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Abstract. The effectiveness of a breakwater can be measured by quantifying the 

transmission coefficient (KT). The smaller the coefficient, the better the 

performance of the breakwater. A physical modeling on the proposed breakwater 

was conducted to identify the coefficient of Perforated Skirt Breakwater (PSB). 

The PSB model was tested in 2-D wave flume at Ocean Wave Research 

Laboratory FTSL ITB, to obtain the effectiveness of PSB for short-period waves 

(prototype periods, Tp= 4 second and smaller). The scaling of PSB models 

applies the principle of Froude Similarity, where the Froude number in model 
equals to the Froude number in prototype (Frm=Frp). The flume is equipped with 

5 resistance-type wave probes and 8-channel DAS (Data Acquisition System). 

Wave heights (H) and wave periods (T) data were observed both manually by 

visual observation and wave probes readings (processed later with method of 

“zero mean up-crossing” technique). The incoming wave heights (Hi) and 

transmitted wave heights (Ht) were measured and processed to obtain the 

transmission coefficient (KT). The relationships between KT and non-

dimensional variables (skirt draft / incident wave height, S/Hi) are analyzed and 

the calculated effectiveness of the PSB for varied environmental condition is 

obtained to be up to 70%. 

Keywords: non-dimensional variables; perforated skirt breakwater; short-period 
waves; transmission coefficient. 

1 Introduction 

The Liquid Natural Gas (LNG) Exploration site at Bintuni Bay, West Papua, 

has a combo dock facility that is operated to allow berthing ship to load LNG 
from the refinery site. Berthing activities will require a calm wave condition, 

where these conditions will be achieved by constructing a breakwater protecting 

the harbor. The depth of water around the port is about 6 - 9 m. 

Rubble mound breakwater is costly when applied in deep water due to its 

construction volume in deep water, thus it is not recommended in this situation. 

To handle the cost problem, the proposed design for the breakwater is 

Perforated Skirt Breakwater (PSB). In order to reduce the cost, PSB uses piles 
to support the upper structure. At the upper structure (around the water surface), 
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there are some important parts that distinguish PSB from the other types of 

breakwater. The major components are 1) concrete skirts attached to the piles, 

2) chambers which also help dissipate the wave energy. For PSB model, the 

skirts are separated from the main structure of PSB. The skirts are designed to 
be easily moved up and down, to adjust the value of breakwater draft (S). The 

illustration of skirts, chambers, portals and several parameters of PSB can be 

seen in Figure 3 to Figure 7.  

The effectiveness of the breakwater depends on the transmission coefficient 

(KT), which is influenced by several physical parameters, such as skirts of 

breakwater (which affect the draft of the breakwater S) and length of chamber 

(Lc). The smaller the coefficient, the better the performance of the breakwater. 
PSB model was designed and tested in 2-D wave flume at Ocean Wave 

Research Laboratory FTSL ITB, Bandung Indonesia. 2-D wave flume 

dimensions are: 40 meters of length; 1,2 m of width; and 1,5m of height. The 
waves were generated by a piston-type wave generator that can generate regular 

waves up to 30 cm of wave height. The wave flume is also equipped by 5 wave 

probes and 8 channels of DAS (Data Acquisition System). The investigation 
was limited to regular waves. 

Since it was introduced by Jarlan [1], perforated breakwater has been widely 

used to reduce the wave forces on the front of the vertical wall breakwater 

(Quinn, [2]). The front section of perforated breakwater is facing the open sea 
with perforated part, while at the behind section is designed from solid and 

impermeable structure (illustration of perforated breakwater can be seen in 

Figure 1). One important characteristic of the perforated breakwater is the wave 
energy will be dissipated without great effect on reflecting waves. Performance 

of perforated breakwater is depending on the porosity of the outer wall and 

relative chamber width to wavelength. Other parameters such as wave’s height, 

period, regularity of waves, wave's direction and water depth also affected. 

Pressure waves in hollow walls (perforated wall) are less than a solid wall, as 

has been found by Bergmann and Oumeraci [3]. A research was conducted by 

Armono and Hall [4] for wave transmission at submerged breakwater, which 
made of artificial coral reefs named as Hollow Hemispherical Shape Artificial 

Reefs (HSAR). Investigation was also conducted by Ariyarathne [5] with the 

results agree well with Kondo [6], Suh et al. [7] and Hagiwara [8]. 
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Figure 1 Perforated breakwater (introduced by Jarlan [1]). 

As an example, for the application of perforated breakwater is Raffles Marina 
Wharf, by Bloxam [9], as shown in Figure 2.  Raffles Marina is at Tuas on the 

western coast of Singapore, just south of the Second Crossing Bridge to 

Malaysia.  

