

PROC. ITB Eng. Science Vol. 38 B, No. 2, 2006, 79-98 79

Received July 28th, 2006, Revised September 11th, 2006, Accepted for publication September 11th, 2006.

Exploiting Homogeneity of Density in Incremental

Hierarchical Clustering

Dwi H. Widyantoro

School of Electrical Engineering and Informatics, Institute of Technology Bandung

Bandung, 40132 INDONESIA

dwi@if.itb.ac.id

Abstract. Hierarchical clustering is an important tool in many applications. As it

involves a large data set that proliferates over time, reclustering the data set

periodically is not an efficient process. Therefore, the ability to incorporate a

new data set incrementally into an existing hierarchy becomes increasingly

demanding. This article describes HOMOGEN, a system that employs a new

algorithm for generating a hierarchy of concepts and clusters incrementally from

a stream of observations. The system aims to construct a hierarchy that satisfies

the homogeneity and the monotonicity properties. Working in a bottom-up

fashion, a new observation is placed in the hierarchy and a sequence of hierarchy

restructuring processes is performed only in regions that have been affected by

the presence of the new observation. Additionally, it combines multiple

restructuring techniques that address different restructuring objectives to get a

synergistic effect. The system has been tested on a variety of domains including

structured and unstructured data sets. The experimental results reveal that the

system is able to construct a concept hierarchy that is consistent regardless of the

input data order and whose quality is comparable to the quality of those

produced by non incremental clustering algorithms.

Keywords: Clustering; Conceptual Clustering; Incremental Hierarchical Clustering.

1 Introduction

Generating a hierarchy of clusters incrementally in a dynamic environment is a

crucial process especially when (1) a complete set of data may not be available

on the onset, (2) the data set grows over time and (3) the need for incorporating

the new arrived data may be critical. A system working under these conditions

has to be able to put a new observation properly into the existing hierarchy,

update the concept descriptions and then restructure the hierarchy.

Due to the “information overload” phenomenon in which data proliferation is

inevitable, periodically reclustering the whole data set in order to incorporate

the new incoming data is fundamentally not an efficient process. The ability to

perform incremental clustering becomes increasingly appealing because it offers

a viable option to the problem faced by a batch process. An incremental

mailto:dwi@if.itb.ac.id

80 Dwi H. Widyantoro

algorithm for hierarchical clustering should be capable of capturing intrinsic

cluster structures. More importantly, its hierarchy quality should be comparable

to the quality of those generated by non incremental methods. While no

consensus yet exists on what constitutes intrinsic structures, it is likely that such

structures cannot be assumed to have certain shapes or distributions.

The sensitivity to input orderings is a long-standing problem in incremental

conceptual clustering [1]. Two major issues that can affect the sensitivity

problem are (1) nodes misplacement and (2) early commitment on cluster

membership. The former is mainly due to the changes of hierarchy structures

while processing new observations so that nodes that are previously well placed

become misplaced. The latter refers to the use of a fixed threshold value for

deciding an observation‟s cluster membership, for example, those applied in INC

[2] and UNIMEM [3], which despite its practicality has its limitation in that it

cannot adapt a cluster membership test to local properties of the cluster. Hence,

early commitment on a cluster membership decision could prevent capturing an

intrinsic hierarchical structure in the data set.

This paper presents a new incremental conceptual clustering algorithm,

HOMOGEN, that addresses the quality issue. The conceptual clustering approach

works on a metric space model that views an object (e.g., observation, cluster or

node) as a point in a high-dimensional space. The density of points is used to

define the characteristic of a good cluster and as guidance to hierarchically

organize a set of clusters. Informally, the density describes the spatial

distribution of points, measured in terms of the average distance from a point to

its nearest neighbor (this will be formally defined in Section 3.1). A hierarchy is

represented as a tree structure in which a node in the tree denotes a cluster in the

hierarchy. HOMOGEN‟s approach to concept formation aims to construct a tree

structure with two properties:

Property 1 (Homogeneity) A tree structure satisfies a homogeneity property if

every node in the tree consists of child nodes with similar density locally, w.r.t.

the distances to nearest sibling among the child nodes.

Property 2 (Monotonicity) A tree structure satisfies a monotonicity property if

the density of a node is always at least as high as the density of its parent. That

is, the density of nodes monotonically increases along any path in the tree

structure from the root to a leaf node.

These two properties serve as guiding principles for minimizing the occurrence

of misplaced nodes during the hierarchy construction. The homogeneity

requirement is needed in order to form clusters with local density properties,

that is, the densities of objects vary in intrinsic cluster structures. This property

 Exploiting Homogeneity of Density 81

also does not bias toward the shape and the class distribution of clusters that

makes it suitable for tracking evolving clusters in an online situation. In fact, the

homogeneity property also relaxes the commitment in the cluster membership

function by flexibly defining it based on the cluster density. Accordingly, a new

object can be a member of a cluster if the inclusion of the new object in the

cluster will not violate the homogeneity property of the cluster. Additionally, the

monotonicity property requirement is based on the observation that higher-level

hierarchies in most hierarchical systems are generally used to represent entities

with broader contexts. This characteristic can be captured with the notion of

monotonicity, also in terms of cluster density. Thus, the monotonicity property

helps properly organize the hierarchical structures of clusters. The structure

needs to be changed whenever the property is violated, and construction of the

new structure aims to satisfy this property. Taken together, both properties are

expected to construct a natural hierarchical structure such that nearby (resp.

distant) clusters share a lower (resp. an upper)-level ancestor.

