
ITB J. Eng. Sci., Vol. 44, No. 1, 2012, 33-48 33

Received February 7th, 2011, Revised May 12th, 2011, 2nd Revision August 25th, 2011, Accepted for
publication September 21st, 2011.
Copyright © 2012 Published by LPPM ITB & PII, ISSN: 1978-3051, DOI: 10.5614/itbj.eng.sci.2012.44.1.3

A Hardware Architecture of a Counter-Based Entropy
Coder

Armein Z. R. Langi 1,2

1Research Center on Information and Communication Technology
2Information Technology RG, School of Electrical Engineering and Informatics

Institut Teknologi Bandung, Bandung 40116, Indonesia

Abstract. This paper describes a hardware architectural design of a real-time
counter based entropy coder at a register transfer level (RTL) computing model.
The architecture is based on a lossless compression algorithm called Rice
coding, which is optimal for an entropy range of 5.25.1  H bits per sample.
The architecture incorporates a word-splitting scheme to extend the entropy
coverage into a range of 5.75.1  H bits per sample. We have designed a data
structure in a form of independent code blocks, allowing more robust
compressed bitstream. The design focuses on an RTL computing model and
architecture, utilizing 8-bit buffers, adders, registers, loader-shifters, select-
logics, down-counters, up-counters, and multiplexers. We have validated the
architecture (both the encoder and the decoder) in a coprocessor for 8
bits/sample data on an FPGA Xilinx XC4005, utilizing 61% of F&G-CLBs, 34%
H-CLBs, 32% FF-CLBs, and 68% IO resources. On this FPGA implementation,
the encoder and decoder can achieve 1.74 Mbits/s and 2.91 Mbits/s throughputs,
respectively. The architecture allows pipelining, resulting in potentially
maximum encoding throughput of 200 Mbit/s on typical real-time TTL
implementations. In addition, it uses a minimum number of register elements. As
a result, this architecture can result in low cost, low energy consumption and
reduced silicon area realizations.

Keywords: counter-based coder; lossless compression; hardware architecture; RTL.

1 Introductions

Real-time lossless compression hardware will be a part of next generation
computing chips (very large scale integrated circuits, VLSI) to sustain higher
data rates over on-board limited channel and storage capacities. They include
processor, network, and storage chips. With a reduced number of bits, limited
capacity of transmission channels or storage can be used effectively. Such a
reduction has a direct impact on complexity reductions, cost reductions, as well
as overall system reliability improvements [1]. For example, space explorations
by National Aeronautics and Space Administration (NASA) missions generate
huge science data, requiring real-time compression [2]. Consequently,

Armein Z R Langi34

international bodies such as Committee for Space Data Systems (CCDS) have
defined compression standards for real-time systems [3].

A compression scheme consists of an encoder and a decoder. As shown in
Figure 1, an encoder receives input data in a form of 8 bit samples (parallel),
and produces output bitstream (serial) using an encoding algorithm. The number
of bits to represent the bitstream is fewer than that of the input samples, hence it
achieves compression. When the original samples are needed, a decoder shown
in Figure 2 receives the bitstream and converts it back using a decoding
algorithm into 8-bit samples losslessly to be used as intended. The scheme
performs correctly if the decoder output data are identical to the encoder input
data.

Encoder

8-bit Input
Data

1-bit Output
Bitstream

Figure 1 An encoder receives 8-bit input data and converts them into 1-bit
output bitstream, with total number of bits in the bitstream is fewer than that of
the input data.

Decoder

1-bit Input
Bitstream

8-bit Output
Data

Figure 2 A decoder receives the bitstream from the encoder and converts it
back to 8-bit output data, which are identical to the encoder’s 8-bit input data.

Compression hardware requires high performance lossless compression
schemes, with fast processing time, implemented using minimum hardware
resources, as well as low energy consumptions. As a result, compression
hardware is still expensive to implement. Typical lossless compression
schemes, such as Huffman and arithmetic coding, require sophisticated data
ordering as well as multiplicative computation [1]. In other words, compression
algorithms usually demand processor-based computing models. Consequently a
valid architecture must incorporate processors as well as multipliers and
memory. They always demand expensive silicon areas, prohibiting them to be
used widely in intended computing chips.

