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Abstract. This paper presents a reduced order model problem using  reciprocal 

transformation and balanced truncation followed by low order controller design 

of infinite dimensional systems. The class of systems considered is that of an 

exponentially stable state linear systems ( , , )A B C , where operator A  has a 

bounded inverse, and the operator B  and C  are of finite-rank and bounded. We 

can connect the system ( , , )A B C  with its reciprocal system via the solutions of 

the Lyapunov equations. The realization of the reciprocal system is reduced by 

balanced truncation. This result is further translated using reciprocal 

transformation as the reduced-order model for the systems ( , , )A B C . Then the 

low order controller is designed based on the reduced order model. The 

numerical examples are studied using simulations of Euler-Bernoulli beam to 

show the closed-loop performance.  

Keywords: balanced truncation; infinite-dimensional systems; low order controller; 

model reduction; reciprocal transformation. 

1 Introduction 

The physical system described by partial differential equation has received 

much attention in recent years, including design control for that system. 

Examples of these systems are flexible structure, fluid dynamics, robotic, wave, 

and so on. In implementation, designing control for that system is difficult since 

it is of infinite state dimension. Modern controller designs, such as H


 and 

linear quadratic Gaussian (LQG) techniques, lead to a controller with the same 

state dimension as the models from which they are designed. Hence, it is 

important to have low order controller for infinite-dimensional state space. 

There are two possible alternatives to achieve a low order controller of infinite 

dimensional system, i.e. model and controllers' reduction. In the first approach, 
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an infinite order of model is reduced and then the low order controller is 

designed. In the second approach, an infinite order controller is found and then 

the order of the controller is reduced. In this paper, we will focus on the first 

approach. 

There are many ways to obtain model reduction which have been proposed over 

the years. Existing methods, such as balanced truncation [1], optimal Hankel 

norm approximation, singular perturbation approximation (SPA) [2] are often 

used to reduce model order of finite dimensional linear time-invariant (FDLTI) 

systems. It is known that the balanced truncation method gives a good model 

approximation at high frequency, while SPA method is known to be superior at 

low frequency. Using properties of Hankel operator, several researches have 

extended the balanced truncation method [3,4,5] to reduce the model order of 

infinite dimensional case. The recent paper [6] discussed a computational 

approach of the balanced truncation method for infinite dimensional system via 

proper orthogonal decomposition (POD). 

Balanced truncations method consists of truncating a balanced realization. The 

balanced realization of infinite dimensional systems is the realization for which 

the controllability and observability gramians are both equal to some diagonal 

operator [3]. Suppose 
1

( ) = ( )G s C sI A B D


   is a transfer function of infinite 

dimensional systems with finite rank input and output operator. The r-th order 

balanced truncation of G  is the finite dimensional system with the transfer 

function 
1

1 11 1
( ) = ( )

r
G s C sI A B D


  . If the realization of G  is exponentially 

stable then = ( )limsD G s  exists (see [7, Lemma 7.3.1, p.364]). Since theory 

of balanced realizations and truncations exists only for exponentially stable 

systems, then ( ) = ( ) =
r

G G D  . It is clear that all reduced-order models 

obtained by truncation of infinite dimensional systems have perfect matching at 

infinite frequency. Unfortunately, this method yields the greatest approximation 

error at the low frequency which is undesirable in many applications. It is very 

interesting to improve model reduction method for infinite dimensional systems 

with comparable properties as SPA reduction method. It is known that SPA 

method for FDLTI systems can be analyzed by using properties of a reciprocal 

system. In the recent papers [8,9], reciprocal transformation has been applied to 

study properties of infinite dimensional system via their reciprocal systems. 

Motivated by these works, we propose a method to designing low order 

controller of infinite dimensional systems via reduced-order model using 

balanced truncation and reciprocal transformation. 

The paper is organized as follows. Section 2 introduces the abstract form of 

infinite dimensional systems and some notation used in the paper. Reduced 

order model via balanced truncation of infinite dimensional systems are 

reviewed in Section 3. Reduced order model using reciprocal transformation 

and balanced truncation of infinite dimensional systems are derived in Section 4 
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which constitutes the main result of this paper. Numerical computation for 

obtaining a low order controller of infinite dimensional system is proposed in 

Section 5. The simulation results are presented in Section 6. Finally, concluding 

remark are given in Section 7. 

