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Abstract. Hierarchical clustering is an important tool in many applications. As it 

involves a large data set that proliferates over time, reclustering the data set 

periodically is not an efficient process. Therefore, the ability to incorporate a 

new data set incrementally into an existing hierarchy becomes increasingly 

demanding. This article describes HOMOGEN, a system that employs a new 

algorithm for generating a hierarchy of concepts and clusters incrementally from 

a stream of observations. The system aims to construct a hierarchy that satisfies 

the homogeneity and the monotonicity properties. Working in a bottom-up 

fashion, a new observation is placed in the hierarchy and a sequence of hierarchy 

restructuring processes is performed only in regions that have been affected by 

the presence of the new observation. Additionally, it combines multiple 

restructuring techniques that address different restructuring objectives to get a 

synergistic effect. The system has been tested on a variety of domains including 

structured and unstructured data sets. The experimental results reveal that the 

system is able to construct a concept hierarchy that is consistent regardless of the 

input data order and whose quality is comparable to the quality of those 

produced by non incremental clustering algorithms. 
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1 Introduction 

Generating a hierarchy of clusters incrementally in a dynamic environment is a 

crucial process especially when (1) a complete set of data may not be available 

on the onset, (2) the data set grows over time and (3) the need for incorporating 

the new arrived data may be critical. A system working under these conditions 

has to be able to put a new observation properly into the existing hierarchy, 

update the concept descriptions and then restructure the hierarchy.  

Due to the “information overload” phenomenon in which data proliferation is 

inevitable, periodically reclustering the whole data set in order to incorporate 

the new incoming data is fundamentally not an efficient process. The ability to 

perform incremental clustering becomes increasingly appealing because it offers 

a viable option to the problem faced by a batch process. An incremental 

mailto:dwi@if.itb.ac.id


80 Dwi H. Widyantoro 

algorithm for hierarchical clustering should be capable of capturing intrinsic 

cluster structures. More importantly, its hierarchy quality should be comparable 

to the quality of those generated by non incremental methods. While no 

consensus yet exists on what constitutes intrinsic structures, it is likely that such 

structures cannot be assumed to have certain shapes or distributions.  

The sensitivity to input orderings is a long-standing problem in incremental 

conceptual clustering [1]. Two major issues that can affect the sensitivity 

problem are (1) nodes misplacement and (2) early commitment on cluster 

membership. The former is mainly due to the changes of hierarchy structures 

while processing new observations so that nodes that are previously well placed 

become misplaced. The latter refers to the use of a fixed threshold value for 

deciding an observation‟s cluster membership, for example, those applied in INC 

[2] and UNIMEM [3], which despite its practicality has its limitation in that it 

cannot adapt a cluster membership test to local properties of the cluster. Hence, 

early commitment on a cluster membership decision could prevent capturing an 

intrinsic hierarchical structure in the data set.  

This paper presents a new incremental conceptual clustering algorithm, 

HOMOGEN, that addresses the quality issue. The conceptual clustering approach 

works on a metric space model that views an object (e.g., observation, cluster or 

node) as a point in a high-dimensional space. The density of points is used to 

define the characteristic of a good cluster and as guidance to hierarchically 

organize a set of clusters. Informally, the density describes the spatial 

distribution of points, measured in terms of the average distance from a point to 

its nearest neighbor (this will be formally defined in Section 3.1). A hierarchy is 

represented as a tree structure in which a node in the tree denotes a cluster in the 

hierarchy. HOMOGEN‟s approach to concept formation aims to construct a tree 

structure with two properties: 

Property 1 (Homogeneity) A tree structure satisfies a homogeneity property if 

every node in the tree consists of child nodes with similar density locally, w.r.t. 

the distances to nearest sibling among the child nodes. 

Property 2 (Monotonicity) A tree structure satisfies a monotonicity property if 

the density of a node is always at least as high as the density of its parent. That 

is, the density of nodes monotonically increases along any path in the tree 

structure from the root to a leaf node. 