A Hardware Architecture of a Counter Entropy Coder 35

Recently we have developed a counter-based compression scheme [4] utilizing
Rice coding [2]. We have shown that its performance is comparable to that of
Huffman coding while its complexity is promisingly much lower due to its use
of simple counters. Furthermore, the counter coder can be designed to be
optimal on an entropy range of 5.75.1  H bits per sample, an expected and
reasonable range of data entropy encountered in typical 8-bit (or its multiple)
computing chips. In rare cases when the chips must deal with entropy ranges
below 1.5 bits per sample, simple reversible preprocessing schemes can be
added to bring the sample entropy range into a 5.75.1  H range. Hence we
propose the use of a counter coder for compression hardware such as VLSI.

To implement the counter codes into hardware or VLSI chips, we need an
architectural design. A valid architecture must always perform an input-output
relation correctly. However the main features of good hardware architecture are
in its optimization of speed performance, efficient area usages, and efficient
power consumptions. It must also be easy to implement, meaning the
architecture should be described in enough details for straightforward
implementations. A register transfer level (RTL) computing model provides
such implementable details, while still abstract enough to allow understanding
of the inner working of the implementation.

This paper presents a hardware architectural design of a real-time lossless
compression scheme for a purpose of hardware implementations in computing
chips. We have designed an RTL computing model of Rice coding utilizing
simple counters in an entropy coding scheme. The RTL computing model
allows us to use registers, simple counters and standard logic gates to ensure
low energy and silicon area requirements. The scheme uses a pipelined
architecture to increase data throughput.

The paper first describes the counter coder algorithm as a requirement for
architectural design. It then proposes and describes a novel data structure to
allow robust bitstream, pipelining processing, and simple hardware
implementation. Using the algorithm and the data structure, this paper presents
the hardware architecture at an RTL for both the encoder and decoder, and
shows that the architecture can be implemented using standard logics without
any use of any processors, memory, or multipliers. We have validated the
architecture in a coprocessor design, implemented using an FPGA platform.
Finally the paper discusses the resulting architecture, and provides concluding
remarks.

Armein Z R Langi36

2 A Counter Code Algorithm

To design the architecture, we must first understand the counter code algorithm
and then use it as a design requirement. A basic counter coder called 1 (or
sometimes also called PSI–1) works as follows [2]:

1. Given a block of data samples (for j = 1, ..., J), coder 1 assumes that

each sample takes a symbol is , for i = 1, ..., 256, as shown in Table 1.

2. Coder 1 treats each sample symbol is having sample data id as a

non-negative integer number ix . The average length of sample data is R
= 8 bits per sample.

3. For every sample in the block (having a symbol is , thus having sample

data id), a 1 encoder converts id into a codeword iw of a length

1 ii xl , consisting of ix consecutive zero bits ‘0’ followed by a

closing one bit ‘1’ (see again Table 1). For example, if a sample
happens to be id = 0000 0011, it must have ix = 3, and the 1 then
encodes it using 4 bits, i.e., 3 zeros followed by a one. Hence, the
encoding algorithm (converting id into iw) is simply down counting,
which is summarized in Table 1.

4. The reconstruction is obviously simple counting too. Given a codeword

iw , a 1 decoder just counts the number of zero bits until a one

appears. The counting result is the sample value ix . Using Table 1, it

determines that the codeword belongs to a symbol is , hence it produces

the sample data id as its output.

Table 1 A codeword table of 1 Code.

i Symbols is Sample Data id Numbers ix Codewords iw Length il

1 1s 0000 0000 0 1 1

2 2s 0000 0001 1 01 2

3 3s 0000 0010 2 001 3

4 4s 0000 0011 3 0001 4

… … … … … …

256 256s 1111 1111 255 0000…00001 256

A Hardware Architecture of a Counter Entropy Coder 37

It has been studied elsewhere [2] that this 1 code in Table 1 is optimal for a
monotonically decreasing distribution source with a first-order entropy around
2, i.e., 5.25.1  H . Optimal means the number of bits to represent a block of
J samples )()2()1(,,, Jiii ddd  , which is





J

j
jixJL

1
)((1)

is comparable to the total entropy of the data in the block. Such a distribution
ensures that shorter length codewords occure more frequently, achieving an
effective compression, i.e., L/J < R. We say that the optimal range is the natural
entropy range for 1 . For input samples within this natural entropy, 1
performance is comparable to that of a Huffman coder [4].

