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Abstract. An approximate solution of longitudinal dispersion phenomena 
occurring in two phase miscible fluid flow through porous media has been 
obtained by using the group theoretic approach. The longitudinal dispersion 
coefficient is assumed to be directly proportional to the concentration of the fluid 
for a distance x and at any time t > 0. The graphical representation for the 
concentration of the fluid for a distance x and at time t > 0 has been obtained 
using Mat lab coding.
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1 Introduction

The present paper discusses the problem of longitudinal dispersion, which 
occurs during two-phase flow of miscible fluids through porous media. The 
governing equation non-linear partial differential equation yields into the form 
of Burger’s equation and its solution has been obtained by using Group 
theoretic approach. In saturated flow through porous media, velocities vary 
widely across any single pore, just as a capillary tube where the velocity 
distribution in laminar flow is parabolic. In addition, the pores possess different 
sizes, shapes, and orientations. As a result when a labeled miscible liquid, 
referred as a tracer, is introduced into a flow system, it spreads gradually to 
occupy an increasing portion of the flow region. This phenomenon is known as 
dispersion and constitutes a non-steady, irreversible mixing process by which 
the tracer disperses within the surrounding fluid. 

Dispersion is essentially a microscopic phenomenon caused by a combination 
of molecular diffusion and hydrodynamic mixing occurring with laminar flow 
through porous media. The net result produces a conic downstream form, from a 
continuous point source. This phenomenon can be observed in coastal areas, 



62 M.S. Joshi, N.B. Desai & M.N. Mehta

where the fresh waterbeds are gradually displaced by seawater. This 
phenomenon plays an important role in the seawater intrusion into reservoir at 
rive mouths and in the underground recharge of wastewater. The hydrodynamic 
dispersion is the macroscopic outcome of the actually movement of individual 
tracer particles through the pores. Various physical and chemical phenomena 
occur simultaneously due to molecular diffusion and convection. These day’s 
efforts are being made by the environmentalist to dispose the atomic waste 
products born from nuclear reactor and dumped inside the ground by using the 
same phenomenon of displacement. Miscible displacement in porous media 
plays a prominent role in many engineering and scientific fields such as oil 
recovery in petroleum engineering, contamination of ground water by waste 
products disposed underground movement of minerals in the soil and recovery 
of spent liquors in pulping process. 

These problems of dispersion have been receiving considerable attention from 
chemical, environmental and petroleum engineers, hydrologists, mathematicians 
and soil scientists. Most of the works reveals common assumption of 
homogenous porous media with constant porosity, steady seepage flow velocity 
and constant dispersion coefficient.  For such assumptions, Ebach and White [1] 
studied the longitudinal dispersion problem for an input concentration that 
varies periodically with time and Ogata and Banks [2] for a constant input 
concentration. Hoopes and Herteman [3] studied the problem of dispersion in 
radial flow from a well fully penetrating, homogenous, isotropic non-adsorbing 
confined aquifers. Bruce and Street [4] considered both longitudinal and lateral 
dispersion in semi-infinite non adsorbing porous media in a steady 
unidirectional fluid flow for a constant input concentration. Marino [5]
considered the input concentration varying exponentially with time. Al-Niami 
and Rushton [6] and Marino [5] studied the analysis of flow against dispersion 
in a porous media. Basak [7] presents an analytical solution the problem of 
evaporation from a horizontal soil column in which diffusivity increases linearly 
with moisture content and also to a problem of concentration dependent 
diffusion with decreasing concentration at the source. Hunt [8] applied 
perturbation method to longitudinal and lateral dispersion in non uniform 
seepage flow through heterogeneous aquifers. Wang [9] discussed the 
concentration distribution of a pollutant arising from a instantaneous point 
source in a two dimensional water channel with non uniform velocity 
distribution. He employed Gill’s method to solve the convective diffusion 
equation. Kumar [10] discussed the dispersion of pollutants in semi-infinite 
porous media with unsteady velocity distribution. Mehta and Patel [11] applied 
Hope-Cole transformation to unsteady flow against dispersion of miscible fluid 
flow through porous media. Mehta and Saroj [12] considered that the 
longitudinal dispersion coefficient is directly proportional to the concentration 
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and the velocity component in direction of X-axis is considered directly 
proportional to ratio of distance x and time t. 