2 Preliminaries  

The infinite dimensional systems dynamics can be presented in the following 

abstract form:  

 
( ) = ( ) ( )

( ) ( ) ( )

x t Ax t Bu t

y t Cx t Du t



 
 (1) 

where A  is the infinitesimal generator of 
0

C -semigroup ( )
a

T t  on Hilbert space 

Z , and operators B  and C  are finite rank and bounded; ( , )
m

B L Z C , 

( , )
k

C L Z C . Here ( , )L U Y  is the space of bounded linear operator mapping 

from U  to Y . In this paper, we will assume the system (1) is exponentially 

stable means that the operator A  generates the exponentially stable 
0

C -

semigroup ( )
a

T t  on Z . The 
0

C -semigroup ( )
a

T t  on Z  is exponentially stable 

[7] if there exist positive constants M  and   such that ( )
t

a
T t Me


 ,   for all   

0t  . 

We shall denote the state linear system given by (1) as ( , , , )A B C D  and transfer 

function given by G , with realization 
1

( ) = ( )G s C sI A B D


  . We omit the 

" "D  term if it is not relevant. The adjoint of operator A  is written as 
*

A  and 

domain of A  is denoted by ( )AD . A symmetric operator A  is self-adjoint if 

*
( ) = ( ).A AD D  A self-adjoint operator A  on the Hilbert space Z  with its inner 

product ,   is nonnegative if , 0Az z    for all ( )z AD  and positive if 

, > 0Az z   for all nonzero ( )z AD . We will use the notation 0A   for 

nonnegativity of the self-adjoint operator A , and > 0A  for positivity. The 

resolvent set of A  is the set of all complex numbers   for which 
1

( )I A


  is 

exists and bounded linear operator on Z .  

3 Reduced Order Model via Balanced Truncation 

In this section, we review some result on balanced realization and truncation of 

infinite dimensional system which has been constructed by [3,4]. The 

construction of the balanced truncation of system ( , , )A B C  can be obtained by 

eliminating any states that are difficult to control and to observe based upon the 

controllability and observability gramians. The controllability and observability 

gramians are defined by  
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* * * *

0 0
= ( ) ( ) , = ( ) ( ) .

B a a C a a
L T t BB T t dt L T t C CT t dt

 

   

Furthermore, the controllability gramian 
B

L  and the observability gramian 
C

L  

of an exponentially stable system ( , , )A B C  are the unique solutions of their 

respective Lyapunov equations:  

 
* * *

= 0, ( )
B B

AL z L A z BB z z A   D  (2) 

 
* *

= 0, ( ).
C C

A L z L Az C Cz z A   D  (3) 

The procedure of balanced realization of infinite dimensional system is based 

on the singular value and Schmidt vectors of the Hankel operator of the system. 

Consider transfer function G  is the Laplace transform of 

1 2
(0, ; )

m k
h L L


   C , with realization 

1
( ) = ( )G s C sI A B


 . The Hankel 

operator 
2 2

: (0, ; ) (0, ; )
m k

h
L L   C C  defined by  

 
0

( )( ) = ( ) ( )d , ( ) = ( ) .
h a

t h t s u s s h t CT t B


   

Since 
1
(0, ; )

m k
h L


  C  implies that 

h
  is a compact [7, Lemma 8.2.4, p. 399] 

and so 
h

  has countable many singular values (square roots of the eigenvalues 

of 
*

h h
  ) 

1 2
... ... 0

r
        and these are also the Hankel singular 

values of G . The singular values of 
h

  are also equal to square roots of the 

eigenvalues of 
B C

L L . The Hankel singular values 
i

  are realization invariant; 

i.e., they comprise a property of transfer function only and are independent of 

the realization. The balanced realization has the controllability and observability 

gramians both equal to  =diag
1 2

( , ,..., ,...)
r

   . Furthermore, the transfer 

function 
1

( ) = ( )G s C sI A B


  has a balanced realization 

( , , )A B C =

1 1 1 1

2 2 2 2( , , )A B C
 

     on the state 
2
, the space of square summable 

sequences [3]. In [10], it is shown that an exponentially stable infinite 

dimensional system with finite rank input and output operators has a nuclear 

Hankel operator; i.e., its singular values satisfy  

 
=1

< .
i

i




  (4) 