 

Figure 2 Example of the application of perforated breakwater (Raffles Marina 

Wharf/breakwater in Singapore). 

There are few modifications within the chambers, in which they were given 

additional perforated walls and the rear wall being solid wall. Hereafter this 
structure named as Perforated Skirt Breakwater (PSB). 

The PSB provides an additional alternative type of breakwater in the field of 

Coastal Protections Scheme. The various benefits of PSB, namely: 
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1. PSB has economic value (when applied in deep water). 

2. PSB can reduce the effects of wave reflection. 

3. PSB can be used as an alternative breakwater in the area with no stone 

material for the construction, as happened in South Papua such as Merauke, 
Indonesia. 

2 Material, Model, and Methods 

2.1 Material 

The model was made by wood materials. 

2.2 Model 

The skirt parts of the PSB were designed to be easily moved up and down, to 

adjust the value of breakwater draft (S). Draft of breakwater is a distance from 

the surface of the water to the bottom part of the skirts (see Figure 5). The 
illustration of skirts, chambers, portals and several parameters of PSB can be 

seen in Figure 3 to Figure 7. 

Skirts,

Can be moved easily 

up and down, to 

adjust the value of 

breakwater draft (S)

Chamber 1

Chamber 2

Chamber 3

Incoming wave 

direction

Lc = Length of chamber
P= distance between pile

B = Width of Structure

 

Figure 3 Some important parameters on the PSB. 

PSB has several filtering portals with skirts at each portal (see Figure 4). The 

position of each skirt is alternated between the adjacent filtering portals. 
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Portal1

Incoming wave 

direction

Portal2

Portal3

Portal 4

 

Figure 4 Definition of portal parameter on the PSB. 

In laboratory tests, draft of the breakwater (S) can be adjusted by lowering or 

raising the skirts. The sketch of the adjustment of the draft by skirts can be seen 

in Figure 5. 

S = breakwater

draft
P P P

Skirts,

Can be moved easily 

up and down, to 

adjust the value of 

breakwater draft (S)

 

Figure 5 Sketch of draft adjustment (front view). 
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a

b

Description :

a = impermeable part of skirts

b = perforated part of skirts  

Figure 6 Sketch of skirts on PSB. 

Figure 7 shows the side view of PSB in wave flume. 

Lc

S

Hi Ht

Wave Probe Wave Probe

Lc Lc

SS S S

 

Figure 7 Sketch of PSB model (side view) 

Figure 8 shows the PSB in the wave flume subjected to regular waves 
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Figure 8 2-D physical modeling on PSB in Ocean Wave Research Laboratory, 
ITB. 

2.3 Methods 

2.3.1 Scaling 

The scaling of PSB model applies the principle of Froude Similarity where 

scale and similarity model selection follow Froude similarity defined as: 

 
r rm p

F F  (1) 

 

m p

v v

gL gL

 (2) 

Length scale ratio is defined as NL = Lp/Lm. Subscripts p is prototype and m is 
model. The determination of scaling was adjusted to the ability and capacity of 

wave flume compared to the size of the prototype. The maximum prototype 

water depth is 9 m and the maximum depth that can be optimally operated in the 
wave flume is 75 cm, so the scale would be 75 cm : 900 cm or approximately 

1:12. Using this scale, if the prototype wave height  is 2.6 m; then the model 

wave height would be 2.6/12 = 21.7 cm. Using Froude similarity, the other 
scaling quantity, i.e. time scale and weight scale can be written as Length Scale 

= NL =12; Time Scale = 1:(NL)
0,5

 = 1:3,5 and Weight Scale =1:(NL)
3
 = 1:12

3 
= 

1:1728. Based on these scales, model dimensions are presented in Table 1. The 

width of model is limited to wave flume width of 120 cm. Hence, there was 
only three column of chamber used in testing which the total width of column is 

set to be 116 cm, so distance between piles was limited to 38.7 cm on model 

scale. 
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Table 1 Scenario of experiments (based on model dimensions). 