For input samples with entropies outside that range, Rice introduced a concept
of word splitting. If 5.2H , it is safe to assume that the least significant bits
(LSBs) of sample data)(jid are completely random. In this case there is no

need to perform any compression on those LSBs. An encoder can then split

)(jid into two portions: k LSBs and (8-k) most significant bits (MSBs). The

MSBs are coded using 1 encoder before being sent to bitstream, while the

LSBs are sent uncoded. A decoder must first recovers the MSBs using 1
decoder, and then concatenates the results with the uncoded LSBs, resulting in
the desired)(jid .

This counter compression of word splitting code (into k LSBs and (8-k) MSBs)
is called k,1 . It has been shown in [3] that k,1 has a natural entropy range

of kHk  5.25.1 . It should be noted, computing data of an 8-bit
resolution usually has an entropy range of 81  H . For 8H , there is no
need for any lossless compression. For 1H , one can employ simple
reversible preprocessing, such as zero run length code, to bring the data entropy
into the 81  H range. Hence, for our purpose of general 8-bit computing we
can limit k,1 for 70  k .

Given a block of data samples (for j = 1, ..., J), the k,1 coder must then have a

mechanism to estimate the entropy of the block to ensure it uses the optimal k.
Rice has come with an estimation rule of thumb based on sum of ix values in
the block [2]. Since we assume that the data samples has a source according to

Armein Z R Langi38

Table 1 with statistics of a monotonically decreasing distribution, ix with low
values are likely to occur. The lower the entropy, the more the distribution is
skewed toward lower value ix (i.e., lower L). As a result, a block with lower

entropy will have a smaller sum of ix values in the block. In other words,
average entropy in a block can be estimated from JL / . This rule of thumb is
shown in Table 2. A small value of JL / is reflected in a smaller sum of ix ,
corresponding to a low entropy value, hence a small selected k.

As mentioned before if the samples do not have such a characteristic, i.e., a non-
negative and monotonically decreasing distribution, there are several simple
preprocessing schemes available to preprocess the samples to comply with the
characteristics.

Table 2 A rule of thumb to estimate block entropy for J = 8 and n = 8 for 8
options of coders (adapted from [2]).

Decision range Sum of ix values Entropy k

L/J ≤ 5/2 0 – 12 1.5 0

5/2 < L/J ≤ 9/2 13 – 28 2.5 1

9/2 < L/J ≤ 17/2 29 – 60 3.5 2

17/2 < L/J ≤ 33/2 61 – 125 4.5 3

33/2 < L/J ≤ 65/2 126 – 252 5.5 4

65/2 < L/J ≤ 129/2 251 – 508 6.5 5

129/2 < L/J ≤ (128n–831)/2 509 – 764 7.5 6

(128n–831)/2 < L/J 765 – 1023 8 8

3 A Design of a Robust Data Structure and an RTL Computing
Model

Having described the algorithms to be implemented, we must now design the
data structure for the hardware architecture. Given original data of N
consecutive samples (Figure 3(a)), we preprocess the samples into N non
negative numbers having a monotonically decreasing distribution (Figure 3(b))
to ensure entropy compliance of the input data. Furthermore, we split the data
into M consecutive blocks of J samples shown in Figure 3(c). If N is not
divisible by J, the last block M will not have J samples. Zero samples are then
added to the last block to ensure that the last block will have J samples.

The encoder then works on an individual block consecutively to produce
bitstream. A bitstream consists of M individual bitstream blocks called CW-1,
CW-2, to CW-M, corresponding to M sample blocks (see Figure 3(d)). Each

A Hardware Architecture of a Counter Entropy Coder 39

bitstream block (CW-i) consists of a codeword indicating the coder k,1 used,

and then J sample codewords representing J samples in current block
correspondingly (see Figure 3(e)). Assuming there are 8 possible coders k,1 ,

the codeword indicating which coder used requires three bits, with its
corresponding splitting k as in Table 2. A sample then consists of k bits of LSB,
followed by encoded MSB (see Figure 3(f)). The encoded MSB are codewords

iw in Table 1, consisting of several bits ‘0’ and a closing bit ‘1’.