Using the infinite matrix representation for operators on 2 , the balanced 

system ( , , )A B C  can be partitioned conformably with 

1 2
= = = ( , )

B C
L L diag   , 

1 1
= ( ,..., )

r
diag   , 

2 1 2
= ( , ,...)

r r
diag  

 
  

1
>

r r
 


 as  
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11 12

21 22

A A
A

A A

 
 
 

,   
1

2

B
B

B

 
 
 

,   
1 2

C C C    . 

The r -th order balanced truncation of ( , , )A B C  are given by the finite 

dimensional system 
11 1 1

( , , )A B C . The corresponding reduced order transfer 

function is .
r

G  Note that the reduced system 
11 1 1

( , , )A B C  is stable and balanced 

with gramian 
1
.  If system ( , , )A B C  has output normal realization which is 

constructed in [4], where
2

=
B

L   and =
C

L I (the identity operator), then the 

truncation error can be represented as  

 
= 1

( ) ( ) 2 .
r

i

i r

G s G s 





    (5) 

By (4), the transfer function of the balanced truncations converge in the H


 

norm. 

4 Reduced Order Model Using Reciprocal Transformation 

In this section, we develop reduced order model of infinite dimensional systems 

via reciprocal transformation. The concept of a reciprocal systems of infinite 

dimensional systems ( , , , )A B C D  was introduced in papers [8, 9]. If zero is in 

the resolvent set of A , i.e. operator A  has a bounded inverse, then all the 

generating operator of the reciprocal systems 
1 1 1
, ,A A B CA

  
 are bounded. This 

motivates the following definition. 

Definition 1  Let the system ( , , , )A B C D  is exponentially stable, such that A  

has a bounded inverse. Its reciprocal system is the system ˆ ˆˆ ˆ( , , , )A B C D  where  

 
1 1 1 1ˆ ˆˆ ˆ= , = , = , = = (0).A A B A B C CA D D CA B G
   

   (6) 

Let G  be transfer function of the systems ( , , , )A B C D  and suppose Ĝ  is 

transfer function of the systems ˆ ˆˆ ˆ( , , , )A B C D . From the above definition, we 

have  

1 1

1 1 1 11 1 1ˆ ˆ ˆˆ ˆ( ) = = = ( ).G s CA I A A B CA B D C I A B D G
s s s

 

   
     

   
   
   

 

  (7) 

Let ( ( ))H L U,Y


 denote the space of ( , )L U Y -valued functions of complex 

variable defined in the open right half-plane which are bounded and analytic in 
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the open right half-plane, and ( ( ))G H L U,Y


 . From (7), it is clear that 

( ( ))G H L U,Y


  if only if ˆ ( ( ))G H L U,Y


 . 

Lemma 1  If the system ( , , , )A B C D  is exponentially stable with its reciprocal 

system ˆ ˆˆ ˆ( , , , )A B C D , then their controllability and observability gramians are 

equal.  

Proof. In Lemma 4.1.24 of [7] it was shown that the controllability and 

observability gramians, ,
B C

L L , of the exponentially stable ( , , , )A B C D  are the 

unique positive definite solutions to the Lyapunov equations  

 
* * *

, ( ) = 0, ( )
B B

z AL L A BB z z A     D  (8) 

 
* *

1 1 1
, ( ) = 0, ( ).

C C
z A L L A C C z z A     D  (9) 

Letting 
* 1

1
= ( )z A x


 in (8) and 

1

1 2
=z A x


 in (9) where 

1 2
,x x  is arbitrary 

elements in Z  gives  

 
1 * 1 1 * 1 *

1 1
, ( ( ) ( ) ) = 0,

B B
x L A A L A BB A x

   
     

 
1 1 * 1 * * 1

2 2
, ( ( ) ( ) ) = 0.