These two properties serve as guiding principles for minimizing the occurrence 

of misplaced nodes during the hierarchy construction. The homogeneity 

requirement is needed in order to form clusters with local density properties, 

that is, the densities of objects vary in intrinsic cluster structures. This property 
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also does not bias toward the shape and the class distribution of clusters that 

makes it suitable for tracking evolving clusters in an online situation. In fact, the 

homogeneity property also relaxes the commitment in the cluster membership 

function by flexibly defining it based on the cluster density. Accordingly, a new 

object can be a member of a cluster if the inclusion of the new object in the 

cluster will not violate the homogeneity property of the cluster. Additionally, the 

monotonicity property requirement is based on the observation that higher-level 

hierarchies in most hierarchical systems are generally used to represent entities 

with broader contexts. This characteristic can be captured with the notion of 

monotonicity, also in terms of cluster density. Thus, the monotonicity property 

helps properly organize the hierarchical structures of clusters. The structure 

needs to be changed whenever the property is violated, and construction of the 

new structure aims to satisfy this property. Taken together, both properties are 

expected to construct a natural hierarchical structure such that nearby (resp. 

distant) clusters share a lower (resp. an upper)-level ancestor. 

2 Related Work 

Previous work has mitigated the effect of input ordering by applying 

restructuring operators such as cluster merging, splitting, and promotion [4]. 

The strategies for applying these operators can be broadly divided into local and 

global approaches with their advantages and shortcomings. The local 

approaches apply restructuring operators on the neighborhood of a hosting node 

(i.e., a node that serves as the parent of a new observation) [2]-[4]. Although 

relatively efficient to recover nodes misplaced at neighboring nodes, the local 

approaches in general suffer from their inability to deal with major structural 

changes.  The global approaches address the sensitivity issue by iteratively 

reinserting nodes into the entire hierarchy [5], which is clearly expensive.  

The restructuring strategy in HOMOGEN represents a tradeoff between the local 

and the global approaches. The system pinpoints nodes whose structures are 

potentially affected by the presence of new observations and then applies 

restructuring operators only to nodes that actually experience structural change. 

The structural change problems are detected through checking the nodes‟ 

conformity with the homogeneity and monotonicity properties. Intuitively, this 

strategy improves the ability of HOMOGEN to recover from major structural 

changes while preserving the incremental nature of the algorithm.  

HOMOGEN„s approach that uses a set of conceptual constraints (e.g., the 

homogeneity and monotonicity properties) as the guiding principles during the 

hierarchy restructuring can be related to the ARACHNE [6] and the HIERARCH 

[7] systems. Unlike these systems that rely exclusively on their constraints as 
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the only guiding principles, HOMOGEN also explicitly detects and rectifies 

structural problems that cannot be recovered by satisfying the imposed 

constraints. The premise is that no single approach covers all cases, and a 

complementary approach that addresses a different restructuring objective can 

be implanted to handle the uncovered cases. Although differing greatly in detail, 

this idea is similar in spirit to COP-COBWEB [8] and COP-KMEANS [9], a version 

of COBWEB (KMEANS) that enforces instance-level hard constraints irrespective 

to the clustering decision of the main approaches. The instance-level constraints 

in these systems are heavily dependent on the input domains so that a different 

set of hard constraints needs to be defined on a different data set. In contrast, 

HOMOGEN„s approach is more general because it deals only with a structural 

property, allowing it to work across data sets without additional efforts. 

The clustering process of HOMOGEN can be viewed as the incremental version 

of hierarchical agglomerative clustering (HAC) methods [10]-[12] with two 

respects. First, it works in a bottom-up fashion, which is the same as to the 

manner HAC algorithms form cluster hierarchies in batch modes. The second 

similarity is that HAC also produces cluster hierarchies that tend to be 

monotonic. Unlike HAC that biases toward generating tree structures with the 

fewest branching factors, HOMOGEN relaxes this restriction that allows it to 

construct a more comprehensible hierarchical structure. 

3 Cluster Hierarchy Construction 

3.1 Formal Foundations 

A hierarchy  H = {N1, N2, …,  Nn} is a tree consisting of n nodes. Each node in 

the tree maintains two types of information: concept and density. The concept 

summarizes the descriptions of all observations covered by a node. The density 

describes the spatial distribution of the child nodes. An internal node has at 

least two child nodes. A node in the tree represents a cluster whose members are 

the set of child nodes.  A leaf node is a singleton cluster covering a single 

observation whose concept description is the description of the observation 

itself. 

