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Abstract. The behavior of a free-hanging riser of floating offshore structures 

would be different from a typical at-sea-floor-terminated riser type of oil or gas 

platforms. For the design purpose, the present study was intended to incorporate 

some important factors of the riser conditions (i.e. bidirectional vibration, free-

end condition, and spanwise variation of response amplitude) for investigating its 

dynamics characteristics. An experimental investigation on time-dependent 

motion of a flexible free-hanging circular cantilever subjected to uniform cross-

flows has been carried out. The free-end condition cantilever has a 34.4 aspect 

ratio and a low mass ratio of about 1.24. The cylinder freely oscillates in both 

inline and transverse to the flow. Reynolds number varied from 10,800 to 

37,800. The “jump phenomenon” was found in the inline motion of the cylinder 

that agrees well with an existing comparable work. At high flow velocities, the 

3rd higher harmonic frequencies of the cylinder transverse response became 

predominant that produce quite different motion characteristics compared to the 

other existing comparable works with 2-dimensional bottom-end condition. 

Generally, the results suggested that the flexible free-hanging cantilever generate 

different vortex wake mode than either, a uniform (a short-rigid flexibly-

mounted cylinder) or a linear amplitude variation along the span case (a pivoted 

cylinder). 
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1 Introduction 

So far, general characteristics of a flexible circular cylinder subjected to water 

cross-flows are not well understood in various parameters. Many factors 

strongly influenced the cylinder dynamics, such as Reynolds number range, 

aspect ratio, mass ratio, and the motion degrees of freedom of the cylinder, etc. 

A large number of studies are still required before one can quantify the 

governing parameters for wider practical applications. 

During the early studies on the oscillating cylinder, a short-rigid flexibly-

mounted cylinder was commonly used in forced or free vibration tests, and 

typically the cylinder motion allowed in only one direction, while restricted in 
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another [1-4]. More specific, the effects of mass and damping on the cylinder 

dynamics were then also investigated [5-6]. Still using a short-rigid cylinder, 

some extension works in which the cylinder is allowed to oscillate in-line and 

transverse simultaneously to the fluid flow were introduced. Some significant 

differences on the cylinder dynamics characteristics from either the stationary or 

1-direction only motion cylinder case were found [7-11]. For stationary and 

flexible cylinders, it was proved that the effect of the cylinder-end boundary is 

very important on the characteristics of the fluid flow, then in turn on measured 

drag and lift forces, and the cylinder response [3, 12]. More recently, some 

experimental studies on a low mass ratio freely vibrating cylinder were 

performed, but the conditions were only for 1-directional motion and within 

relatively low Reynolds numbers (1,500 < Re < 21,000). Additionally, the 

bottom-end of the cylinder was conditioned by a tiny gap to the tank floor, in 

order to obtain a 2-dimensional effect of the flow [13-15]. 

Several experimental works on the vortex-induced vibration of a flexible 

cantilever cylinder with free-end condition in water flows were initiated many 

years ago. However, in some of those works [16, 17], due to limited 

experimental conditions, the orbits of the cylinder response and induced 

hydrodynamic forces could not be obtained.  

In the case of floating offshore structures having a free-hanging type of riser, 

such as ocean thermal energy conversion (OTEC) or carbon dioxide (CO2) 

sequestration platforms, the riser behavior would be different from a typical at-

sea-floor-terminated riser type of oil or gas platforms. For the design purpose, a 

better understanding on the dynamics of such kind of a flexible free-hanging 

riser is definitely required. This present experimental work, therefore, is 

intended to incorporate some important factors that relevant to these structures 

which are the bidirectional vibration, free-end condition, and spanwise variation 

of amplitude of the cylinder. Results of this study are expected can be utilized 

as basic considerations in the preliminary design stage of such structures. 

This paper presents new results on the characteristics of time-dependent motion 

of a flexible free-hanging circular cantilever. Meanwhile, the induced 

hydrodynamic forces acting on the same test cylinder, but no accelerometers 

installed, have been investigated in [18]. 

2 Experimental Conditions 

The experiment was carried out in a towing tank of the Department of Marine 

System Engineering at Osaka Prefecture University, Japan. The tank was 70.0 

m long with an effective running distance of about 45 m, 3.0 m wide and 1.5 m 
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deep; it was equipped by a main towing carriage with a maximum towing speed 

of 2.5 m/sec. 

The test cylinder was made of a standard polyvinyl chlorite (PVC) pipe. The 

material and section properties of the cylinder are shown in Table 1. The 

cylinder has a total aspect ratio (total length-to-diameter ratio, ARtot) of 34.4, 

and a mass ratio (the ratio of cylinder mass to displaced water mass, m*) of 

about 1.24.  