2 Related Work

Previous work has mitigated the effect of input ordering by applying

restructuring operators such as cluster merging, splitting, and promotion [4].

The strategies for applying these operators can be broadly divided into local and

global approaches with their advantages and shortcomings. The local

approaches apply restructuring operators on the neighborhood of a hosting node

(i.e., a node that serves as the parent of a new observation) [2]-[4]. Although

relatively efficient to recover nodes misplaced at neighboring nodes, the local

approaches in general suffer from their inability to deal with major structural

changes. The global approaches address the sensitivity issue by iteratively

reinserting nodes into the entire hierarchy [5], which is clearly expensive.

The restructuring strategy in HOMOGEN represents a tradeoff between the local

and the global approaches. The system pinpoints nodes whose structures are

potentially affected by the presence of new observations and then applies

restructuring operators only to nodes that actually experience structural change.

The structural change problems are detected through checking the nodes‟

conformity with the homogeneity and monotonicity properties. Intuitively, this

strategy improves the ability of HOMOGEN to recover from major structural

changes while preserving the incremental nature of the algorithm.

HOMOGEN„s approach that uses a set of conceptual constraints (e.g., the

homogeneity and monotonicity properties) as the guiding principles during the

hierarchy restructuring can be related to the ARACHNE [6] and the HIERARCH

[7] systems. Unlike these systems that rely exclusively on their constraints as

82 Dwi H. Widyantoro

the only guiding principles, HOMOGEN also explicitly detects and rectifies

structural problems that cannot be recovered by satisfying the imposed

constraints. The premise is that no single approach covers all cases, and a

complementary approach that addresses a different restructuring objective can

be implanted to handle the uncovered cases. Although differing greatly in detail,

this idea is similar in spirit to COP-COBWEB [8] and COP-KMEANS [9], a version

of COBWEB (KMEANS) that enforces instance-level hard constraints irrespective

to the clustering decision of the main approaches. The instance-level constraints

in these systems are heavily dependent on the input domains so that a different

set of hard constraints needs to be defined on a different data set. In contrast,

HOMOGEN„s approach is more general because it deals only with a structural

property, allowing it to work across data sets without additional efforts.

The clustering process of HOMOGEN can be viewed as the incremental version

of hierarchical agglomerative clustering (HAC) methods [10]-[12] with two

respects. First, it works in a bottom-up fashion, which is the same as to the

manner HAC algorithms form cluster hierarchies in batch modes. The second

similarity is that HAC also produces cluster hierarchies that tend to be

monotonic. Unlike HAC that biases toward generating tree structures with the

fewest branching factors, HOMOGEN relaxes this restriction that allows it to

construct a more comprehensible hierarchical structure.

3 Cluster Hierarchy Construction

3.1 Formal Foundations

A hierarchy H = {N1, N2, …, Nn} is a tree consisting of n nodes. Each node in

the tree maintains two types of information: concept and density. The concept

summarizes the descriptions of all observations covered by a node. The density

describes the spatial distribution of the child nodes. An internal node has at

least two child nodes. A node in the tree represents a cluster whose members are

the set of child nodes. A leaf node is a singleton cluster covering a single

observation whose concept description is the description of the observation

itself.

Concept Representation. Let an observation oi = {oi1, oi2, …, oid} be a d-

dimensional point where oij, represents the value of the j
th
 dimension of the i

th

observation. A concept C = {c1, c2, …, cd} also has the same dimension as that

of the observation. Let ()N , the extension of N, denote the set of observations

(leaf nodes) that are descendants of N.

Definition 1 (Concept Description). The concept description C of a node N is

 Exploiting Homogeneity of Density 83

the center of m observations (leaf nodes) that are descendants of N, that is,

C={c1, c2, …, cd } where 




m

i

ijj o
m

c

1

1
 and ()ijo N .

Density Representation. The density of a node is defined as the average

distance to the closest neighbor among the child nodes. A natural way of

obtaining the distances to the nearest neighbors is from the path given by the

minimum spanning tree (MST) of the child nodes. The density representation of

a node N is a triple D=NDP,, where NDP={di| di} is a population of

nearest distance di,  and  are the average and the standard deviation of NDP.

Each di in NDP is the length of an edge, measured by the distance from a child

node to its nearest sibling, in the MST structure connecting the child nodes of N.

Thus, the  and  values are locally defined over the distances among the child

nodes. The distance between two nodes, with respect to the concept descriptions

of the two nodes, in general can be measured by using Ln distance functions as

defined by

  
nd

k

n
jkikjin ccNNL

1

1

),(













 



 (1)

where Ci and Cj are the concept descriptions (i.e., clusters centers) of nodes Ni

and Nj, respectively. The average value of NDP, , characterizes the density of a

node (cluster) in which the density is higher with lower  value. The average

distance of a leaf node is defined to be zero (i.e., the distance between the leaf

node and itself). Hence, a leaf node represents a cluster with infinitely large

density.