Concept Representation. Let an observation oi = {oi1, oi2, …, oid}  be a d-

dimensional point where oij, represents the value of the j
th
   dimension of the i

th
 

observation. A concept C = {c1, c2, …,  cd}  also has the same dimension as that 

of the observation. Let ( )N , the extension of N, denote the set of observations 

(leaf nodes) that are descendants of N. 

Definition 1 (Concept Description). The concept description C of a node N is 
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the center of m observations (leaf nodes) that are descendants of N, that is, 

C={c1, c2, …,  cd } where 




m

i

ijj o
m

c

1

1
 and ( )ijo N . 

Density Representation. The density of a node is defined as the average 

distance to the closest neighbor among the child nodes. A natural way of 

obtaining the distances to the nearest neighbors is from the path given by the 

minimum spanning tree (MST) of the child nodes. The density representation of 

a node N is a triple D=NDP,, where NDP={di| di} is a population of 

nearest distance di,  and  are the average and the standard deviation of NDP. 

Each di in NDP is the length of an edge, measured by the distance from a child 

node to its nearest sibling, in the MST structure connecting the child nodes of N. 

Thus, the  and  values are locally defined over the distances among the child 

nodes. The distance between two nodes, with respect to the concept descriptions 

of the two nodes, in general can be measured by using Ln distance functions as 

defined by 

  
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n
jkikjin ccNNL
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




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


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

                                        (1) 

where Ci and Cj are the concept descriptions (i.e., clusters centers) of nodes Ni 

and Nj, respectively. The average value of NDP, , characterizes the density of a 

node (cluster) in which the density is higher with lower  value. The average 

distance of a leaf node is defined to be zero (i.e., the distance between the leaf 

node and itself). Hence, a leaf node represents a cluster with infinitely large 

density. 

Definition 2 (Monotonic Node). Let N and P be the average nearest distances 

with respect to the density representations of nodes N and its parent P 

respectively. N is a monotonic node if only if N  P, that is, the density of  N 

is higher than or equal to the density of its parent.   

Definition 3 (Homogeneous Node). Let DN = NDP,, be a density 

representation of a node N. Given a lower limit LL =   k  and an upper limit 

UL =  + k   where k is a positive constant, the node N is homogeneous, with 

respect to k, if and only if LL  di  UL  for di  NDP. The functions LL and UL 

define the lower and upper bounds based on the mean and the variance of the 

population.  

Thus, a node is homogeneous if its distribution of the distances to the closest 
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neighbors among the child nodes is within a bounded range around the mean. 

The variance factor k in LL and UL functions controls the tightness of the 

bounds. Definition 4 interprets the effects of observing a new point that is not 

within the bounds of a node.  

Definition 4 (Low and High Density Regions Formation). Let N be a 

homogenous node with LL and UL as the node's lower and upper limits, 

respectively. Given a new point A, let B be an N‟s child node that is the nearest 

neighbor to A. Let d be the distance from A to B. If  d  LL, the region covering 

A and B is said to form a high-density region on N.  If  d  UL,   then A (and B) 

is said to form a low-density region on N. 

3.2 A Preliminary Analysis of Problem Complexity 

HAC algorithms produce binary tree structures that, w.r.t. Definition 3, always 

meet the homogeneity property due to the fact that a node with two child nodes 

is homogeneous. Many variants of HAC algorithm, except the Centroid-based 

HAC, always satisfy the monotonicity property [11] because a new higher-level 

cluster is formed in the order of increasing distance between two clusters. The 

time complexity of these algorithms is at least O(N
2
) [11]. In strictly on-line 

setting, these two properties can be preserved by rebuilding the tree each time 

encountering a new observation and its time complexity is therefore at least 

O(N
3
), which is clearly not interesting. However, it is also not obvious whether 

there exists an algorithm with time complexity of less than O(N
2
) that can 

incrementally incorporate a new point into an existing tree while still preserving 

the tree properties. Rather than pursuing both properties, the incremental 

algorithm of HOMOGEN takes a strategy that guarantees producing only a tree 

satisfying the homogeneity property. The algorithm relies only on heuristic rules 

for building a tree that tends to be monotonic.  