Table 1 Properties of the test cylinder. 

Items Properties 

Total length, L (m) 1.65 

Wet length, Lwet (m) 1.27 

Outside diameter, D (mm) 48.0 

Wall thickness, tw (mm) 4.0 

Mass per unit length in air (kg/m) 0.764 

The top-end of the cylinder was connected to a 2-component load cell which is 

fixed to adjustable beams mounted on the towing carriage (Figure 1(a)). The 

load cells were used for measuring the hydrodynamic forces acting on the test 

cylinder in both, in-line (drag force) and transverse (lift force) directions 

simultaneously. Meanwhile, to measure the inline and transverse accelerations 

of the cylinder, 2 small dimensions of 1-direction waterproof accelerometers 

(Kyowa ASW-A type) were mounted inside the bottom-end of the cylinder. 

Each accelerometer has approximately 40 grams of weight excluded the cable, 

181824 mm in dimensions, and has up to 490.3 kPa of water pressure 

resistance. As an initial condition, the cylinder was partially submerged (Lwet = 

1.27 m, to give a wet aspect ratio, ARwet, of 26.5) into the still water from the 

towing carriage as a hanging vertical cantilever with 0.23 m gap (allowing 3-

dimensional effect of the flow) from the bottom of the tank. Figure 1 illustrates 

the experimental setup and nomenclature of the flow–cylinder system.  

To generate uniform cross-flows, the carriage was moved along the tank with 

the test cylinder fixed to the carriage. The ratio of the cylinder diameter to tank 

width was 16:1000, so that some disturbances which come into the system due 

to the wall (e.g. reflection wave, etc) are negligible. The towing speeds (U) 

were changed from 0.20 up to 0.70 m/sec by an increment of 0.05 that 

approximately correspond to the Reynolds number (Re) of 10,800 ~ 37,800. The 

Reynolds number is defined as Re = UD/, where  is the kinematics viscosity 

of the water. The kinematics viscosity is assumed to be 0.89 10
-6

 m
2
/sec for 

this experiment. During the towing for each case of the test, the cylinder 

oscillated in 2 degrees of freedom as a self-excited motion system. 
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The experimental data were acquired through a standard data acquisition system 

with sampling rate of 50 Hz and low-pass filtered of 20 Hz. Four channels were 

used to record the forces and response data of the cylinder. The raw signals 

were digitally low-pass filtered by a cut-off frequency of 6 Hz in order to isolate 

the low modes. The data used for the calculation of the intended parameters 

were based on a selected range from approximately stationary data within the 

whole time during the towing for each case. The Fast Fourier Transform (FFT) 

procedure was applied to analyze frequency content of the measured time series 

data. For the motion of the cylinder, prior to integrating the accelerations time 

series data into the displacement time history, the accelerations data were low-

pass filtered in order to remove their high frequency noise. The normalized 

displacement amplitude (divided by D) were computed from their root mean 

square (rms) values as Ax = 2  (x/D)rms and Ay = 2  (y/D)rms for inline and 

cross-flow directions, respectively [15]. Finally, some analyzed parameters are 

presented as a function of the reduced velocity which is defined as Ur = 

U/fn.waterD, where fn.water is the fundamental (1st mode) natural frequency of the 

cylinder in still water. 

 

Cross-flow 

x 

y D 

(b) 

(a) 

Test cylinder 

 

Figure 1 (a) Schematic view of experimental setup with close-up view of the 

accelerometers installed inside the bottom-end of the cylinder. (b) Nomenclature 

of the test cylinder immersed in uniform cross-flows. 

Several free decay tests were performed in order to measure the fundamental 

natural frequencies of the test cylinder. To ensure the consistency of the results, 

the tests were performed 4 times in air and 3 times in water. In addition, some 

of the tests in air condition were carried out in both x and y directions, to ensure 

a uniformity of the natural frequencies in those two directions. The tests 
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produced a unidirectional mean value of the fundamental natural frequency of 

4.20 Hz and 2.15 Hz for in air and water condition, respectively. There was 

approximately 50% decrease on the cylinder’s natural frequency for the still 

water case. 