1 2 n
N-
2

N-
1

N
(a) Input
Samples

1 2 n
N-
2

N-
1

N

(b) Preprocessed
Samples

1 2 J
J+
1

n
N-
2

N-
1

N
(c) Sample
Blocks Z

Block 1 Block 2 Block M

Encoder

CW-1

(d)
Bitstream

CW-2 CW-M

SHIFT ID SAMPLE 1 SAMPLE 2 SAMPLE J

1 2 k

k-bit LSB

0 0 1

Encoded MSB

0

(e) Block
Bitstream

(f) Sample
Bitstream

Encoder Encoder

Figure 3 A simple data structure for counter coder.

Such a data structure has desired robustness due to the following features and
benefits:

1. Although the code becomes variable length, it is uniquely decodable. All
data components in the bitstream are either of fixed lengths or having
closing bits.

Armein Z R Langi40

2. All samples are coded independently, thus can also be recovered
independently. This allows random accesses of individual compressed
samples.

3. Encoding errors of one block can be isolated and do not propagate to the
next block.

We can now have an RTL computing model working on the data structure to
implement the counter code algorithms. An encoder can use a buffer to capture
a block of J samples. The encoder then estimates the block entropy by
accumulating the values of all samples within the block buffer. An adder and a
register can perform as an accumulator. Using Table 2, a combinatorial logic
can estimate the block entropy, especially in a form of the shift factor k. Using
the shift factor k, a parallel-to-serial loader-and-shifter can split a sample into
MSBs and LSBs. The loader-and-shifter shifts k LSBs into a bitstream
multiplexer. The encoder also needs to produce ‘0’ bits as many as the sample
MSB value. A down counter can accomplish this process. The multiplexer can
concatenate the LSB bits with the encoded MSB into bitstream.

An RTL computing model for the decoder is even simpler. A demultiplexer
identifies the shift factor k in the bitstream and uses it to extract correct LSBs
from the bitstream. The encoded MSBs triggers an up-counter, resulting in
MSB sample values. A bit-concatenator can then combine all MSBs and LSBs
into a decoded sample.

4 A Hardware Architecture Based on the RTL Model

Having designed the data structure and its corresponding computing model, we
can now present the hardware architecture, consisting of an encoder and a
decoder. Figure 4 shows architecture of an encoder at an RTL level. The
encoder consists of an 8 bit FIFO BUFFER of size J, an 8-bit ADDER, an 8-bit
REGISTER, a parallel-serial (P-S) LOADER SHIFTER, a combinatorial circuit
SELECT LOGIC, a DOWN COUNTER, and a MULTIPLEXER. It accepts J
samples of one block input data and produces a bitstream block CW-i.

With references to Figure 3 and 4, the encoder works as follows. Preprocessed
samples enter the FIFO BUFFER and 8-bit ADDER in parallel. The BUFFER
accommodates J samples (with a typical J = 8), while the ADDER accumulates
the sum of those J numbers into REGISTER. After all J samples have been
accumulated, the SELECT LOGIC reads the content of REGISTER to decide
SHIFT ID and SHIFT COUNT using a rule described in Table 3. The encoder
then sends SHIFT ID to MULTIPLEXER as a start of CW-i bitstream block.
Figure 3(e) shows their positions in the bitstream.

A Hardware Architecture of a Counter Entropy Coder 41

Error! Not a valid link.

Figure 4 An architecture of the encoder.

Table 3 A rule table of SELECT LOGIC.

REGISTER Contents SHIFT ID SHIFT COUNT
00 0000 0101 – 00 0000 1100 000 0

00 0000 1101 – 00 0001 1100 001 10

00 0001 1101 – 00 0011 1100 010 110

00 0011 1101 – 00 0111 1100 011 1110

00 0111 1101 – 00 1111 1100 100 11110

00 1111 1101 – 01 1111 1100 101 111110

01 1111 1101 – 10 1111 1100 110 1111110

10 1111 1101 – 11 1111 1111 111 111111110

Having decided on which k,1 coder to use, the encoder now ready to produce

bitstream of each sample, using the following steps:

1. It first loads one sample from FIFO BUFFER into P-S LOADER
SHIFTER. Using the SHIFT COUNT information, the P-S LOADER
SHIFTER starts to shift out LSB BITS of the P-S LOADER SHIFTER into
MULTIPLEXER.