3.3 The Algorithm Development 

The approaches for generating a concept hierarchy incrementally can be divided 

into two stages. During the first stage, the algorithm locates a node in the 

hierarchy that can accept a new observation in a bottom up fashion, and then 

inserts the new observation into the hosting node. The second stage performs 

hierarchy restructuring. This two-stage algorithm is applied on observing the 

third and subsequent data points. The initial hierarchy is created by merging the 

first two points (the merging process will be described later).  
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3.3.1 First Stage: Locating the Initial Placement in Concept 

Hierarchy 

Locating the initial placement of a new observation is performed in the 

following sequence: 

1. Find the best match concept over leaf nodes based on the closest distance to 

the new observation. To avoid exhaustive search by scanning the entire leaf 

nodes, the system performs a beam search, which maintains k best search 

paths, through the hierarchy in order to approximate the best match leaf 

node.  

2. Starting from the parent of the closest leaf node, perform upward search to 

locate a cluster (or create a new cluster hierarchy) that can host the new 

observation. Heuristic rules are employed during this search in order to 

minimize disturbance of the hierarchy monotonicity. 

Let‟s first define two operators needed to place a new observation in the 

hierarchy: node insertion operator (Figure 1a) and hierarchy insertion operator 

(Figure 1b). For both operators, let Nj be the new observation. 

Definition 5 (Node Insertion Operator) The node insertion operator, denoted 

by INSERT_NODE(N, Nj),  inserts Nj as a new child of a  node N. 

Definition 6 (Hierarchy Insertion Operator) Let Ni be one of N's child nodes. 

The hierarchy insertion operator, denoted by INSERT_HIERARCHY(Ni,Nj), 

inserts a new node Nk in the hierarchy so that Nk becomes a parent of Ni and Nj, 

and is a child node of N. 

The upward search employs two heuristic rules to determine which insertion 

operator to apply. By utilizing the monotonicity property, the general idea of 

upward search is similar to the strategy of inserting a new element into a sorted 

list of bins. 

Heuristic 1 (Node Insertion). Perform INSERT_NODE(N, Nj) if LL  d  UL  

where d is the distance from a new observation Nj to the nearest child node of N, 

and LL & UL be the lower and upper bounds of N, respectively, as in Definition 

3. For N with two child nodes, these bounds are defined to be LL = kL.dN  and  

UL=kU.dN  where 0  kL  1 is a lower limit constant, kU  1  is an upper limit 

constant, and dN is the distance between the two N„s child nodes.  

In a node with two child nodes, the zero variance in the node‟s density 

representation would hardly allow the heuristic to insert a third child node. The 

heuristic addresses this problem by providing bounds derived only from the 

mean value. These special case bounds also play the role of determining the  
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allowable variation in the distances to nearest neighbors. The bound constants 

are kL = 2/3  and kU = 3/2   (see Section 4.2 for the details). 

Heuristic 2 (Hierarchy Insertion). Let Ni be the child node of N closest to a 

new observation Nj. Perform INSERT_HIERARCHY(Ni, Nj),  if and only if Nj 

forms a high-density region on N, and if and only if Nj forms a low-density 

region on at least one of N's child nodes. 

The applicability conditions of Heuristic Rule 2 are an indication that no cluster 

in the hierarchy can host the new observation without causing a significant 

density disturbance. Therefore, a new cluster hierarchy needs to be inserted in 

order to accommodate the new observation while minimizing the perturbation 

of the hierarchy monotonicity. 

On each level in the hierarchy, the algorithm during the upward search 

examines the applicability conditions of each heuristic rule, applies the 

corresponding insertion operator whenever the conditions are satisfied and then 

stops. If none of the rules can be applied, the search proceeds to the next higher-

level cluster (i.e., the parent of current cluster). If the search process reaches the 

Hierarchy Restructuring Algorithm   

1. Let crntNode be the hosting node. 

2. While (crntNode  null ) 

3.  Let parentNode  Parent(crntNode). 

4.  Detect and recover the siblings of crntNode that are misplaced. 

5.  Perform homogeneity maintenance process on crntNode. 

6.  Let crntNode   parentNode. 

7. End of While 

Figure 2 Hierarchy restructuring algorithm. 
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Figure 1 Node and hierarchy insertion operators. 
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top-level cluster, a new cluster hierarchy will be inserted at the top level using 

the hierarchy insertion operator, replacing the root node with the new cluster. 