C C
x L A A L A C CA x

   
     

 Therefore, from equation (6) we obtain following equations  

 
* *

1 1
ˆ ˆ ˆ ˆ, ( ) = 0,

B B
x AL L A BB x     (10) 

 
* *

2 2
ˆ ˆ ˆ ˆ, ( ) = 0.

C C
x A L L A C C x     (11) 

This shows that the controllability and observability Lyapunov equations of the 

systems ( , , , )A B C D  and its reciprocal systems ˆ ˆˆ ˆ( , , , )A B C D  have the same 

solutions.    

From the above Lemma, the systems ( , , , )A B C D  and its reciprocal systems 

ˆ ˆˆ ˆ( , , , )A B C D  can be connected via the solutions of the Lyapunov equtions. We 

can apply it to obtain a balanced realization of ˆ ˆˆ ˆ( , , , )A B C D on 
2

. It is easy to 

see that if the realization 

1 1 1 1

2 2 2 2( , , , ) = ( , , , )A B C D A B C D
 

     is balanced 

with gramian  , then 

1 1 1 1

2 2 2 2ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ( , , , ) = ( , , , )A B C D A B C D
 

     is also balanced 

with the same gramian. We continue the balanced truncation method to produce 

a low order model of the balanced realization ˆ ˆˆ ˆ( , , , )A B C D . We will use the 

infinite matrix representation for the operators with respect to the standard 
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orthonormal basis on 
2
. Choose a positive integer r  such that 

1
>

r r
 


 and 

partition the systems ˆ ˆˆ ˆ( , , , )A B C D  compatibly with the gramian 

1 2
= ( , )diag    where 

1 1 2 2 1 2
= ( , ,..., ), = ( , ,...)

r r r
diag diag    

 
   

become  

 
11 12

21 22

ˆ ˆ
ˆ

ˆ ˆ

A A
A

A A


 
 
  

,    
1

2

ˆ
ˆ

ˆ

B
B

B


 
 
  

,   
1 2

ˆ ˆ ˆC C C  
 

 

In this paper, we assume that the , = 1, 2,...,
i

i r  are all distinct. Since we 

choose 
1

>
r r

 


, then we have 
1

> 0 . The r -th order balanced truncation of 

the systems ˆ ˆˆ ˆ( , , , )A B C D  are given by the finite dimensional systems 

11 1 1
ˆ ˆˆ ˆ( , , , )A B C D . Denote its transfer function by ˆ .

r
G  

Theorem 1  The truncated system 
11 1 1
ˆ ˆˆ ˆ( , , , )A B C D  is balanced with gramian 

1
  

and asymptotically stable .  

Proof. The Lyapunov equations have solutions 
1

  which correspond to the 

controllability and observability gramians of the system 
11 1 1
ˆ ˆˆ ˆ( , , , )A B C D  via (10) 

and (11), we have  

 
* *

11 1 1 11 1 1
ˆ ˆ ˆ ˆ = 0,A A B B    (12) 

 
* *

11 1 1 11 1 1
ˆ ˆ ˆ ˆ = 0.A A C C    (13) 

Therefore, 
11 1 1
ˆ ˆˆ ˆ( , , , )A B C D  is balanced with gramian 

1
 . 

To prove stability, assume that vvA
~
ˆ =11 , with   be an arbitrary eigenvalues 

of 11A
~
ˆ . Since 0>1  and system ),,( 1111 D̂,C

~
ˆB

~
ˆA

~
ˆ  is finite dimension, it follows 

that 
11 1
ˆ ˆ( , )A C  is observable, then 

1
ˆ 0C v  . Using the observation Lyapunov 

equation (13) we have  

 
2

2
* 1/2

1 1
ˆ( ) = .v C v     
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Hence we obtain 
*

( ) = 2Re( ) 0    . If Re( ) = 0  then 
1
ˆ 0C v  , which is a 

contradiction. We conclude that Re( ) < 0 , i.e., the truncated system 

11 1 1
ˆ ˆˆ ˆ( , , , )A B C D  is asymptotically stable.    