Definition 2 (Monotonic Node). Let N and P be the average nearest distances

with respect to the density representations of nodes N and its parent P

respectively. N is a monotonic node if only if N  P, that is, the density of N

is higher than or equal to the density of its parent.

Definition 3 (Homogeneous Node). Let DN = NDP,, be a density

representation of a node N. Given a lower limit LL =   k and an upper limit

UL =  + k where k is a positive constant, the node N is homogeneous, with

respect to k, if and only if LL  di  UL for di  NDP. The functions LL and UL

define the lower and upper bounds based on the mean and the variance of the

population.

Thus, a node is homogeneous if its distribution of the distances to the closest

84 Dwi H. Widyantoro

neighbors among the child nodes is within a bounded range around the mean.

The variance factor k in LL and UL functions controls the tightness of the

bounds. Definition 4 interprets the effects of observing a new point that is not

within the bounds of a node.

Definition 4 (Low and High Density Regions Formation). Let N be a

homogenous node with LL and UL as the node's lower and upper limits,

respectively. Given a new point A, let B be an N‟s child node that is the nearest

neighbor to A. Let d be the distance from A to B. If d  LL, the region covering

A and B is said to form a high-density region on N. If d  UL, then A (and B)

is said to form a low-density region on N.

3.2 A Preliminary Analysis of Problem Complexity

HAC algorithms produce binary tree structures that, w.r.t. Definition 3, always

meet the homogeneity property due to the fact that a node with two child nodes

is homogeneous. Many variants of HAC algorithm, except the Centroid-based

HAC, always satisfy the monotonicity property [11] because a new higher-level

cluster is formed in the order of increasing distance between two clusters. The

time complexity of these algorithms is at least O(N
2
) [11]. In strictly on-line

setting, these two properties can be preserved by rebuilding the tree each time

encountering a new observation and its time complexity is therefore at least

O(N
3
), which is clearly not interesting. However, it is also not obvious whether

there exists an algorithm with time complexity of less than O(N
2
) that can

incrementally incorporate a new point into an existing tree while still preserving

the tree properties. Rather than pursuing both properties, the incremental

algorithm of HOMOGEN takes a strategy that guarantees producing only a tree

satisfying the homogeneity property. The algorithm relies only on heuristic rules

for building a tree that tends to be monotonic.

3.3 The Algorithm Development

The approaches for generating a concept hierarchy incrementally can be divided

into two stages. During the first stage, the algorithm locates a node in the

hierarchy that can accept a new observation in a bottom up fashion, and then

inserts the new observation into the hosting node. The second stage performs

hierarchy restructuring. This two-stage algorithm is applied on observing the

third and subsequent data points. The initial hierarchy is created by merging the

first two points (the merging process will be described later).

 Exploiting Homogeneity of Density 85

3.3.1 First Stage: Locating the Initial Placement in Concept

Hierarchy

Locating the initial placement of a new observation is performed in the

following sequence:

1. Find the best match concept over leaf nodes based on the closest distance to

the new observation. To avoid exhaustive search by scanning the entire leaf

nodes, the system performs a beam search, which maintains k best search

paths, through the hierarchy in order to approximate the best match leaf

node.

2. Starting from the parent of the closest leaf node, perform upward search to

locate a cluster (or create a new cluster hierarchy) that can host the new

observation. Heuristic rules are employed during this search in order to

minimize disturbance of the hierarchy monotonicity.

Let‟s first define two operators needed to place a new observation in the

hierarchy: node insertion operator (Figure 1a) and hierarchy insertion operator

(Figure 1b). For both operators, let Nj be the new observation.

Definition 5 (Node Insertion Operator) The node insertion operator, denoted

by INSERT_NODE(N, Nj), inserts Nj as a new child of a node N.

Definition 6 (Hierarchy Insertion Operator) Let Ni be one of N's child nodes.

The hierarchy insertion operator, denoted by INSERT_HIERARCHY(Ni,Nj),

inserts a new node Nk in the hierarchy so that Nk becomes a parent of Ni and Nj,

and is a child node of N.

The upward search employs two heuristic rules to determine which insertion

operator to apply. By utilizing the monotonicity property, the general idea of

upward search is similar to the strategy of inserting a new element into a sorted

list of bins.

Heuristic 1 (Node Insertion). Perform INSERT_NODE(N, Nj) if LL  d  UL

where d is the distance from a new observation Nj to the nearest child node of N,

and LL & UL be the lower and upper bounds of N, respectively, as in Definition

3. For N with two child nodes, these bounds are defined to be LL = kL.dN and

UL=kU.dN where 0  kL  1 is a lower limit constant, kU  1 is an upper limit

constant, and dN is the distance between the two N„s child nodes.

In a node with two child nodes, the zero variance in the node‟s density

representation would hardly allow the heuristic to insert a third child node. The

heuristic addresses this problem by providing bounds derived only from the

mean value. These special case bounds also play the role of determining the

86 Dwi H. Widyantoro

allowable variation in the distances to nearest neighbors. The bound constants

are kL = 2/3 and kU = 3/2 (see Section 4.2 for the details).

Heuristic 2 (Hierarchy Insertion). Let Ni be the child node of N closest to a

new observation Nj. Perform INSERT_HIERARCHY(Ni, Nj), if and only if Nj

forms a high-density region on N, and if and only if Nj forms a low-density

region on at least one of N's child nodes.