One dimensional treatment of dispersion phenomena avoids the treatment of 
radial or transverse component of dispersion. The mixture of fluids under 
condition of complete miscibility could be thought to behave as a single phase 
fluid. Hence it will obey the Darcy’s law. The present paper discuss the 
analytical solution of nonlinear partial differential equation for longitudinal 
which takes place when miscible fluids mixes in the direction of flow. The 
mathematical formulation of the problem yields into Burger’s equation and its 
solution is obtained by Group theoretic approach. Group theoretic methods 
provide a powerful tool because they are not based on linear operators, 
superposition, or any other aspects of linear solution techniques. Therefore, 
these methods are applicable to non-linear differential models.

2 Statement of the Problem

Miscible displacement in porous media is a type of double-phase flow in which 
the two phases are completely soluble in each other. Therefore, capillary forces 
between the two fluids do not come into effect. At first it must be thought that 
miscible displacement could be described in a very simple fashion. The mixture 
under conditions of complete miscibility could be thought to behave, locally at 
least, as a single-phase fluid, which would obey Darcy’s law. The change of 
concentration, in turn, would be caused by diffusion along the flow channels 
and thus be governed by the bulk coefficients of diffusion of the one fluid in the 
other. In this fashion, one arrives at a heuristic description of miscible 
displacement, which looks, at a first glance, at least very plausible. 

Figure 1 Longitudinal and Transverse dispersion.

The problem is to describe the growth of the mixed region, i.e. to find 
concentration as a function of time t and position x, as the two miscible fluids 
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flow through porous media. Outside of the mixed zone (on either side) the 
single-fluid equations describe the motion. The problem is more complicated, 
even in one dimension with fluids of equal properties, since the mixing takes 
place both longitudinally and transversely. Imagine at t=0 we inject a ‘dot’ of 

traced fluid of concentration 0c 3/mass length rather than over the entire face. 

This situation is sketched in the following   (Fig. 1). As the dot moves from left 
to right it will spread in the direction of flow and perpendicular to the flow. At 
the right the dot has transformed into an ellipsoid with concentration varying 
from 0c to c across it.  

3 Mathematical Formulation

According to Darcy’s law, the equation of continuity for the mixture, in the case 
of incompressible fluids is given by Bear [13].

(   ) 0 div V
t

 
  


           (1)

where, ρ is the density for mixture and V is the pore seepage velocity vector.

The equation of diffusion for a fluid flow through a homogeneous porous 
medium, without increasing or decreasing the dispersing material is given by

( )   
C C

div CV D div
t




  
         

           (2)

Where C is the concentration of the fluid A into the other host fluid B (i.e. C is 

the mass of A per unit volume of the mixture) and D of unit 2 1.length time  
is the tensor coefficient of dispersion with nine components ijD .

In a laminar flow through a homogeneous porous medium at constant 
temperature ρ may be considered as constant. Then

0 div V  (3)

And hence Eq. (2) may be written as 

.  
C

V C div D divC
t

      
(4)
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When the seepage velocity V is along the x-axis, the non-zero components 

are 11 2
0

 L

L
D D

c
  (coefficient of longitudinal dispersion) and 22D D

(coefficient of transverse dispersion) and other ijD are zero. In this case the Eq. 

(4) becomes,

2

2
    L

C C C
u D

t x x

  
 

  
        (5)

Where u is the component of velocity along the X-axis having the dimension 
1length time   which is time dependent and 0LD  .it is the cross-sectional 

flow velocity of porous medium. Hence we have,

 
0

,
  0

C x t
u for x

c
  (6)

Using the dimensionless variables 0 , 
c x t

X T
L L

, the Eq. (5), can be 

rewritten as, 

2

2

C C C
C

T X X

  
 

  
(7)

The boundary and initial conditions in longitudinal direction are given 

by

 , 0 ;  C X      where is very small (8)

 0(0, )  ( 0)C T c q T T  (9)

 1
lim ( , ) 0 ( 0) 
X

C X T T


  (10)

Thus Eq. (7) together with boundary conditions (8) to (10) represents the 
boundary value problem for the longitudinal dispersion of miscible fluid 
flow through a homogeneous porous medium.
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4 Solution of the Problem

Let 

     , , .C X T u X T q T (11)

Where,  q T is an unknown function. Its proper form will be determined later. 

Thus differential Eq. (7) takes the form 

 
2

2
2

, 0, 0
u dq u u

q T u q u q X T
T dT X X

  
    

  
(12)

and hence the initial and boundary conditions

  0 00, ,    0, 0u T c T c   (13)

 
1

lim , 0
X

u X T


 (14)

Our method depends on application of one-parameter group transformation to 
partial differential Eq. (7). Under this transformation two independent variables 
will be reduced by one and differential Eq. (7) transforms into ordinary 
differential equation.