The following result shows that a low order model using a reciprocal 

transformation is a good candidate for a reduced order model for systems 

( , , , )A B C D  and hence for G . Now define the reciprocal system 

11 1 1
( , , , )A B C D  of the system 

11 1 1
ˆ ˆˆ ˆ( , , , )A B C D  by  

 
1 1 1 1

11 11 1 11 1 1 1 11 1 11 1
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ= , = , = , = ,A A B A B C C A D D C A B
   

   (14) 

assuming that 
11

Â  is invertible. 

Note that ˆ r
G  is transfer function of 

11 1 1
ˆ ˆˆ ˆ( , , , )A B C D  with realization  

 

1

1 11 1

1 1ˆ ˆ ˆ ˆ ˆ( ) = .
r

G C I A B D
s s



 
 
 
 

 

Let 
r

G  be transfer function of the systems 
11 1 1

( , , , )A B C D  with realization  

 
1

1 11 1
( ) = ( ) .

r
G s C sI A B D


   

From (14), the relationship between the transfer function ˆ r
G  and the transfer 

function ,
r

G  is given by  

 

1

1 1

1 11 1 1 11 11 1

1 1ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ( ) =
r

G D C A B C I A A B
s s



 
   

  
  
  

 

            
1 1 1 1 1

1 11 1 1 11 11 11 1
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ= ( )D C A B C A sI A A B

    
    (15) 

            = ( ).
r

G s  

 

The stability and balanced realization of the systems 
11 1 1

( , , , )A B C D  are given in 

the following theorem. 

Theorem 2  If the system 
11 1 1
ˆ ˆˆ ˆ( , , , )A B C D  is asymptotically stable and balanced 

with gramian 
1

  so is the reciprocal system 
11 1 1

( , , , )A B C D  with the same 

gramian.  
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Proof. Since the system 
11 1 1
ˆ ˆˆ ˆ( , , , )A B C D  is balanced with gramian 

1
 , then 

1
  

satisfy the two Lyapunov equations (12) and (13). Multiplying (12) from the left 

by 
1

11
Â


 and from the right by 

1 *

11
ˆ( )A


, and then multiplying (13) from the left by 

1 *

11
ˆ( )A


 and from the right by 
1

11
Â


, yields  

 
1 * 1 1 1 *

1 11 11 1 11 1 11 1
ˆ ˆ ˆ ˆˆ ˆ( ) ( )( ) = 0,A A A B A B
   

     (16) 

 
1 1 * 1 * 1

1 11 11 1 1 11 1 11
ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) = 0.A A C A C A
   

     (17) 

 Substituting (14) to (16) and (17), we have  

 
* *

11 1 1 11 1 1
= 0,A A B B    (18) 

 
* *

11 1 1 11 1 1
= 0,A A C C    (19) 

which implies that the reciprocal system 
11 1 1

( , , , )A B C D  is balanced with 

gramian 
1
.  Since 

11
Â  is asymptotically stable, then Re( ) < 0 , with   be any 

eigenvalue of 
11

Â . Then the eigenvalue of 
11

A  is 1


 since 

1

11 11
ˆ=A A


. We hence 

conclude that 1Re( ) < 0


, i.e., the reciprocal system 
11 1 1

( , , , )A B C D  is 

asymptotically stable.    

The next theorem gives the error bounds of reduced order model and 

convergence in the H


 norm. 

Theorem 3  Assume that 
r

G  is the transfer function of the r-th reduced order 

model of the balanced and output normal realizations of G . Then we have  

 
= 1

( ) ( ) 2 .
r

i

i r

G s G s 





    (20) 

In particular ( ) ( ) 0
r

G s G s


   as .r    

Proof. We have  

1 1 1 1ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .
r r r r

s s s s
G s G s G s G G G G G s

   

        

From equations (7) and (15) we have 1ˆ( ) = ( )
s

G s G  and 1ˆ ( ) = ( )
r r

s
G G s , such 

that we obtain  
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 1 1ˆ ˆ( ) ( ) ( ) ( ) .
r r

s s
G s G s G G




    

From Lemma 1, if realization of G  have output normal realization, then 

realization of Ĝ  also have output normal realization. Meanwhile, ˆ r
G  is the 

transfer function of the r-th order truncations of the balanced and output normal 

realizations of Ĝ . Therefore, from equation (5), we conclude that  

 1 1

= 1

ˆ ˆ( ) ( ) ( ) ( ) 2 .
r r

is s

i r

G s G s G G 



 