The applicability conditions of Heuristic Rule 2 are an indication that no cluster

in the hierarchy can host the new observation without causing a significant

density disturbance. Therefore, a new cluster hierarchy needs to be inserted in

order to accommodate the new observation while minimizing the perturbation

of the hierarchy monotonicity.

On each level in the hierarchy, the algorithm during the upward search

examines the applicability conditions of each heuristic rule, applies the

corresponding insertion operator whenever the conditions are satisfied and then

stops. If none of the rules can be applied, the search proceeds to the next higher-

level cluster (i.e., the parent of current cluster). If the search process reaches the

Hierarchy Restructuring Algorithm

1. Let crntNode be the hosting node.

2. While (crntNode  null)

3. Let parentNode  Parent(crntNode).

4. Detect and recover the siblings of crntNode that are misplaced.

5. Perform homogeneity maintenance process on crntNode.

6. Let crntNode  parentNode.

7. End of While

Figure 2 Hierarchy restructuring algorithm.

N + Nj 

Nj

N

 (a) INSERT_NODE(N, Nj)

+ Nj 

Ni

N

 (b)

INSERT_HIERARCHY(Ni,Nj)

Nk

N

Nj Ni

Figure 1 Node and hierarchy insertion operators.

 Exploiting Homogeneity of Density 87

top-level cluster, a new cluster hierarchy will be inserted at the top level using

the hierarchy insertion operator, replacing the root node with the new cluster.

3.3.2 Second Stage: Hierarchy Restructuring

Changes in the hierarchy structures always occur after incorporating new

observations during their initial placement. The restructuring process is

performed to adapt the hierarchy to new structures by (1) recovering any

misplaced nodes and (2) repairing the homogeneity property that has been

violated. To do this effectively, the algorithm pinpoints nodes in the tree

affected by the change of a node's structure once a new observation is

incorporated in the hierarchy. Then, local operators are applied systematically

on these affected nodes.

A node is affected if its concept description changes. The notion of concept

descriptions in Definition 1 implies that the affected nodes are the hosting node

and its ancestors. Figure 2 summarizes the hierarchy-restructuring algorithm

that performs the restructuring process on these affected nodes. The following

two sections discuss steps 4 and 5 described in the figure.

Detection and Recovery of Misplaced Nodes

There is a case during the first stage of algorithm in which the hierarchy

insertion operator causes a node misplaced eventhough the homogeneity and the

monotonicity properties are still maintened. Definition 7 formally defines this

misplaced problem and a demotion operator is suggested to eliminate it.

Definition 7 (Misplaced Sibling) Let Ni and Nj be siblings to one another. Nj is

said to be misplaced as the sibling of Ni, denoted by Misplaced_Sibling(Ni,Nj),

if Nj does not form a low-density region on Ni.

N

Nj Ni

 Ni

N

Nj

DEMOTE(Ni,Nj)

(a)



MERGE(Ni,Nj)

(b)

Nk

N

Nj Ni

N

Nj Ni

Nk

N

Sk



N

Nj Ni

Si Sj

(Ni,Nj)=SPLIT(,Nk)

(c)

Figure 3 Demotion, merging and splitting restructuring operators.

88 Dwi H. Widyantoro

Definition 8 (Demotion Operator) Let Ni and Nj be siblings to one another.

A demotion operator, denoted by DEMOTE(Ni, Nj), is a process of retracting Nj

from its parent and inserting it as a child node of Ni (see Figure 3a).

Since applying a single demotion operator could also lead to further problems to

the Ni‟s remaining siblings, the algorithm checks the rest of them and reapplies

the demotion operator, repeatedly, until no misplaced sibling is found.

Figure 4 describes the detail process. The restriction on the next sibling chosen

in Line 5 guarantees that once the selected node is found to be not a misplaced

sibling, then neither do the remaining siblings. If the algorithm terminates by

the second condition (i.e., Siblings = null), additional minor restructuring is

performed (not shown in the algorithm) in order to satisfy the requirement that

an internal node must have at least two child nodes.

Homogeneity Property Maintenance

This section describes the process of repairing a cluster whose homogeneity

property is violated. In such a case, some areas in the cluster form high and/or

low-density regions. A high-density region is eliminated by merging two nearest

nodes using a merging operator.

Definition 9 (Merging Operator) MERGE(Ni,Nj) is

INSERT_HIERARCHY(Ni,Nj), where Nj is a sibling of Ni (see Figure 3b).

The merging operator replaces two nodes in a cluster with a single node that is

Detection and Recovery of Misplaced Nodes (Ni) Algorithm

1. Let the input Ni be the recipient of demoted nodes.

2. Let Siblings  the set of Ni‟s siblings.

3. Let No_Misplaced_Sibling  false.

4. Repeat

5. Let Nj  Siblings be the closest node to a child node of Ni.

6. If Misplaced_Sibling (Ni, Nj) (i.e., see Definition 7)

7. Then DEMOTE(Ni, Nj),

8. Remove Nj from Siblings.

9. Else Let No_Misplaced_Sibling  true.

10. Until (No_Misplaced_Sibling = true) or (Siblings = null).

Figure 4 Misplaced node detection and recovery algorithm.