 

3.3.2 Second Stage: Hierarchy Restructuring 

Changes in the hierarchy structures always occur after incorporating new 

observations during their initial placement. The restructuring process is 

performed to adapt the hierarchy to new structures by (1) recovering any 

misplaced nodes and (2) repairing the homogeneity property that has been 

violated. To do this effectively, the algorithm pinpoints nodes in the tree 

affected by the change of a node's structure once a new observation is 

incorporated in the hierarchy. Then, local operators are applied systematically 

on these affected nodes.  

A node is affected if its concept description changes. The notion of concept 

descriptions in Definition 1 implies that the affected nodes are the hosting node 

and its ancestors. Figure 2 summarizes the hierarchy-restructuring algorithm 

that performs the restructuring process on these affected nodes. The following 

two sections discuss steps 4 and 5 described in the figure. 

Detection and Recovery of Misplaced Nodes 

There is a case during the first stage of algorithm in which the hierarchy 

insertion operator causes a node misplaced eventhough the homogeneity and the 

monotonicity properties are still maintened. Definition 7 formally defines this 

misplaced problem and a demotion operator is suggested to eliminate it. 

Definition 7 (Misplaced Sibling) Let Ni and Nj be siblings to one another. Nj is 

said to be misplaced as the sibling of Ni, denoted by  Misplaced_Sibling(Ni,Nj),  

if Nj does not form a low-density region on Ni. 

N 

Nj Ni 

 Ni 

N 

Nj 

DEMOTE(Ni,Nj) 

(a) 

 

MERGE(Ni,Nj) 

(b) 

Nk 

N 

Nj Ni 

N 

Nj Ni 

Nk 

N 

Sk 

 

N 

Nj Ni 

Si Sj 

(Ni,Nj)=SPLIT(,Nk) 

(c) 

Figure 3 Demotion, merging and splitting restructuring operators. 
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Definition 8 (Demotion Operator) Let Ni and Nj be siblings to one another.    

A demotion operator, denoted by DEMOTE(Ni, Nj), is a process of retracting Nj 

from its parent and inserting it as a child node of Ni (see Figure 3a). 

Since applying a single demotion operator could also lead to further problems to 

the Ni‟s remaining siblings, the algorithm checks the rest of them and reapplies 

the demotion operator, repeatedly, until no misplaced sibling is found.   

Figure 4 describes the detail process. The restriction on the next sibling chosen 

in Line 5 guarantees that once the selected node is found to be not a misplaced 

sibling, then neither do the remaining siblings. If the algorithm terminates by 

the second condition (i.e., Siblings = null), additional minor restructuring is 

performed (not shown in the algorithm) in order to satisfy the requirement that 

an internal node must have at least two child nodes.    

Homogeneity Property Maintenance  

This section describes the process of repairing a cluster whose homogeneity 

property is violated. In such a case, some areas in the cluster form high and/or 

low-density regions. A high-density region is eliminated by merging two nearest 

nodes using a merging operator. 

Definition 9 (Merging Operator) MERGE(Ni,Nj) is 

INSERT_HIERARCHY(Ni,Nj),   where Nj is a sibling of Ni (see Figure 3b).  

The merging operator replaces two nodes in a cluster with a single node that is 

Detection and Recovery of Misplaced Nodes (Ni) Algorithm   

1.  Let the input Ni be the recipient of demoted nodes. 

2.  Let Siblings  the set of Ni‟s siblings. 

3.  Let No_Misplaced_Sibling  false.  

4.  Repeat 

5.       Let Nj  Siblings be the closest node to a child node of Ni. 

6.      If  Misplaced_Sibling (Ni, Nj)  (i.e., see Definition  7) 

7.       Then DEMOTE(Ni, Nj), 

8.          Remove Nj from Siblings. 

9.        Else Let No_Misplaced_Sibling  true.  

10. Until (No_Misplaced_Sibling = true) or (Siblings = null). 

Figure 4 Misplaced node detection and recovery algorithm. 
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the center of the two nodes. If the merged nodes are restricted to those with the 

smallest nearest distance and the distance is below the cluster's lower limit, the 

merging operator will remove a high-density region from the cluster. Repeating 

the merging process on these nodes will eventually eliminate all high-density 

regions. 