3 Experimental Results and Discussion 

3.1 Motion Amplitudes 

Motion amplitudes (normalized by D) at the bottom-end of the test cylinder in 

inline and transverse directions to the flow are displayed in Figure 2. At low Ur 

(Ur < 3.39), the inline amplitudes (Ax) are relatively larger than the transverse 

amplitudes (Ay); the responses are dominated by the inline motion while the 

transverse motions relatively have not been developed yet, as could be 

confirmed later by their motion trajectories in Figure 7. The amplitude of the 

vibration in those two directions reaches nearly equal values at 3.39  Ur  

4.36. At higher regime of Ur (Ur > 4.36), the inline amplitudes, again, gradually 

become larger and larger than the transverse one, even though the transverse 

motions have also been stimulated and increase. Inline-transverse amplitudes 

ratios become larger as the Ur increases. For instance, at highest Ur (= 6.79), 

the ratio reaches approximately 1.4. One reason is due to the mean drag force 

driving the cylinder to displace larger as the Ur increases. Basically, the scatter 

data of the motion amplitudes are quite fit to the quadratic polynomial functions 

as can be seen in Figure 2. 
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Figure 2 Normalized motion amplitudes at the bottom-end of the test cantilever 

in inline and transverse directions to the flows. 
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However, at Ur = 2.91, there is a peculiar phenomenon in the inline motion that 

does not occur within the higher Ur. There are two significant distinct 

amplitudes (double amplitude response) within the whole time history of the 

recorded response in the inline direction to the flow (in turn occurs in the 

corresponding force signal) as displayed in Figure 3. Within approximately first 

35 sec, the amplitude of the response is smaller, and then followed by larger 

amplitude for remaining time of the response. The larger amplitude is 

approximately 4.5 times the smaller one (see also Figure 2).  

 

Figure 3 Time series of the motion acceleration (a), and the corresponding drag 

force (b), in inline direction describing the “jump phenomenon” on their 

amplitudes at the Ur = 2.91. g is the gravitational acceleration ( 9.81 m/s
2
). 

This phenomenon agrees well with that was observed by Pesce and Fujarra [16] 

as the “jump phenomenon” of the cylinder motion. Their experiment used a 

similar flexible free-hanging cantilever with free-end condition, but the aspect 

ratio (wet aspect ratio, ARwet) and the mass ratio (m*) are about 95 and 2.36, 

respectively. These values are larger than the present model by approximately 

70% and 50%, respectively. They found the phenomenon from their time 

history signals of the strain, at two successive Ur of 8.336 and 8.380. However, 

it can be noted that the phenomenon found in the present work is somewhat 

different compared to the result of the work of that Pesce and Fujarra [16]. 

Here, the “jump phenomenon” occurs at a lower Ur and the response within the 

small amplitude portion shows more beating vibration rather than the stationary 

response. The aspect ratio and mass ratio of the cylinder can be expected as the 

factors that responsible to such difference.  
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In relation to the low-mass ratio of bidirectional vibrating flexibly-mounted 

cylinder, Jauvtis and Williamson [9] found a dramatic change in fluid-cylinder 

interactions when mass ratios are reduced below a factor of 6. Figure 4 shows 

some results from Jauvtis and Williamson [9] and Flemming and Williamson 

[21] for two different cylinder conditions. Figures 4(a) and 4(b) are for a 

uniform response amplitude (a short-rigid flexibly-mounted cylinder), and 

Figure 4(c) is for a case of linear amplitude variation along the span (a pivoted 

cylinder). 

For a mass ratio of 2.6 (Figure 4(a)), a new response branch (as “super-upper” 

branch, symbolized by “SU”) appears in transverse direction with massive 

amplitudes of about 1.5 diameters. This response corresponds with a new 

periodic vortex wake mode, “2T mode”, which comprises a triplet of vortices 

being formed in each half cycle of vibration (Figure 4(b)).  

 

Figure 4 (a) A “super-upper” branch (SU) of high-amplitude response that 

appears for bidirectional cylinder vibration, m* = 2.6. (b) A corresponding a 

vortex wake mode ”2T”. Vortices no.1 and 2 turn clockwise, while vortex no.2 

turns anticlockwise [9]. (c) A distinct new mode comprising two co-rotating 

vortices formed each half cycle (“2C” mode) observed for a pivoted cylinder, 

plastic cylinder, m* = 1.03 [21]. The vortices are recorded by digital particle 

image velocimetry (DPIV) technique. 
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If we compare Figure 2 and Figure 4(a), some differences can be found. For the 

present case, with much lower mass ratio of about 1.24 (about 50% smaller), at 

high Ur, the larger response is found in the inline response, in contrast to the 

case displayed in the Figure 4(a). Also, at the same Ur  7, the inline amplitude 

is only approximately 10 times smaller than that of the transverse amplitude for 

the flexibly-mounted cylinder case (Figure 4(a)). If we take a look on the trend 

of the response, perhaps the Ur range in the present test only covers the initial 

branch from the whole response of the present case, including the lower branch 

(following the terminology introduced in Figure 4(a) by a symbol of “I” and 

“L” for Initial and Lower branch, respectively). The SU branch could be 

reached after the Ur around 9 or more, because in the present much lower mass 

ratio case, the response peak either in inline or transverse direction as a function 

of the Ur is late to be reached. 