      (21) 

By (4), 
=1

<
ii




 , and so (21)  would imply that ( ) ( ) 0
r

G s G s


  ,        

as .r      

An important property of this approach is that the truncated model 
r

G  is equal 

to G  at zero frequency, since  

 
1

1 11 1
(0) =

r
G C A B D


   

             
1

1 1 1 1

1 11 11 11 1 1 11 1
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ= ( ) ( )C A A A B D C A B


   

     

            
1 1

1 11 1 1 11 1
ˆ ˆ ˆ ˆˆ ˆ= (0)C A B G C A B

 
   (22) 

            = (0),G  

with assumption that zero is in the resolvent set of A . It is clear from the 

discussion above that the reduced order model using reciprocal transformation 

of infinite dimensional systems gives certain accuracy at low frequency. 

5 Numerical Algorithm 

This section addresses  the question of computing the balanced realization and 

reciprocal transformation followed by low order controller design of infinite 

dimensional systems based on the proposed method. In the previous section it 

was assumed  that the operator-valued Lyapunov equations can be derived 

analytically. In general, we cannot obtain an exact solution of the infinite 

dimensional Lyapunov equations. In this case, a convergent numerical scheme 

must be utilized as in [5, 11]. The following algorithm is proposed to find the 

reduced order model described in the previous section: 

1. Find approximating sequence ( , , , )
n n n n

A B C D  to ( , , , )A B C D , where n  is 

the order of the approximation scheme. 
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2. Compute the numerical approximations 
n

B
L  and 

n

C
L  to the Lyapunov 

equations corresponding to ( , , , )
n n n n

A B C D for sufficiently large n . 

3. Obtain the balanced realization ( , , , )
n n n n

A B C D  of the systems 

( , , , )
n n n n

A B C D using a similarity transformation. 

4. Find reciprocal transformation ˆ ˆˆ ˆ( , , , )
n n n n

A B C D  of the systems 

( , , , )
n n n n

A B C D  as defined in (6).  

5. Apply the balanced truncation method to determine the r -th order systems  

     
11 1 1
ˆ ˆˆ ˆ( , , , )

r r r r
A B C D  with r  as small as possible.  

6. From the reduced order model 
11 1 1
ˆ ˆˆ ˆ( , , , )

r r r r
A B C D , find its reciprocal 

transformation 
11 1 1

( , , , )
r r r r

A B C D  as defined in (14).  

7. Then 
11 1 1

( , , , )
r r r r

A B C D  is the r th-order reduced order model for 

( , , , )
n n n n

A B C D  and so for ( , , , )A B C D  .  

8.  Construct a controller for 
11 1 1

( , , , )
r r r r

A B C D . 

6 Simulation Result 

In this section, we apply the reduced order model result to design a low order 

controller for Euler-Bernoulli beam clamped at one end ( = 0)  and free to 

vibrate at the other end ( = )l . Let ( , )w t  represents the deflection of the 

beam at time t and position  . The deflection can be controlled by applying a 

torque )(tu  at the clamped end ( = 0) . The external disturbance )(tv  induces 

a uniformly distributed load ( )dv t . Using linear viscous damping ( 1 ) and 

Kelvin-Voigt damping ( 2 ), the partial differential equation of the beam [11] is 

given by  

1 2
( , ) ( , ) ( , ) ( , ) = ( ) ( ),

tt t b b t

h

w t w t EI w t I w t u t dv t
I

 


            (23) 

with   is density of the beam, E  is the Young modulus, bI  is the moment of 

inertia, and hI  is the hub inertia. The boundary conditions are  

        ( ,0) = ( ,0) = 0,w t w t


 

        
2

( , ) ( , ) = 0,
b b t

EI w t l I w t l
 

  (24) 

     
2

( , ) ( , ) = 0,
b b t

EI w t l I w t l
 

  

for > 0t  and 0 < < l . 
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The values of the physical parameters in this example are taken as follows:  

Table 1 Physical constants. 