A low-density region can be removed by splitting the cluster into two or more 

smaller ones using sparser regions as the cutting points.  

Definition 10 (Splitting Operator) Let Nk be a child node of N, and Sk be a set 

of child nodes of Nk (see Figure 3c). Let  be a splitting function that divides Sk 

into two disjoint subsets Si and Sj, that is, (Si, Sj) = (Sk) satisfying Si and Sj, 

Sk=SjSj, and Sj  Sj = .  Let (Ni,Nj)=SPLIT(,Nk)  where SPLIT is a splitting 

operator. The SPLIT operator retracts Nk from N and makes Ni and Nj, as N‟s 

child nodes where Si and Sj are the sets of child nodes of Ni and Nj, respectively. 

If Si or Sj contains a single child node, then that node becomes Ni or Nj, that is, 

effectively promoting the child node one level higher in the tree.  

Using the MST graph of the cluster being split, the algorithm employs a 

splitting function  that cuts a path connecting an object with the farthest 

distance to its nearest neighbor. If the splitting operation is performed only 

when the farthest distance to the nearest neighbor exceeds the cluster's upper 

bound, recursively applying this operator on each new split will eventually 

Figure 5 Homogeneity maintenance algorithm. 

 

Homogeneity Maintenance (Nk) Algorithm 

 

1.  Let an input Nk be the node that is being examined. 

2.  Repeat 

3.       Let Ni and Nj be the pair of neighbors among Nk‟s child nodes    

   with the  closest distance. 

4.     If Ni and Nj  form a high-density region with respect to Nk, 

5.       Then MERGE(Ni,Nj), 

6.  Until there is no high-density region found in Nk during the last iteration. 

7.  Let Mi be the child of Nk with the largest di and Mj be Mi‟s nearest    

  neighbor where di is the distance from node i to its nearest neighbor. 

8.  If  Mi and Mj  form a low-density region in Nk, 

9.  Then Let Sk  the set of Nk‟s child nodes. 

10.          Let (Ni, Nj) = SPLIT(, Nk) 

11.          If Ni  Sk  Then Call Homogeneity Maintenance (Ni). 

12.          If Nj  Sk  Then Call Homogeneity Maintenance (Nj). 



90 Dwi H. Widyantoro 

obtain a cluster that is free from low-density regions, in which case the splitting 

process stops.  Figure 5 provides the detail of the homogeneity maintenance 

process. Working in a divide and conquer fashion, the algorithm receives an 

input cluster Nk and replaces Nk by a non empty set of homogeneous nodes Sv.  

4 Evaluation 

4.1 Quantifying the Hierarchy Quality 

4.1.1 Measuring the Quality of Hierarchy Structures 

Given a hierarchy produced by a system HL, the quality of HL is quantified by 

measuring the degree of its match with a known target hierarchy HT. Generally 

speaking, the degree of match between HT and HL is calculated by the number 

of nodes in HT, except the root node, that match with their corresponding nodes 

in HL. Furthermore, a node in HL is said to be the corresponding node in HT if 

both nodes match conceptually and structurally. 

Let NT  HT and NL  HL   be nodes in the target hierarchy HT and in the 

hierarchy produced by a system HL, respectively, where both hierarchies are 

derived from the same set of observations. Let )(N  denote the set of 

observations (singleton nodes) that are descendants of node N. The degree of 

conceptual match between NT and NL, denoted by CMatch(NT,NL) is as follows. 

 
( ) ( )
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( ) ( )

T L

T L

T L

N N
CMatch N N

N N

 
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For each node NT in HT, let N*L be the corresponding node in HL such that: 
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*
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                             (3) 

Then, the degree of structural match between NT and NL, denoted by 

SMatch(NT,N*L), is defined by 
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Finally, the degree of match between HT and HL, denoted by HMatch(HT,HL), is 

computed as follows: 
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The maximum score is determined by the number of target nodes in the target 

hierarchy. 