Dimension Symbol Prototype (m) Model (cm) 

Length of Chamber 

Lc 2.0 16.7 

Lc 4.0 33.3 

Lc 6.0 50.0 

Number of Chambers Nc 3 (dimensionless) 3 (dimensionless) 

 Nc 2(dimensionless) 2 (dimensionless) 

Draft of Breakwater 

S 1.0 8.3 

S 2.0 16.7 

S 4.0 33.3 

Distance Between Piles P 5.0 38.7 

Skirts Type 1 
a 0.5 4.2 

b 0.5 4.2 

Skirts Type 2 
a 0.7 6.0 
b 0.3 2.4 

The scenario consists of 2 parts (based on number of chambers Nc): 

1. Experiment with number of chambers (Nc) = 3 chambers  

In this scenario, all parameters of PSB dimensions were conducted in the 

laboratory. 
2. Experiment with number of chambers (Nc) = 2 chambers  

In this scenario, parameters of PSB dimensions were selected and limited 

only for certain conditions, i.e. Lc prototype = 5 m or Lc model = 41.7 cm 
and only using skirt type 2 on the experiment. 

 

There are two types of skirt unit (based on dimension of a and b variables): 

1. Skirt type 1 

a = width of skirt = 0.5 m on prototype (a = 4.2 cm on model) 

b = gap between skirt = 0.5 m on prototype (a = 4.2 cm on model) 

2. Skirt type 2 
a = width of skirt = 0.7 m on prototype (a = 6.0 cm on model) 

b = gap between skirt = 0.3 m on prototype (a = 2.4 cm on model) 
 

While for environmental conditions, the scaling is presented in Table 2. 

Table 2 Scenario of experiments (based on environmental conditions). 

Dimension Symbol Prototype  
Model  

(Scale 1:12) 

Water Depth h 9.0 m 75.0 cm 

Incident Wave 

Height 

Hi 1.5 m 12.5 cm 

Hi 2.0 m 16.7 cm 

Hi 2.6 m 21.7 cm 

Wave Period T 4.0 s 1.2 s 



 2-D Physical Modeling of Perforated Skirt Breakwater 65 
 

Table 1 and Table 2 show the scenario of the experiments, where length of 

chamber (Lc), skirt model, incident wave height (Hi), skirt draft (S) were varied 

to a fixed wave period (Tp = 4 seconds), where it’s categorized as short-period 

waves. 

2.3.2 Model Set Up 

There were 5 wave probes placed in the wave flume. PSB model was placed 

between probe 3 and probe 4 (see Figure 9). 

 

Figure 9 Definition sketch and set up of model in the 2D-wave flume. 

2.3.3 Wave Heights (H) and periods (T) 

Data were taken from wave probes 1, 2 , 3, 4 and 5 (see Figure 9). Data from 

wave probe 1 is of incident wave height (Hi),  wave probe 2 and wave probe 3 
data are used for analyzing the wave reflection (Hr) , while wave probe 4 and 

wave probe 5 data are of transmitted waves (HT). However, the reflected 

coefficient was not a topic in this paper. Wave height (H) and period (T) data 
were observed both manually by visual observation and digitally from wave 

probes and data acquisition software (i.e. processed later with method of zero 

mean up-crossing technique). Unprocessed data obtained from the wave probes 

is in the form of resistance quantity, then using software program, these data are 
converted to time series of water surface. The procedure to obtain data can be 

written as follows:  

1. Extracting recorded data from probe. 
2. Zero mean processing the extracted data. 

3. Observing the resulted time series to decide best data range before the time-

series are affected by wave reflections.  
4. Up-crossing the time series to get the wave heights and periods.  

5. Averaging the Wave Heights ( iH ) for time series range in step 3.  

2.3.4 Transmission Coefficient (KT) 

Take the ratio of HT (transmitted waves) from wave probe 4 and Hi (incident 
wave height ) from wave probe 1 (illustrated by Figure 9) , and the transmission 

coefficient can be written as, 



66 Harman Ajiwibowo 

 T
T

i

H
K

H
 (3) 

3 Dimensional Analysis 

To present the experimental results in simpler form, dimensional analysis is 

conducted to obtain some non-dimensional quantities. The following non-

dimensional variables are obtained,  

 
2 2 2 2 2 2

, , , , ,i
T

H h S Lc b P
K f

gT gT gT gT gT gT
 (4) 

4 Results and Discussion 

4.1 Transmission Coefficient (KT) vs Breakwater Draft/Incident 

Wave Height (S/Hi) 

Figures 10 to 12 show the plot of KT against the breakwater draft /incident wave 

height (S/HI) for PSB investigation, for various scenarios of experiment (Table 

1 and Table 2) with short-period waves (Tp = 4 s or Tm = 1,2 s). 