4.1 The Group Systematic Formulation

The procedure is initiated with the group G, a class of transformation of one-

parameter  a of the form, 

   
   
   
   

X X

T T

u u

q q

X M a N a

T M a N a

u M a N a

q M a N a

 

  


  


  

(15)

Where, M’s and N’s are real valued and at least differentiable in real 

argument  a . 

. 
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4.2 The Invariance Analysis

To, transform the differential equation, transformation of the derivatives of u 
and q are obtained from G via chain-rule operations:

 and 
u u

X T

u M u u M u

X M X T M T

      
          

and 

q

T

dq M dq

dT M dT

 
  
 

(16)

Eq. (12) is said to be invariantly transformed for some function  H a , 

whenever

 

2
2

2

2
2

2
                   

u d q u u
q u q u q

T dT X X

u dq u u
H a q u q u q

T dT X X

  
  

  
   

       

(17)

Substitution (17) into Eq. (17) yields,

   

   

 
 

2

2

2 2

                                    

                                    

                                 

u q
q q u u

T T

u
q q u u

Z

u
q q

X

M u M dq
M q N M u N

M T M dT

M u
M q N M u N

M X

M u
M q N

XM

   
        

  
      

    
  
 

 
2

2
2

  
u dq u u

H a q u q u q
T dT X X

   
       

(18)

From which
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 

 
 

 

2

2

2

2 2

2
2

2

                        

                       

u qq u q u

T T X

u q

X

M MM M u M M dq u
q u uq

M X M dT M X

M M u
q R a

XM

u dq u u
H a q u q u q

T dT X X

                  
    
  
 

   
       

(19)

where, 

 

 
 

2
2

2 2
           

q u q u

T T

u u q
u q q

X X

N M u M N dq
R a

M T M dT

M u M N u
N M q N u

M X XM

   
       

                 

The invariance of (19) implies   0.R a  This is satisfied by putting 

0q uN N  (20)

and hence we get,

 
 

 
2

2

u qq u u q

T X X

M MM M M M
H a

M M M

                    

Which yields,

 2 1T X q u
X

M M M M
M

   (21)

Moreover, boundary conditions (13) and (14) are also invariant in form, 
implying that 

0Z uN N  and 1uM                                        (22)

And the invariance of initial condition (8) implies that 
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0TN           (23)

Finally, we get the one-parameter group G which transforms invariantly 
differential Eq. (12), as well as initial condition (13) and boundary conditions 
(14). The group G is of the form

 2

,

,

:

1

X

X

X

X M X

T M T

G
u u

q q q
M

 

 

 
    

 

(24)

4.3 The Complete set of Absolute Invariant

Our aim is to make use of the group methods to represent the problem in the 
form of an ordinary differential equation. Then we have to proceed in our 
analysis to obtain a complete set of absolute invariants. 

If  ,X T   is the absolute invariant of the independent variables, then 

   , ; , ,  where j=1,2j jg X T u q F X T    (24)

are two absolute invariants corresponding to u and q. the application of a basic 

theorem in group theory, Moran [14]  states that a function  , ; ,g X T u q is an 

absolute invariant of a one-parameter group if it satisfies the following first-
order linear differential equation:

 
4

1

0,  where , , ,i
i i i i

i i

g
f f X T u q

f


   

    (26)

where,

   0 0 and ;  i=1,2,3,4
i if f

i i

M N
a a

a a

 
   

 
(27)

and 0a denotes the value of “a” which yields the identity element of the group. 
From which we get 3 0 and 1,2,3,4i   
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From Eq. (26),  ,Z T is an absolute invariant if it satisfies 

1 2 0X t
X T

 
  

 
(28)

Which, has a solution in the form 

  1

2

, , 0
X

X T
T 


    


(29)

By similar analysis the absolute invariants of the dependent variables 

  u and q are      q T T    . Since,    q T and T are independent of 

X, while  is a function X and T, then    must be a constant, say   1   , 

from which   

   q T T  (30)

and the second absolute invariant is 

   , .u X T F           (31)

4.4 Reduction to an Ordinary Differential Equation

Substituting from (29) to (31) into Eq. (12), we get

2 2
1

2
0

d F dF dF T d
XT T F F

d d d dT


                   

(32)