 Exploiting Homogeneity of Density 89

the center of the two nodes. If the merged nodes are restricted to those with the

smallest nearest distance and the distance is below the cluster's lower limit, the

merging operator will remove a high-density region from the cluster. Repeating

the merging process on these nodes will eventually eliminate all high-density

regions.

A low-density region can be removed by splitting the cluster into two or more

smaller ones using sparser regions as the cutting points.

Definition 10 (Splitting Operator) Let Nk be a child node of N, and Sk be a set

of child nodes of Nk (see Figure 3c). Let  be a splitting function that divides Sk

into two disjoint subsets Si and Sj, that is, (Si, Sj) = (Sk) satisfying Si and Sj,

Sk=SjSj, and Sj  Sj = . Let (Ni,Nj)=SPLIT(,Nk) where SPLIT is a splitting

operator. The SPLIT operator retracts Nk from N and makes Ni and Nj, as N‟s

child nodes where Si and Sj are the sets of child nodes of Ni and Nj, respectively.

If Si or Sj contains a single child node, then that node becomes Ni or Nj, that is,

effectively promoting the child node one level higher in the tree.

Using the MST graph of the cluster being split, the algorithm employs a

splitting function  that cuts a path connecting an object with the farthest

distance to its nearest neighbor. If the splitting operation is performed only

when the farthest distance to the nearest neighbor exceeds the cluster's upper

bound, recursively applying this operator on each new split will eventually

Figure 5 Homogeneity maintenance algorithm.

Homogeneity Maintenance (Nk) Algorithm

1. Let an input Nk be the node that is being examined.

2. Repeat

3. Let Ni and Nj be the pair of neighbors among Nk‟s child nodes

 with the closest distance.

4. If Ni and Nj form a high-density region with respect to Nk,

5. Then MERGE(Ni,Nj),

6. Until there is no high-density region found in Nk during the last iteration.

7. Let Mi be the child of Nk with the largest di and Mj be Mi‟s nearest

 neighbor where di is the distance from node i to its nearest neighbor.

8. If Mi and Mj form a low-density region in Nk,

9. Then Let Sk  the set of Nk‟s child nodes.

10. Let (Ni, Nj) = SPLIT(, Nk)

11. If Ni  Sk Then Call Homogeneity Maintenance (Ni).

12. If Nj  Sk Then Call Homogeneity Maintenance (Nj).

90 Dwi H. Widyantoro

obtain a cluster that is free from low-density regions, in which case the splitting

process stops. Figure 5 provides the detail of the homogeneity maintenance

process. Working in a divide and conquer fashion, the algorithm receives an

input cluster Nk and replaces Nk by a non empty set of homogeneous nodes Sv.

4 Evaluation

4.1 Quantifying the Hierarchy Quality

4.1.1 Measuring the Quality of Hierarchy Structures

Given a hierarchy produced by a system HL, the quality of HL is quantified by

measuring the degree of its match with a known target hierarchy HT. Generally

speaking, the degree of match between HT and HL is calculated by the number

of nodes in HT, except the root node, that match with their corresponding nodes

in HL. Furthermore, a node in HL is said to be the corresponding node in HT if

both nodes match conceptually and structurally.

Let NT  HT and NL  HL be nodes in the target hierarchy HT and in the

hierarchy produced by a system HL, respectively, where both hierarchies are

derived from the same set of observations. Let)(N denote the set of

observations (singleton nodes) that are descendants of node N. The degree of

conceptual match between NT and NL, denoted by CMatch(NT,NL) is as follows.

() ()

(,)
() ()

T L

T L

T L

N N
CMatch N N

N N

 
 





 (2)

For each node NT in HT, let N*L be the corresponding node in HL such that:

)},({maxarg
)()(

*

LT
RootNHN

L NNCMatchN
LLL 

 (3)

Then, the degree of structural match between NT and NL, denoted by

SMatch(NT,N*L), is defined by

* *(,) ((), ())T L T LSMatch N N CMatch Parent N Parent N (4)

Finally, the degree of match between HT and HL, denoted by HMatch(HT,HL), is

computed as follows:





)()(

**),(),(),(
RootNHN

LTLTLT

TTT

NNSMatchNNCMatchHHHMatch (5)

 Exploiting Homogeneity of Density 91

The maximum score is determined by the number of target nodes in the target

hierarchy.

4.1.2 Measuring the Quality of Distinct Clusters

In this measure, the hierarchy generated by a clustering algorithm is examined

whether a distinct target cluster can be rediscovered. Let DATA be the set of all

observations, and TCi  TC be the ith target cluster in a set of target clusters

TC. Let)(iTC denote the set of observations belonging to the target cluster TCi

such that)(iTC
i

DATA  for TCTCi  and  )()(ji TCTC .

Moreover, let HL be a hierarchy produced by a system using all observations in

DATA. For each TCi  TC, let N*L be the corresponding node in HL and be

determined similarly as in Equation 2. The quality of HL is then calculated as an

accuracy measure denoting the percentage of match between the target clusters

and their corresponding clusters in HL, as defined by Equation 6 below.