KT = -0.038(S/Hi) + 0.693

KT = -0.047(S/Hi) + 0.688
KT= -0.088(S/Hi) + 0.722
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Figure 10 Transmission coefficient (KT) vs S/Hi for PSB Type 1, Tp =  4 s or 

Tm =  1.2 s for Nc = 3 chambers. 
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KT = -0.146(S/Hi) + 0.679

KT = -0.179x(S/Hi)+ 0.703KT = -0.209(S/Hi) + 0.713
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Figure 11 Transmission coefficient (KT) vs S/Hi for PSB Type 2, Tp =  4 s or 

Tm =  1.2 s for Nc = 3 chambers. 

KT = -0.146(S/Hi) + 0.679

KT = -0.179x(S/Hi)+ 0.703KT = -0.209(S/Hi) + 0.713
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Figure 12 Transmission coefficient (KT) vs S/Hi for PSB Type 2, Tp =  4 s or 

Tm =  1.2 s for Nc = 3 chambers and Nc = 2 chambers. 
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Comparing results in Figures 10 and 11, it can be concluded that the skirt type 2 

is more effective than a skirt type 1. 

Figure 12 shows review for all experiments (including the comparison between 

Nc = 3 chambers and Nc = 2 chambers). 

Based on Figure 12, it can be concluded that number of chamber (Nc) = 3 is 

better than number of chamber (Nc) = 2 chambers. 

4.2 Other Non-Dimensional Products 

Figures 13 to 16 show non-dimensional relationship for each skirt model (skirt 

model 1 and skirt model 2). 

KT= 0.368(HI/gT2)-0.12
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Figure 13 KT vs Hi/(gT2) for medium depth criteria on PSB skirt type 1 

investigation. 
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KT = 0.602(B/L)-0.04
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Figure 14 KT vs B/L  for medium depth criteria on PSB skirt type 1 

investigation, where B is total width of structure and L is wavelength. 
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Figure 15 KT vs Hi/(gT2) for medium depth criteria on PSB skirt type 2 

investigation. 
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Figure 16 KT vs B/L  for medium depth criteria on PSB skirt type 2 

investigation, where B is total width of structure and L is wavelength. 

5 Comparisons with Related Research 

The results of KT from this study are compared to similar studies before ([4]; 

[5]). 

1) Research on submerged breakwater, which made of artificial coral reefs, or 

called as Hemispherical Shape Artificial Reefs (HSAR) by Armono and 
Hall [4].  

The influence of water depth, incident wave height and period and reef 

configuration on wave transmission were investigated. Wave height 
reduction was found to be influenced by the wave steepness, depth of 

submergence, and reef geometry. About 60% of the incoming wave energy 

was reduced on average. 

The research configuration (by Armono and Hall) can be seen in Figure 17, 

where B is the total width of artificial reefs, h is the distance from the 

bottom of water to the top of artificial reefs, while d is water depth. In the 

study, Armono and Hall put the hollow artificial reef on the solid structure 
(as shown in Figure 18) [4].  
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Figure 17 Sketch of HSAR investigation by Armono and Hall [4]. 

Figure 18 shows the results of HSAR investigation [4]. 
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Figure 18 Sketch of HSAR investigation by Armono and Hall for each h/d. 

In Figure 18, Armono and Hall separated results for each h/d 

conditions, while Figure 19 shows the result of investigation where h/d 

is collected for all conditions (this figure was made by author to 
compare it to PSB result) and then it was compared to current study (for 

each type of skirt). 
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(b) 

Figure 19 Comparison for KT vs Hi/(gT)2 between HSAR and PSB 

investigation, for: a) Skirt Type 1 , b) Skirt Type 2. 
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Based on the comparison in Figure 19, different type of skirt has different 

results, 

i. In skirt type 1 result (see Figure 19a),  it can be concluded that the value 

of KT for HSAR is smaller than the KT for PSB. This is because the solid 
structure which is used as a base of HSAR unit (Figure 16) also played 

an important part in dissipating the wave energy, while the PSB structure 

there is no massive structure on the lower side. The absence of solid 
structures at the PSB are intended to reduce costs. The solid structure 

would make the PSB costly when it was placed in deep water. 

ii. In skirt type 2 result (see Figure 19b),  it can be concluded that the value 

of KT for PSB is smaller by KT  result for HSAR. It shows the 
performance of PSB with skirt type 2 is better than HSAR. 

2) Perforated breakwater investigation by Ariyarathne [5] 

 
(a) 

 
(b) 

Figure 20 Sketch of perforated breakwater by Ariyarathne [5]. 
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Ariyarathne [5] tested the perforated breakwater, where the breakwater 

structure consists of a solid structure from the bottom up to the top of the 

breakwater with perforation part in the upper structure (see Figure 20). 

In Figure 20 (b), it can be seen that the solid breakwater is more dominant 
than perforation. 