For (32) being reduced to an expression in the single independent invariant , it 

is necessary that the coefficients should be constants or functions of alone. 
Thus 

1
1XT k           (33)

2T k           (34)

2

3

T d
k

d

 


 
         (35)
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Evaluation of 3 and k gives us 30.5 and k 0.5.    hence from Eq.(35)

  1
T

T
 

From which Eq. (32) takes the form 

 
2

2
2 2 0

d F dF
F F

d d
   

 
(36)

Under the similarity variable , the boundary conditions are transformed into 

  00F c          (37)

  0F            (38)

4.5 Analytical Solution of the Problem 

Eq. (36) takes the form 

21 1
0

2 2

d dF
F F

d d

 
      

         (39)

Integrating (39), we get

2
1 1

1 1
;  where  is constant

2 2

dF
F F k k

d
   


(40)

Eq. (40) is a Riccati equation and its solution is obtained by considering two 
different cases. 

Case-I:   1 2when F k 

The Riccati equation (40) posses a special solution of the form 

 1 2 .F k     (41)

Which leads to 1 2 ,k k and possible values of 2k are 0 and 1. 

Reduction of Eq. (39) corresponding to 2 0k  from Eq. (41) is given by 
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21 1

2 2

dF
F F

d
  


      (42)

Which is Bernoulli’s equation and has the solution 

 
2

2

4

4
3

0

1

2

e
F

k e d



 

 
 

      (43)

Applying the condition (37), we get 3
0

1
k

c
 .

Hence Eq. (39) has the solution 

 
2

2

4

4

0 0

1 1

2

e
F

e d
c



 

 
 

         (44)

Which, can be rewritten as 

 
2

4

0

1

2 2

e
F

erf
c



 
       

  

         (45)

and hence from Eq. (11), we get 

 
2

4

0

0

1
, ;  0, 0,  0

1
2 2

e
C X T X T c

XT erf
c T


 
 
    
             

2 0k  .   (46)

Case-II:     2When F F   

Reduction of Eq. (40) corresponding to 2 1k  and considering another special 

solution of Riccati equation (40) as, 
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   2F F            (47)

Hence Eq. (40) takes the form 

22
2 2

1 1

2 2

dF
F F

d
  


(48)

Again it is Bernoulli’s equation in 2  and F  and hence its solution is given by 

 
2

2

4

2

4
4

0

1

2

e
F

k e d



 

 
 

         (49)

Hence from Eqs. (41), (42) and (49) we get

 
2

2

4

4
4

0

1

2

e
F

k e d



 

  
 

(50)

Applying condition (37), we get 4
0

1
k

c
 and (38) is satisfied, hence we have 

 
2

2

4

4

0 0

1 1

2

e
F

e d
c



 

  
 

         (51)

And hence the form of  ,Z T is given by,

 
2

16

0

0

1
, ;  0, 0,  0

1
2 2

X
TX e

C X T X T c
XT T erf

c T

 
 
     
             

2 1k  .   (52)

5 Interpretation of the Solution

A specific problem of the longitudinal dispersion of miscible fluids flows 
through porous media under certain assumptions has been considered and its 
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Figure 2 Concentration Vs. Distance for a fixed time T=0.7.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

Distance x

C
o

n
c
e

n
tr

a
ti
o

n
 C

(X
,T

)

The Graph of Concentration C(x,t) Vs. Distance X for a fixed time 0.3 

Concentration  C

Figure 3 Concentration Vs. Distance for a fixed time T=0.3.

solution is obtained by Group theoretic approach. We have obtained two 
different solutions as Eq. (46) and (52). Out of these two, the solution given by 
Eq. (46) is consistent with the physical situation as it can be observed form the 
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solution (46) that the concentration in the longitudinal dispersion do have 
negative exponential term and hence concentration decreases with respect to 
distance x  for a fixed time t>0. Whereas Eq. (52), contains positive exponential 
term and hence concentration increases as the distance x increases for a fixed 
time t>0. And hence we ignore the solution given by Eq. (52). The numerical 
and graphical representation has been obtained by using Mat lab programming. 
Fig. 2 & 3 represents the graph of concentration C vs. distance X for a fixed 
T=0.7 & T=0.3 respectively. From these two graphs we can conclude that 
concentration decreases as the distance X increases. Mehta and Saroj [12] have 
obtained the solution of this problem by taking different assumptions and by 
using the method of small parameters. Mehta & Patel [11] have obtained the 
solution in the form of special functions.  
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