*() (,)
(,) 100%i

i i LTC TC

C L

TC CMatch TC N
Accuracy T H

DATA





 


 (6)

4.2 Parameter Determination of HOMOGEN

To determine the appropriate tightness of the bound functions, during

preliminary experiments HOMOGEN was run using a synthetic data set and the

variance factor k (see Definition 3) was varied from 0.3 to 2 in all nodes with

three or more child nodes. The lower bound constant kL was also varied from

0.1 to 0.9 and from 1.1 to 2 for the upper bound constant kU particularly for

nodes with two child nodes in the Heuristic Rule 1.

From these experiments, k=1, kL=2/3, and kU=3/2 were found to be among those

that gave good measures of hierarchy quality. These settings were then fixed for

other data sets in the rest of experiments.

4.3 Performance Comparison with Other Incremental Systems

In this section the performances of HOMOGEN are compared with those of

COBWEB [4] and two versions of ARACHNE systems. The first version of

ARACHNE, denoted by ARACHNE-L(ocal), implements the original ARACHNE‟s

control strategy as described by McKusick and Langley [6]. This version

applies restructuring operators on neighboring nodes that violate the nodes'

constraints. The second version, ARACHNE-G(lobal), extends ARACHNE-L by

pushing the power of tree constraints employed by the system further into its

92 Dwi H. Widyantoro

limit.

Table 1 Summary of data sets.

 Synthetic Data Sets Natural Data Sets
a

 Gird Triangle Symbol Soybean

Small

Soybean

Large

Voting

#Observations 288 108 27 47 307 435

#Target Clusters
b
 38 12 12 5 19 2

#Distinct Clusters 24 9 9 4 19 2

#Target Hierarchy Levels 4 2 2 2  
#Attributes

c
 2 2 3 35 35 15

Dimension Size 2 2 39 76 132 48

Attribute Value Types Cont Cont. Nom. Nom. Nom. Nom.

Distance Functions L2 L2 L1 L1 L1 L1
aFrom UCI repository of machine learning database [13]
b#TargetClusters = #Distinct Clusters + #Internal Nodes, except the root node, that groups the distinct

concepts and their larger groups.
cThe number of attributes does not include the target (class) attribute.

The experiment uses six data sets as summarized in Table 1. The data sets Grid,

Triangle, Symbol, and Soybean Small have known, clear target hierarchy

structures as shown in Figure 6 while the hierarchy structure of the Soybean

Large is unknown. Since the Voting data set contains only two target classes, it

has the simplest hierarchy structure. The first four data sets are used to evaluate

the performance of HOMOGEN in discovering both the distinct clusters and their

organizational structures inherent in the data sets. The experiments were

performed in two ordering scenarios: random and bad orderings. The

observation in random ordering was selected randomly from one of the unseen

observations regardless of the observations‟ classes. In bad ordering, the stream

was ordered by observations‟ classes [1] where observation of a different class

will not be given until all observations of the same class had been processed. In

each case the experiment results were averaged over 25 trials.

Table 2 provides the performance comparison of HOMOGEN with other

incremental systems with respect to the systems' abilities to rediscover distinct

clusters inherent in the data and to properly organize the discovered clusters into

higher-level clusters. Table 3 summarizes the systems‟ performances on

rediscovering distinct clusters. The table shows that HOMOGEN performs

comparably well to or better than the other systems. The clustering of

HOMOGEN is relatively not affected by the cluster shapes. For example, the

cluster boundaries on Voting and Soybean Large are not clear-cut, indicating the

irregularity of cluster shapes and/or the overlap between clusters. Yet HOMOGEN

performs better on these data sets. To some extent, this confirms the expectation

that the homogeneity property can guide the incremental process of HOMOGEN

 Exploiting Homogeneity of Density 93

to reconstruct clusters of fairly arbitrary shapes.

Table 2 The quality of hierarchy structures. The quality is measured according

to Equation 5 averaged over 25 trials.

 HOMOGEN COBWEB ARACHNE-L ARACHNE-G Max

 Random Ordering Scores

Grid 38.00  24.20 24.25 38

Triangle 12.00  11.99 12.00 12

Symbol 12.00* 9.62 9.75 11.31 12

Soybean Small 4.67* 4.23 3.81 4.29 5

 Bad Ordering

Grid 37.97  26.65 26.65 38

Triangle 12.00*  11.81 11.85 12

Symbol 12.00* 7.12 10.18 11.19 12

Soybean Small 4.61 2.91 2.78 3.30 5

 * The differences are statistically significant at most at 0.026 levels.

A B C D E F G H

I J K L

M N

1 2 3 4 5 6 7 8 9

A B C

D1 D D2

D3 D4

Grid

Triangle

Soybean Small

(A, *, *)

(A, B, *) (A, C, *)

(B, *, *)

(B, D, *) (B, E, *) (B, F, *)

(C, *, *)

(C, G, *) (C, H, *) (C, I, *)

(*, *, *)

Symbol

Figure 6 Target hierarchy structures of Triangle, Soybean Small, Grid and

Symbol data sets.

94 Dwi H. Widyantoro

4.4 Performance Comparison with HAC Algorithms

A subset of the Reuters-21578 1.0 test collection [13] was used for this

evaluation. Only six topics were used from the training set part of the ModApte

split [14] with moderate topic sizes. The number of selected documents was 951

consisting of target topics Coffee (90), Crude (253), Gold (70), Interest (190),

Sugar (97) and Trade (251).