Figure 21 shows the results of investigation by Ariyarathne on the 

breakwater perforated [5]. 

From the results it is clear that reflection, transmission and energy 

dissipation depends on the parameter B/L, where B is the width of the 

structure and L is the wavelength. For the tested wave conditions, the 

energy dissipation lies between 56% and 78%, and for more than 75% of 
the tested cases the energy dissipation is above 69%. This means the 

structure is very effective in energy dissipation. While the reflection 

coefficient decreases with increasing B/L till about 0,225, then it starts 
increasing. The minimum reflection coefficient occurs at B/L ≈ 0,2 – 0,25. 

This agrees well with Kondo [6], Suh, et al. [7] and Hagiwara [8]. 

 

Figure 21 KT vs B/L, Kr vs B/L, and energy dissipation for the perforated 

breakwater, by Ariyarathne [5]. 
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Plot for transmission coefficient (KT) is retrieved from Figure 21 and 

compared to current study (presented in Figure 22). 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

K
T

B/L

Comparison of KT vs B/L 
(Ariyarathne study - Current study)

Kt untuk Hi = 8 cm 
(Ariyarathne,2007)

Kt untuk Hi = 4 cm 
(Ariyarathne,2007)

Kt untuk Hi =12,5 cm 
(Ajiwibowo, et al.,2009)

Kt untuk Hi =16,7 cm 
(Ajiwibowo, et al.,2009)

Kt untuk Hi =21,7 cm 
(Ajiwibowo, et al.,2009)

 
(a) 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

K
T

B/L

Comparison of KT vs B/L 
(Ariyarathne study - Current study)

Kt untuk Hi = 8 cm 
(Ariyarathne,2007)

Kt untuk Hi = 4 cm 
(Ariyarathne,2007)

Kt untuk Hi =12,5 cm 
(Ajiwibowo, et al.,2009)

Kt untuk Hi =16,7 cm 
(Ajiwibowo, et al.,2009)

Kt untuk Hi =21,7 cm 
(Ajiwibowo, et al.,2009)

 
(b) 

Figure 22 Comparison for KT vs B/L between Ariyarathne and current 

investigation, for: a) Skirt Type 1 , b) Skirt Type 2. 
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Based on the comparison in Figure 22, it can be concluded that the value of 

KT by Ariyarathne is smaller than the KT by current study. This is because 

the research by Ariyarathne was using solid breakwater which is much more 

dominant than its perforation (Figure 20). For perforated breakwater by 
Ariyartahne, the solid part from the bottom until the top is certainly very 

effective in dissipating wave energy. But it less economical. Contrary to the 

perforated breakwater by Ariyarathne, the perforation of the PSB structure is 
much more dominant than the solid part, so it is more appropriate when used 

in deep water [5]. 

6 Conclusions 

According to Figures 10-12, it can be seen that the bigger the value of draft (S) 

of skirt, the smaller value of KT or more dissipations on wave energy within the 

system. The smaller the KT coefficient means the better the performance of the 
breakwater. The skirt model 2 is more effective than skirt model 1. The 

effectiveness of breakwater for short waves (Tp =  4 s or Tm =  1.2 s). For short 

waves, it can dampen the waves from 30% to 70%. 

Length of chamber (Lc) influence the performance of breakwater. KT value 
become bigger (the performance of breakwater is less effective) when Lc is 

smaller. At this research, Lc prototype = 6 m is the most effective for the 

performance of breakwater, while the number of Chambers also important that 
is more chambers rooms more effective the PSB is.  

7 Recommendations for Future Research 

The future reasearch for the PSB will be of larger scale model (larger than 1:12) 
such as 1:5 or even full scale model. This larger scale model should be 

conducted in the wave flume that is sufficient to conduct such scale. Using the 

larger scale model, results are more accurate. Wider range of wave heights, 
periods and water depths can also be conducted to cover long wave situation.  

 

The results of this physical modeling is becoming more interesting if compared 
with the numerical model. The research of making numerical software of PSB 

should be conducted for wider applications for wider spectrum of wave 

frequencies. 

 
 

 

 
 



 2-D Physical Modeling of Perforated Skirt Breakwater 77 
 

Nomenclature 

Fr = Froude number 

Subsript m = model 

Subsript p = prototype 

v = fluid velocity 

g = gravity  

L = characteristic length 

Hi = incoming wave height 

h = water depth 

S = draft of breakwater 

Lc = length of chamber 

Nc = number of chambers 

T = wave period 

a = impermeable part of skirts 

b = perforated part of skirts 

P = distance between piles 

B = total width of structure 
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