2. The remaining MSB BITS in the P-S LOADER SHIFTER are then loaded
in parallel into DOWN COUNTER. This DOWN COUNTER starts down
counting until it reaches zero. For each count, the COUNTER produces bit
‘0’ into the multiplexer. When the counter is empty, it produces a bit ‘1’ as
a closing mark, to complete the processing of one sample.

The encoder repeats these steps for the remaining samples in the block. This
then completes the conversion of one block of samples into bitstream CW-i.

To reconstruct the samples from the bitstream, Figure 5 shows an RTL
architecture of decoder, consisting simply of DEMULTIPLEXER, SELECT ID
LOGIC, UP COUNTER, and CONCATENATOR. For each block CW-I
received by the decoder, DEMULTIPLEXER splits the block to obtain SHIFT
ID. This is used to determine SHIFT COUNTS using Table 1, and then
consequently the number of bits for LSB BITS.

Error! Not a valid link.

Figure 5 Architecture of the decoder.

Armein Z R Langi42

The decoder is then ready to recover each sample for 1 to J. It first recovers the
LSB bits and puts them into CONCATENATOR. The decoder then uses each
bit ‘0’ of the MSB stream to upcount the UP COUNTER, and stops counting
when it encounters the closing bit ‘1’. The MSB bits are then available in the
UP COUNTER and sent to CONCATENATOR, which together with the LSB
bits become the decoded sample.

The decoder repeats the process until it recovers all J samples in a given block.

5 Simulation Results of the Hardware Architecture

Having defined the algorithm and architecture of the coder, we can now validate
the architecture. We have implemented and validated the architecture on a C++
simulation model. Using C++ simulations, we can study the validity of the
architecture with image compression data. Here we use data samples from a
wavelet image compression scheme [6]. To achieve monotonically decreasing
distribution, the data samples are preprocessed using wavelet scalar quantization
(WSQ) described in [7], with a slight modification to obtain non-negative
sample data with an entropy range of 1 to 8 bits per sample. Later the
simulations also provide verification data for an FPGA implementation.

From the simulation results, we observe several advantages of this architecture.
First, the architecture is optimal. A compression scheme is optimal if it can
achieve a compression result with an efficient bits-per-sample performance
down to a level of its entropy. Using the WSQ scheme, we can vary prescribed
bitrates of the quantization, resulting in preprocessed sample data having
corresponding sample entropy values, ranging from 1 to 8 bits per sample. We
then apply the coder to those sample data, and measure the bitrates of the
bitstream. The results are compared to entropy values of the sample data,
shown in Figure 6. The bitrates coincide with sample entropy values,
confirming that the coder is optimal and the architecture performs an optimal
compression.

A Hardware Architecture of a Counter Entropy Coder 43

0

1

2

3

4

5

6

7

8

9

0 2 4 6 8 10

Performance

Reference

Average Entropy (Bits)

Co
de

r P
er

fo
rm

an
ce

 (B
its

/S
am

pl
e)

Figure 6 The coder performance is optimal because it produces bitstream
having bits per sample as efficient as sample entropy.

Second, the architecture allows localized error handling. Samples are grouped
into independent blocks (see Figure 3 (e)). As a result, errors in one block do
not propagate into another block. This is desirable as channels are not always
free from noise.

Third, the block size can be controlled and preconfigured optimally to suit
various applications having different block sizes.

6 An FPGA Implementation, Results, and Discussions

Having validated the algorithm and architecture, we can now design a system to
implement the coder on an FPGA platform as an example of the architecture
implementation. First we define design assumptions, especially its external
operating environment. We then choose a basic coprocessor computing model.
The model consists of a control unit (CU) and a data path unit (DPU). The
encoder and decoder DPUs implement our architectures in Figures 4 and 5,
respectively. Later we describe input-output assignments to facilitate
interactions of the coprocessor with its external environment (see also [5]).

6.1 Design Assumptions

We assume in a real environment, the coder consists of an encoder and a
decoder separated physically by a long distance communication channel (see
Figure 7). The channel is bit oriented, meaning data are transferred one way

Armein Z R Langi44

from encoder to decoder bit-by-bit serially. Data input of the encoder are
available locally, stored in memory. Encoder can access the memory through a
bus oriented channel. Similarly, output data of the decoder must be stored to
memory for further use.

