (t) G, G, G Gyju 1(t)
Y2 (t) — Gy G Gy Gyflu it)
Ys (t) Gy Gy Gy Gy|u ﬁ)
Ya (t) G, Gp Gy Gylu 4(t)

_WATER
LEVEL

E 34 — STEAM FLOW RATE

-
FLOW
2 -
' RATE| |, ~EXCHSS OXYGEN

Figure 6 Industrial steam generator plant (adapted from)[12]

Step response and frequency response obtainedefes tnputs and outputs data
are shown in Figure 8 and Figure 9. The numberucteassfully compressed
data is shown in Table 1.

Table 1 Number of data before and after performing FSF.

Types of data Number of raw Number of
y data compressed data
MISO — Example 1 2000 1000

MIMO — Example 2 9600 3000
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Fuel

[mput 1

[nput 2
% E
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0
a 5000 10000 a 5000 10000
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Disturbance
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= =
= - 0
-5 -0.02
0 5000 10000 0 5000 10000
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Orum Pressure Excess Oxygen
G600 30
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— 400 1 o
g 1w
= =
S 200 1 =
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] -10
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Water Level Steam Flow
20 40
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m 10 1 =
Z e
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10
-10 ]
0 5000 10000 0 5000 10000
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Figure 7 Input (a) and Output (b) plot for steam generatiadystem.
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Step response for KO 1 Step response for KO 2

2(— 2(

1] 0
0 1000 2000 3000 0 1000 2000 3000
Step response for KO 3 Step response for KO 4
3 3
Ay
1 1
1] 0
0 1000 2000 3000 0 1000 2000 3000

Figure 8 Step response obtained from FSF modExample 2.

Bode Diagram

Magnitude {dB

Phase (deg)

Frequency (rad/zec)

(@)

Figure 9 Frequency response obtained from FSF model of Eba@for (a)
Input/Output 1 (b) Input/Output 2 (c) Input/Outfuaind (d) Input/Output.
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Bode Diagram

fagnitude (dB)

Fhase (deq)

_180 L I 1 =
107 10" 10" 10°
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o
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=
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= = -
=
[}
=

Fhase (deg)

Freguency (rad/sec)
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Figure 9 Continued. Frequency response obtained from FSF model of Eba
2 for (a) Input/Output 1 (b) Input/Output 2 (c) WfOutput 3 and (d
Input/Output 4.
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Bode Diagram

i
(4]

Magnitude (dB)

-15
?c T T

Phase (deg)

-30 i

10" 10° 10' 10°
Freguency (rad/sec)
(d)
Figure 9 Continued. Frequency response obtained from FSF model of Eba
2 for (a) InputOutput 1 (b) Input/Output 2 (c) Input/Output 3 arfd)
Input/Output 4.

4.3 Discussion

As mentioned earlier, the MIMO FSF model involvespeocess of dat
compression in which the system step response n-parametric form i
obtained. Thesignificance of this approximation lies in the fact that:

1. The large amountsf data that have been collected from the systambe
reducedor compressed inismaller numbers of data.

2. The process frequency parametthat correspond to thieigher frequenc
region of he system are neglected as the informacontentfrom that
region normally has severe noise corrup

3. Arelative noisdree step response is obtained as compared totaal stef.
response test. Thus, it canjudgedintuitively by the process engirr.

The number of compreed data must be chosen correctly so thahfaymation
about the system wilbe lost. To decide the amount of data theeds to b
compressed, thgtep response estimate gplays an important roléy looking
at the step responsestimation plot, we can seehether the number



92 M.H.R.A. Aziz & R. Mohd-Mokhtar

compressed data is enough or too large or maybsntadi. For instance, Figure
4 shows that for the pH neutralization system, 188@& are already enough to
be compressed. If, for example, we compressed thes@0 data only, the FSF
model would be unable to capture the steady statenof the system. Thus,
part of the overall system information may be ldsigure 10 shows the

compression of Example 1 to 500 data.

Step Response for pH Data
35 T T T T T

25+ E

D 1 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500

Figure 10 Step response obtained from FSF model of Examptetid 500
compressed data.

On the other hand, if we compress the data fronnipka 1 to more than 1000
data, the data will still contain all the informatiabout the system. However, a
larger number of data will definitely affect comatibnal time during the
system identification process. Figure 11 showsctirapression of the Example
1 data from 2000 data to 1500 data. In this figitrean be seen that the step
response estimate has reached the steady statdiaorad around 1000 data.
Compression of data higher than this number shbeldgnored in order to
optimize the computational time during the systefantification procedure.
Thus, in dealing with different types of plants asystems, one must make a
wise judgment so as to make sure that all the imébion of the system is
captured/modelled, and at the same time optimieeaverall computational
time.
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Step Response for pH Data
25 T T

05

0

| |
0 500 1000 1500

Figure 11 Step response obtained from FSF model of Examplétil 1500
numbers of compressed data.

As mentioned in Section 2 and 3, the FSF approasbimaes that the system is
stable or asymptotically stable. Therefore, thedpoed step response will also
become constant or asymptotically constant. Anadlssumption has to be made
in order to use the FSF model for unstable systémsdiscussed in [16], the
same method can be used to unstable systems kpducing exponential
weighting (y, (t) =e®y(t); u,(t)=e™u(t); g, (t) =e*g(t)). And so the
Laplace transformation will becom¥(s)=G(s)U (s); Y,(s)=G,(s)U,(s)

a

and G, (s)=G(s+a). If the unstable systeng(s) (relating u(t) toy(t)) has

all poles p; such thaRe(p, )< a, the systenG(s+a) is stable and relates the
exponentially windowed signals (relating(t) toy, (t)).

By having this, the performance index as in Egha$ to be replaced with
. N
J,(N,0) =Y [e™ (Y -No)P (35)
k=0

Usingb = a, the effect of the exponential weighting will lakén care of, and all
the data can be used. However, this method shoailldsed with caution to
avoid numerical rounding problems, and the minimapropriate value o
should be considered [16].

Another issue that can be raised is how to validdiether the step response
estimates or the frequency response estimateshtha been produced are
accurate and informative enough to represent tleedystem. One solution is to
have simulated data with a known model structurecethe data are run using
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the FSF approach, the validation process can brperd by obtaining a

mathematical model of the system using any standgstem identification

method. Standard verification tests (e.g. the nssprare error (MSE) test, the
R test, best fit test, variance test etc.) in thetesy identification procedure can
also be used as a way to verify its accuracy. Othan that, the developed
model from the estimates can also be used togethbrthe controller. The

control performance can be observed, in which goodtrol performance

resembles a good model of the controlled system.

5 Conclusion and Future Works

Most real system applications involve the usage afultiple number of input

and output variables. This includes the large numobelata to be collected and
used for identification purposes. The novel apphnoaicthe MIMO FSF model

proposed in this paper has three distinct advastage

1. It investigates a true system application incorpinga all possible
input/output variables together.

2. It produces a clean and unbiased empirical moda ¢tlan be used for
system identification.

3. It reduces the amount of data for further study andlysis of the overall
system.

For future works, the step and frequency respossmates (empirical model)
can be used in identifying the mathematical modélodh of these applications.
The obtained model of the applications can be udsedurther research on
control analysis. By having the model and obsenthmg control performance,
one may verify the efficacy of having the FSF filtgrior to the system
identification procedure as compared to directafsthe raw data to obtain the
model of the system.

In addition, future work is also considered in isgttup automated system
configuration and data compression, in which agsgdbe optimal number of
data to be compressed, and the tuning and theicatiiin can be done
simultaneously.
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