3.2 Motion Frequencies 

The motion frequency of the cylinder can be used to understand its motion 

trajectory. Figures 5 and 6 depict the power spectral density (PSD) of the 

motion accelerations in inline (ax) and transverse (ay) directions as a function of 

Ur. For all cases, the dominant frequencies clearly appear as narrow-banded 

frequency.  

In streamwise direction, the response appear as single predominant frequencies 

for all values of Ur and the frequency linearly increases with the Ur as shown in 

the left column of Figures 5 and 6. Meanwhile, the transverse responses have 

various dominant frequencies depending on the Ur. For first two Ur, 1.94 and 

2.42, only a single predominant frequencies having same magnitude appears, as 

well as their frequencies in the streamwise direction, but with relatively smaller 

amplitudes. 

Regarding its frequency, the case at Ur = 2.91, again, becomes a special one. 

Beside the “jump phenomenon” appears in the inline response, its response in 

transverse direction is also unique. Frequency content of the transverse response 

consists of 3 dominant frequencies in which the first frequency is the 

predominant one (Figure 5(f)). The first frequency typically corresponds to 

vortex shedding (or Strouhal) frequency with a value of half of the 

corresponding inline response frequency. The second frequency is 

approximately twice the first frequency, and corresponds to the inline response 

frequency itself. Meanwhile, the third frequency is a third higher harmonic 

frequency which has magnitude of approximately tripled the Strouhal one.  
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Figure 5 Power spectral density (PSD) of the motion accelerations at the 

bottom-end of the cylinder in inline (ax) and transverse (ay) directions for Ur = 

1.94 to 4.36. 

As the Ur increases in each case, at 3.39  Ur  6.79, frequency content of the 

transverse response changes, in which the second frequency completely 

disappears and the remaining frequencies are only the first and third higher 

harmonic, respectively. Beside the first frequencies step by step linearly 

increase with the Ur; the predominant frequencies can changeover at a certain 

Ur, where the third harmonic frequencies become predominant (Figures 5 and 

6). The third higher harmonic frequencies become the predominant one at Ur  

5.33 (Figure 6(d)). These different frequency conditions are obviously 

responsible for the trajectories change of the cylinder motion. The origin of this 

third higher harmonic excitation possibly can be addressed to the existence of a 

different vortex shedding mode in the present case.  
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Figure 6 Power spectral density (PSD) of the motion accelerations at the 

bottom-end of the cylinder in inline (ax) and transverse (ay) directions for Ur = 

4.85 to 6.79. 

3.3 Motion Trajectories 

The displacements in two directions, x(t)/D and y(t)/D, can be plotted in 2-D 

plane to observe trajectories change of the cylinder motion, as well as their 

displacement magnitudes. Figure 7 shows the trajectories at the bottom-end of 

the cylinder. Each inset figure represents the trajectory pattern for a certain Ur 

value.  

Basically, the trajectory patterns of the motion displacements clearly change 

with the parameter Ur. As previously described (see Figure 2), at 1.94  Ur  

2.91, the motions are almost as inline-dominated response (Figure 7). At Ur = 

3.39, the transverse response gradually increases and new different trajectory 

patterns are then developed, gradually approaching “a right-bended figure-of-
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eight” patterns at Ur = 3.88 and 4.36, that nearly similar to the orbit created by a 

“2T” vortex mode (see Figure 4(b)). 

Furthermore, in the range 4.85  Ur  6.79, other new different motion 

trajectories are created (Figures 7(g) to (k)). New three intersection points 

within the trajectories, two points located symmetrically to the zero horizontal 

axes and another point at the “tail” of the trajectories, appear for 4.85  Ur  

5.82. As the Ur increases, in the range of 6.30  Ur  6.79, one more 

intersection point is created at the “tail” part of the trajectories. Total of five 

intersection points appear in this range of Ur. In addition, such those trajectories 

much more no longer fit to typical orbit for VIV problems as e.g., the “perfect 

figure-of-eight”. These evidences enrich the variability of the motion behavior 

of a low-mass flexible cylinder in water cross-flows, especially in the case of 

free-end condition with two-degree-of-freedom motion. However, at a certain 

Ur (Ur = 3.88), the trajectory pattern relatively similar to other case with higher 

Re of 103,000 at Ur = 4.1, as found, for instance, in the work of Lee et al. [19]. 