Encoder Decoder

Bit Oriented
Channel

Bus Oriented
Channel

Memory Memory

Bus Oriented
Channel

Figure 7 The encoder accepts input data from parallel bus memory and
producing bitstream to serial channel, and decoder does the other way around.

6.2 A Basic Coprocessor Computing Model

We use a basic coprocessor computing model, shown in Figure 8, to satisfy the
above environmental requirements. The coprocessor interacts with three major
external subsystems: Host Processor, Memory, and Channel I/O. The
coprocessor consists of a CU and a DPU. A host processor ultimately controls
the coprocessor, giving commands to the coprocessor to perform its functions.

Host I/O

Control Unit

Data Path Unit

Test

Host
Processor

Memory
Control

Data

Channel
IO

Control

Data

Bus Oriented Bit Oriented

Figure 8 The coprocessor interacts with control oriented host processor, bus
oriented memory, and bit oriented channel I/O.

Both the encoder and decoder use the same computing model. An encoder DPU
gets input data from memory, performs the actual data compression, and sends
data to channel I/O. Conversely, a decoder DPU gets input from channel,
performs decoding processes, and stores the results into memory.

The CU manages and controls the DPU to ensure synchronized interactions
with the external subsystems. The CU accepts commands and giving status

A Hardware Architecture of a Counter Entropy Coder 45

signals to the host processor through Host I/O. Interactions with memory are
controlled through bus control signals. Channel control signals manage
interactions with the transmission channel. Optionally, we provide test signals
for testability purposes.

To ensure synchronized interactions with external subsystems, we design the
encoder and decoder coprocessor to interact with various signals. Through the
signals the coprocessor interacts with host processor, memory, and channel I/O.
Optionally, we can observe internal working of the coprocessor through test
pins.

6.3 Results and Discussions

We have implemented the Rice coder (both encoder and decoder) as a
coprocessor for 8 bit/sample data on an FPGA Xilinx XC4005. One XC4005
contains 196 combinatorial logic units (CLU) and 112 user I/O pins. In our
implementation, the encoder uses 30% CLB F&G, 15% CLB H, 16% CLB FF,
and 34% I/O pins. The decoder uses 31% CLB F&G, 19% CLB H, 16% CLB
FF, and 34% I/O pin. Hence, an X4005 is sufficient to implement both encoder
and decoder. Furthermore in this particular implementation, the encoder and
decoder can achieve 11.6 MHz and 19.4 MHz clock rates, respectively. Since a
10 MHz clock rate corresponds to a 1.5 Mbits/s throughput, the FPGA
implementation achieves 1.74 Mbit/s and 2.91 Mbits/s for the encoder and the
decoder, respectively.

From the FPGA implementation, we observe further advantages of this
architecture. First, the RTL descriptions show that the architecture is easy to
implement in terms of resources requirements. This architecture can be
implemented easily using standard registers and counters, shown in Figures 4
and 5. A complete encoder and decoder system use less than 196 CLUs.

In contrast, many compression schemes require either high numbers of CLUs or
processor level components. FPGA implementations of a lossless coder called
LZW reported in [8] and [9] use more than 3000 slices. Since one slice
implements 32 CLUs, they use an order of 100.000 CLUs. Other compression
FPGA implementations reported in [10] and [11] requires an additional DSP
processor and more than one high-capacity FPGA unit.

Second, it is possible to implement pipelining using double buffers. When the
pipeline critical path is fully operational, the system can run at a maximum
speed. This speed is limited only by counter delay as a bottleneck. Fast counters
can be implemented to achieve a level of 5 ns processing delay (excluding 2
buffer delays) on TTL platforms. This results in ability to process real-time data

Armein Z R Langi46

up to 200 Mbit/s. A faster platform would result in a proportionally faster
throughput.

It should be noted that a VLSI chip set implementation of Rice coder on 1.0-μm
CMOS process by J. Venbrux, P.-S. Yeh, and M. N. Liu has been reported
earlier in [12]. They reported that both the encoder and the decoder require
71000 transistors. The chip sets use data samples at resolutions of 4 to 14 bits,
achieving operating rates of 50 Msamples/s and 25 Msamples/s for the encoder
and decoder, respectively.