Table 3 The quality of distinct clusters. (measured using Equation 6) The

differences of bold numbers are statistically significant from non-bold numbers

on the same row at 0.001 levels.

 HOMOGEN COBWEB ARACHNE-L ARACHNE-G

 Accuracy (%) on Random Ordering

Soybean Small 96.00 94.03 83.38 96.83

Soybean Large 59.18 55.91 47.61 53.66

Voting 79.07 75.22 74.10 76.42

 Accuracy (%) on Bad Ordering

Soybean Small 97.28 72.32 67.96 85.92

Soybean Large 61.61 50.31 49.74 53.26

Voting 79.60 68.40 63.79 75.22

Each document was represented by a feature vector containing a set of unique

terms and their term frequencies. All stop words such as “a”, “the”, "although”,

etc were removed. The feature selection process was applied to remove

irrelevant terms using two alternatives of heuristics:

MDF-FS: minimum document frequency-based feature selection that selects

terms occurring in at least n documents.

MTF-FS: minimum term frequency-based feature selection that selects a term t

if there exists at least one document in which t occurs at least m times. It

assumes that term frequency is an indicator for topical words.

HOMOGEN performs feature selection and weighting on the fly as it receives a

new document to learn. Therefore, MDF-FS feature selection and TF-IDF

weighting method are not applicable for this system. In batch systems, the

feature selection and weighting processes are performed over all documents

well before the clustering process begins.

Seven variants of HAC (i.e., non-incremental algorithms for hierarchical

clustering) were considered for performance comparison. These variants were

Single-link, Complete-link, Group-average, Weighted-average, Centroid,

 Exploiting Homogeneity of Density 95

Median-method and Ward‟s method [10], [11]. They differed from each other in

their methods in calculating the distances of a cluster to a non-singleton cluster.

The distance between two documents or clusters in HOMOGEN was measured by

the Euclidean distance function.

Table 4 Peak accuracies achieved by HOMOGEN and HAC methods. The

accuracy of HOMOGEN is averaged over 25 runs. The italic numbers following

the accuracies are the parameter values of their respective feature selection

methods (i.e., mtf or mdf values) that produce the results.

 Accuracy (%) (parameter value)

Feature Selection MTF-FS MDF-FS

Term Weighting TF TF-IDF TF TF-IDF

HOMOGEN 89.32 (5)   

Single-link 70.20 (9) 61.71 (12) 59.80 (48) 62.45 (64)

Complete-link 72.81 (2) 68.04 (1) 72.81 (4) 68.01 (1)

Group-average 89.16 (4) 86.86 (4) 81.12 (2) 80.24 (8)

Weighted-average 88.62 (5) 83.94 (4) 76.05 (8) 80.42 (32)

Centroid 83.43 (14) 79.05 (14) 58.31 (64) 50.18 (80)

Median Method 74.37 (8) 67.80 (12) 62.09 (80) 61.34 (64)

Ward's Method 84.36 (5) 83.37 (6) 77.19 (8) 80.11 (32)

Two feature weighting methods are considered: term frequency (TF) and term

frequency inverse document frequency (TF-IDF) [15]. All features are then

normalized using Eucledian Normalization.

The experiments exploited the peak accuracies that could be achieved by

HOMOGEN and the seven HAC variants on the full data set (951 documents

consisting of six topics). More specifically, the best result was taken by varying

the minimum term frequency values from 1 to 15 for the MTF-FS feature

selection, or by varying the minimum document frequency (mdf) values to 2, 4,

8, 12, 16, 32, 48, 64, 80 and 96 for the MDF-FS feature selection.

Table 4 presents the best results for each variation of feature selection and

weighting methods as well as their corresponding parameter settings. The best

accuracy from HAC algorithms is achieved by the Group-average method

(89.16%) and the peak performance attained by HOMOGEN is slightly higher

(89.32%). A higher parameter value, shown next to the accuracy in the table, is

an indication that the corresponding clustering algorithm is more sensitive to

noise since it needs to be more aggressive in removing irrelevant features in

order to maximize its performance.

96 Dwi H. Widyantoro

Table 5 The confusion matrices of clusters generated by HOMOGEN and

Group-average HAC methods.

HOMOGEN

 Document Topics Total

 Coffee Crude Gold Interest Sugar Trade Docs.

Cluster-1 81.28 0.20  0.16  0.72 82.36

Cluster-2 0.08 226.72 1.60 1.24 0.16 3.44 233.34

Cluster-3  0.08 64.88   0.08 65.04

Cluster-4 1.04 2.96 0.24 175.32 0.88 6.64 187.08

Cluster-5 0.60 0.32 0.68  90.28 0.12 92.00

Cluster-6 0.24 0.96 0.04 5.24 0.04 227.92 234.44

#Excluded

docs.

 6.76 21.76 2.56 8.04 5.64 12.08 56.84

Group-average Hierarchical Agglomerative Clustering

 Document Topics Total

 Coffee Crude Gold Interest Sugar Trade Docs.

Cluster-1 83     1 84

Cluster-2 1 226   1 1 229

Cluster-3  1 66    67

Cluster-4 3 12  186  11 212

Cluster-5     94  94

Cluster-6  10 3 2  233 248

#Excluded

docs.