Such those varieties mean that parameter Ur strongly affects both the trajectory 

pattern and magnitude change of the cylinder motion. 

 

Figure 7 Motion trajectories at the bottom-end of the test cantilever as a 

function of the reduced velocity (Ur); Flow is left to right. 
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Regarding the motion orbit of the flexible cylinder in general, many researchers 

reported various motion behaviors of a vibrating cylinder, even due to uniform 

flows. With a single cylinder towed horizontally in a towing tank with 

corresponding Re of approximately 18,000, Wilde and Huijsmans [20] found a 

“lying banana” type of motion trajectory at the pipe mid rather than general 

pattern of “figures-of-eight” or “standing bananas”. For a two-end supported 

vertical cylinder tested in a circulating current thank with high Re of 76,000 to 

265,000, Lee et al. [19] observed that the motion trajectories at a midpoint of 

the bare cylinder step by step change from predominantly inline motion, to 

figure-of-eight motion, to predominantly cross-flow motion as the Re increases. 

They concluded that the displacement patterns are associated with the elastic 

mode shape and natural frequencies of the cylinder. Meanwhile, for a flexible-

mounted rigid cylinder tested in flow channel which is allowed to have both 

inline and transverse motions, at Ur = 8.64, the trajectory plot of distinct pattern 

called “a narrow wind-blown figure-of-eight” was created with motion 

amplitude of above 0.7D [10]. 

In the present experiment, besides the aspects of aspect ratio and mass ratio, 

another aspect, e.g. a spanwise variation of amplitude can also be expected 

influences the vortex wake mode, in turn the motion patterns, if compared to, 

such as the work of Jauvtis and Williamson [9], particularly for higher Ur. As 

can be seen in the right side of Figure 4(b), the motion trajectory created by a 

“2T” vortex mode is a typical slightly right-bended “figure-of-eight” that 

completely different with the motion orbits of the present cantilever case for Ur 

 4.85, although both of these works have the same bidirectional type of 

motion. This evidence suggests that the present test condition could be able to 

produce a different vortex mode.  

Another work can support this analysis. Using a pivoted cylinder freely moves 

inline and transverse to the flow, Flemming and Williamson [21] observed 

different modes along the span. For the lightest (plastic cylinder with m* = 

1.03) of their cylinders, they found a distinct new mode comprising two co-

rotating vortices formed each half cycle, namely “2C mode” (Figure 4(c)). 

Nevertheless, we can also note some different conditions of the test compared to 

the present case, which are 2-D flow around the bottom-end of the cylinder, 

lower Reynolds number (Re  1000), and a linear amplitude variation along the 

span that in contrast to the flexible cantilevered cylinder having a nonlinear 

amplitude variation along the span. Apparently, due to such different factors 

involved in the system, we can suspect that a flexible free-hanging cantilever in 

present test will generate different vortex wake mode than either “2T” or “2C” 

mode, at least based on the observed results.  
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Finally, such findings give us insights that various phenomena involved in the 

problem. Many parameters and specific conditions affect the motion behavior of 

the flexible free-hanging cantilever subjected to uniform water flows. Further 

investigations are needed for better understanding of the problem. One possible 

effort to clarify the precise mechanism behind the observed phenomena is 

through a visualization study on the vortex wake modes occurred along the 

length of the cylinder, including at the wake around the cylinder’s bottom-end. 

4 Conclusions 

The conclusions of the present work can be summarized as follows: 

1. The cylinder response was strongly dictated by the reduced velocity 

parameter, Ur. The double amplitudes phenomenon, the “jump 

phenomenon”, was found in the inline motion that agrees well with an 

existing comparable work. However, due to distinct conditions in the test, 

the phenomenon occurred at lower Ur than the existing work.  

2. At high Ur (Ur  5.33), the third higher harmonic frequencies of the 

transverse response became predominant. This condition obviously could be 

expected due to the change on the motion trajectory patterns of the cylinder 

motion. 

3. Free bottom-end condition, higher Reynolds number, and a nonlinearity of 

amplitude variation along the span (due to the cantilevered condition of the 

cylinder) involved in the present experiment, produced quite different 

motion characteristics compared to other existing comparable works. It 

seems that the present test generate different vortex wake mode than either, 

“2T” mode (in the case of a short-rigid flexibly-mounted cylinder) or “2C” 

mode (in the case of a rigid pivoted cylinder). A visualization study on the 

vortex wake modes need to be performed, to clarify the precise mechanism 

behind the observed phenomena. 
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