7 Concluding Remarks

This paper has described hardware architecture of a counter-based lossless
compression scheme using an RTL computing model. The system consists of an
encoder and a decoder. The encoder and decoder use a buffer, an adder,
registers, logics, combinatorial logics, as well as counters, removing any need to
use area expensive processors, memory and multipliers. The architecture is
suitable and optimal for non-negative samples having monotonically decreasing
statistics, with an entropy range between 1 to 8 bits per samples. It uses a table
to estimate data entropy quickly. We have validated and verified the
architecture using C++ simulations and an FPGA implementation. We
demonstrated that an XC4005 FPGA is more than sufficient to implement the
architecture of both the encoder and decoder, reaching throughputs of 1.74
Mbit/s and 2.91 Mbit/s for the encoder and the decoder, respectively. The
resulting architecture is suitable for real-time hardware implementation,
potentially up to a 200 Mbit/s throughput through double buffer pipelining.
Future works include modifying the architecture to suit system on chip (SoC)
applications and implementations.

Acknowledgements

This work was supported in part by Riset Unggulan (RU) ITB, and was a
continuation of earlier works performed at Los Alamos National Laboratory,
(New Mexico, US), and TRLabs (Winnipeg, Canada).

Nomenclature

FPGA = Field Programmable Gate Arrays
RTL = Register transfer level
VLSI = Very large scale integrated circuits
MSB = Most significant bits

LSB = Least significant bits

A Hardware Architecture of a Counter Entropy Coder 47

References

[1] Langi, A.Z.R., Review of Data Compression Methods and Algorithms,
Technical Report, DSP-RTG–2010–9, Institut Teknologi Bandung,
September 2010.

[2] Rice, R.F., Some Practical Universal Noiseless Coding Coding
Techniques, Part III, Module PSI–14,k+, JPL Publication 91–3, NASA,
JPL California Institute of Technology, p. 124, November 1991.

[3] CCSDS, Image Data Compression, Recommended Standard CCSDS
122.0-B-1, Consultative Committee for Space Data Systems, November
2005. (available at http://public.ccsds.org, accessed 4 March 2011)

[4] Langi, A.Z.R., Lossless Compression Performance of a Simple Counter-
Based Entropy Coder, ITB Journal of Information and Communication
Technology, 5(3), 2011.

[5] Langi, A.Z.R., An FPGA Implementation of a Simple Lossless Data
Compression Coprocessor, Proc. International Conference on Electrical
Engineering and Informatics (ICEEI) 2011, Bandung, July 2011.

[6] Langi, A.Z.R. & Kinsner, W., Wavelet Compression for Image
Transmission through Bandlimited Channels, ARRL QEX
Experimenters’s Echange, (ISSN: 0886–8093, USPS 011–424), 151, pp.
12–21, September 1994.

[7] Bradley, J.N. & Brislawn, C.N., The Wavelet/Scalar Quantization
Compression Standard for Digital Fingerprint Images, Proc. IEEE Int.
Symp. Circuits and Systems, London, May 3–June 2, 1994.

[8] Cui, W., New LZW data compression algorithm and its FPGA
implementation, Proc. 26th Picture Coding Symposium (PCS 2007),
November 2007.

[9] Heliontech.com, Compression Systems, (available at http://www.
heliontech.com/comp_sys.htm, accessed August 24, 2011).

[10] Jilani, S.A.K. & Sattar, S.A., JPEG Image Compression Using FPGA
With Artificial Neural Networks, IACSIT International Journal of
Engineering and Technology, 2(3), p 252-257, June 2010.

[11] Kingh, S.N., Kumar, J., Rajan, R. & Panigrahi, S., Hardware Image
Compression with FPGA”, ACEEE International Journal of Recent
Trends in Engineering, Academy Publisher, 12(8), pp. 33-35, November
2009.

[12] Venbrux, J., Yeh, P.-S. & Liu, M.N., A VLSI Chip Set for High-Speed
Lossless Data Compression, IEEE Transactions on Circuits and Systems
for Video Technology, 2(4), pp. 381-391, December 1992,.