 

  

  

 

 

 

 

 

 

 

 

Let H  be the closed linear subspace of the Sobolev space 
2
(0,1)H   

 
2

= { (0,1) : (0) = (0) = 0}H w H w w


  

and define the state-space 
2

= (0,1)Z H L  with state ( ) = ( ( , ), ( , ))
t

x t w t w t  . 

If the tip deflection of velocity are measured, a state-space formulation of the 

above partial differential equation can be presented in the following abstract 

form  

 
1 2

( ) = ( ) ( ) ( )x t Ax t B v t B u t   (25) 

 ( ) = ( ),y t Cx t  

 where  

     4 4
2 1

4 4

1 2

0 00
= , = , = ,

b b

h

E I Id d

Id d

I
A B B

d
  

   
  

    
    

     

  ( ) = ( , ) ,
t

Cx t w t l  

with domain  

           

2

2
( ) = {( , ) : and = (0,1)

with ( ) = ( ) = 0}.

b b
A Z H M EI I H

M l M l

 



        D
 

In order to formulate a full order approximation, we use a Galerkin finite 

element method with cubic spline [12]. For the finite element method, the 

spatial interval is divided into 30 elements, with the length of beam to be 7=l . 

This corresponds to full order model of size 124=n . The approximating 

system (25) is given by  

 
1 2

( ) = ( ) ( ) ( )
n n n n n n n

x t A x t B v t B u t   (26) 

E  11 2

2.1 10 /N m  

b
I  10 4

1.167 10 m


  

  2.975 /kg m  

1
  

2
.001 /Ns m  

2
  

2
.01 /Ns m  

h
I  

2
121.9748kgm  

d  .041/ kg  
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 ( ) = ( ).
n n n

y t C x t  

The purpose of the controller design is to reduce the vibration effects of the 

disturbance acting on the beam. Such an objective can be achieved by solving a 

weighted mixed sensitivity H


 control according to [13]. The block diagram of 

the mixed sensitivity problem with the inclusion of the weighting function is 

shown in Figure 1. The performance specification are obtained by designing 

controller ( )K s  which satisfy  

 
   

   
1

2

< 1,
W s T s

W s S s


 

where ( )T s  is the transfer function from the disturbance v  to control input u , 

( )S s  is transfer function from v  to the output y  and 
1

W  and 
2

W  are the two 

weighting functions to be selected. We take a high-pass filter 1W  and a low-pass 

filter 2W , respectively, as  

 

2

1 2 2 2 22

190140 4.562 004 100.4
( ) = , = ,

2.334 9.019

s e s
W s W w w w

s s

 
 

 
 

where 
2

2
=w

s a
 with = 2 30.a     

u

v
z1

z2

K(s)

B1

C

A

B2 I / s W2(s)

W1(s)
G(s)

+

+ +

X X Y

 

Figure 1 Block diagram of H  control. 

Furthermore, the order of model is reduced according to the algorithm in section 

5. Based on the reduced order model, the 6th-order controllers of the large-scale 

finite dimensional systems are designed. The time responses of the open-loop 

and closed-loop system with a temporary step disturbance ( ) = 1v t  and a 

periodic disturbance ( ) = sin( )v t t  are given in Figure 2 and 3, respectively. 
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From these figure, we observe that the 6th-order controllers can attenuate these 

disturbance. 

 

Figure 2 Time response of open and closed-loop to v(t) = 1. 
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Figure 3 Time response of open and closed-loop to  v(t)= sin  t. 

7 Concluding Remark 

In this paper, we presented a low order controller design based on reduced order 

model via reciprocal transformation of infinite dimensional systems. The 

realization of the reciprocal system is reduced by balanced truncation. This 

result was further translated using reciprocal transformation as the reduced 

order model for the original system. The proposed method presented in this 

paper, preserves the property of singular perturbation approximation (SPA) 
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method of finite dimensional system, i.e. its result provide a good reduction 

errors at low frequencies and therefore it extends [2] for infinite dimensional 

system. The controller was designed for the reduced order model with the low 

order controller. The low order controller is applied to reject the disturbance 

acting on the beam. The simulations showed the effectiveness of the 6 th-order 

controller to reduce the vibration of the beam. 
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