3 4 1 2 2 5 17

The detail results of HOMOGEN and Group-average algorithms are provided by

Table 5. The fractional numbers in HOMOGEN are due to the averaging of the

experiment results over 25 trials. Let precision be the percentage of correct

assignment of documents in all found clusters and recall be the percentage of

correct assignment over all 951 documents. The precision and recall of

HOMOGEN are 96.9% and 91.1%, respectively. The group-average algorithm, on

the other hand, produces clusters with slightly lower precision (95.1%) but

higher recall (93.4%).

5 Concluding Remarks

This paper highlights the problem inherently faced by batch hierarchical

clustering methods in an online situation. It has also described a new concept

formation system called HOMOGEN that addresses the problem by incrementally

creating a concept hierarchy from a sequence of instances. Experiments

conducted on a variety of domains involving structured and unstructured data

sets indicate the effectiveness of the system. It is relatively insensitive to input

 Exploiting Homogeneity of Density 97

ordering and can produce a quality structure inherent within the input data. Its

performance in the given unstructured data set is also comparable to the best

performance achieved by HAC methods.

The main contribution of this paper is the exploitation of homogeneity property

coupled with the monotonicity property for incremental hierachical clustering.

Both properties are essential for discovering intrinsic hierarchical structures in

which one cannot assume about the shape and the class distribution of clusters.

Although systems such as DBSCAN [16], CURE [17] and CHAMELEON [18] can

handle clusters with complex shapes and/or different sizes, these systems

employ non incremental methods. In incremental systems, COBWEB and its

family [4], [5], [8] prefer clusters with similar sizes. ARACHNE tends to build

compact clusters. Similar cluster shapes are also formed by the INC system [2].

HIERARCH‟s constraints exhibit bias toward certain cluster shapes [7].

References

[1] Fisher, D. H., Xu, L., & Zard, N., Ordering effects in clustering, In

Proceedings of the 9th International Conference on Machine Learning,

pp. 163–168 (1992).

[2] Hadzikadic, M., & Yun, D., Concept formation by incremental

conceptual clustering, In Proceedings of the 11th International Joint

Conference on Artificial Intelligence (1989), pp. 831–836.

[3] Lebowitz, M., Experiments with incremental concept formation: unimem,

Machine Learning, 1, 103–138 (1987).

[4] Fisher, D. H., Knowledge acquisition via incremental conceptual

clustering, Machine Learning, 2, 139–172 (1987).

[5] Biswas, G., Weinberg, J., & Fisher, D., ITERATE: A conceptual clustering

algorithm for data mining, IEEE Transactions on Systems, Man, and

Cybernetics, 28 (2), 100–111 (1998).

[6] McKusick, K. B., & Langley, P., Constraints on tree structure in concept

formation, In Proceedings of the 12th International Conference on

Artificial Intelligence (1991), pp. 810– 816.

[7] Nevins, J., A Branch and Bound Incremental Conceptual Clusterer,

Machine Learning, 18, 3–22 (1995).

[8] Wagstaff, K., & Cardie, C., Clustering with Instance-Level Constraints,

In Proceedings of the 17th International Conference on Machine Learning

(2000), pp. 1103–1110.

[9] Wagstaff, K., Cardie, C., Rogers, S., & Schroedl, S., Constrained K-

Means Clustering with Background Knowledge, In Proceedings of the

18th International Conference on Machine Learning (2001), pp. 577–584.

[10] Everitt, B. S., Landau, S., & Leese, M., Cluster Analysis, New York, NY:

Oxford University Press Inc (2001).

98 Dwi H. Widyantoro

[11] Jain, A., & Dubes, R. C., Algorithms for Clustering Data, Englewood

Cliffs, NJ: Prentice Hall (1988).

[12] Miyamoto, S., Fuzzy Sets in Information Retrieval and Cluster Analysis,

Boston: Kluwer Academic Publishers (1990).

[13] Blake, C., & Merz, C. (1998), UCI Repository of Machine Learning

Databases,http://www.ics.uci.edu/mlearn/MLRepository.html, University

of California, Irvine, Department of Information and Computer Sciences.

[14] Apt´e, C., Damerau, F., & Weiss, S. M., Automatic Learning of Decision

Rules For Text Categorization, ACM Transactions on Information

Systems, 12 (3), 233–251 (1994).

[15] Salton, G., & McGill, M. J., Introduction to Modern Information

Retrieval, New York, NY: McGraw-Hill (1983).

[16] Ester, M., Kriegel, H.-P., Sander, J., & Xu, X., A Density-Based

Algorithm for Discovering Clusters in Large Spatial Databases with

Noise, In Proceedings of the 2
nd

 International Conference on Knowledge

Discovery and Data Mining (1996), pp. 226–231.

[17] Guha, S., Rastogi, R., & Shim, K., CURE: An Efficient Clustering

Algorithm For Large Databases, In Proceedings of the 1998 ACM

SIGMOD international conference on Management of data (1998), pp.

73–84.

[18] Karypis, G., Han, E. H., & Kumar, V., Chameleon: A Hierarchical

Clustering Algorithm Using Dynamic Modeling. COMPUTER, 32, 68–75

(1999).

http://www.ics.uci.edu/mlearn/MLRepository.html