4.1.2 Measuring the Quality of Distinct Clusters 

In this measure, the hierarchy generated by a clustering algorithm is examined 

whether a distinct target cluster can be rediscovered. Let DATA be the set of all 

observations, and TCi  TC    be the ith target cluster in a set of target clusters 

TC. Let )( iTC denote the set of observations belonging to the target cluster TCi 

such that )( iTC
i

DATA   for TCTCi   and   )()( ji TCTC . 

Moreover, let HL be a hierarchy produced by a system using all observations in 

DATA. For each TCi  TC, let N*L be the corresponding node in HL and be 

determined similarly as in Equation 2. The quality of HL is then calculated as an 

accuracy measure denoting the percentage of match between the target clusters 

and their corresponding clusters in HL, as defined by Equation 6 below. 

 

*( ) ( , )
( , ) 100%i

i i LTC TC

C L

TC CMatch TC N
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



 


       (6) 

4.2 Parameter Determination of HOMOGEN 

To determine the appropriate tightness of the bound functions, during 

preliminary experiments HOMOGEN was run using a synthetic data set and the 

variance factor k (see Definition 3) was varied from 0.3 to 2 in all nodes with 

three or more child nodes. The lower bound constant kL was also varied from 

0.1 to 0.9 and from 1.1 to 2 for the upper bound constant kU particularly for 

nodes with two child nodes in the Heuristic Rule 1.  

From these experiments, k=1, kL=2/3, and kU=3/2 were found to be among those 

that gave good measures of hierarchy quality. These settings were then fixed for 

other data sets in the rest of experiments. 

4.3 Performance Comparison with Other Incremental Systems 

In this section the performances of HOMOGEN are compared with those of 

COBWEB [4] and two versions of ARACHNE systems. The first version of 

ARACHNE, denoted by ARACHNE-L(ocal), implements the original ARACHNE‟s 

control strategy as described by McKusick and Langley [6]. This version 

applies restructuring operators on neighboring nodes that violate the nodes' 

constraints. The second version, ARACHNE-G(lobal), extends ARACHNE-L by 

pushing the power of tree constraints employed by the system further into its 
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limit.  

Table 1 Summary of data sets. 

 Synthetic Data Sets Natural Data Sets 
a
 

 Gird Triangle Symbol Soybean 

Small 

Soybean 

Large 

Voting 

#Observations 288 108 27 47 307 435 

#Target Clusters 
b
 38 12 12 5 19 2 

#Distinct Clusters 24 9 9 4 19 2 

#Target Hierarchy Levels 4 2 2 2   
#Attributes 

c
 2 2 3 35 35 15 

Dimension Size 2 2 39 76 132 48 

Attribute Value Types Cont Cont. Nom. Nom. Nom. Nom. 

Distance Functions L2 L2 L1 L1 L1 L1 
aFrom UCI repository of machine learning database [13] 
b#TargetClusters = #Distinct Clusters + #Internal Nodes, except the root node, that groups the distinct 

concepts and their larger groups. 
cThe number of attributes does not include the target (class) attribute.

 

The experiment uses six data sets as summarized in Table 1. The data sets Grid, 

Triangle, Symbol, and Soybean Small have known, clear target hierarchy 

structures as shown in Figure 6 while the hierarchy structure of the Soybean 

Large is unknown. Since the Voting data set contains only two target classes, it 

has the simplest hierarchy structure. The first four data sets are used to evaluate 

the performance of HOMOGEN in discovering both the distinct clusters and their 

organizational structures inherent in the data sets. The experiments were 

performed in two ordering scenarios: random and bad orderings. The 

observation in random ordering was selected randomly from one of the unseen 

observations regardless of the observations‟ classes. In bad ordering, the stream 

was ordered by observations‟ classes [1] where observation of a different class 

will not be given until all observations of the same class had been processed. In 

each case the experiment results were averaged over 25 trials. 

Table 2 provides the performance comparison of HOMOGEN with other 

incremental systems with respect to the systems' abilities to rediscover distinct 

clusters inherent in the data and to properly organize the discovered clusters into 

higher-level clusters. Table 3 summarizes the systems‟ performances on 

rediscovering distinct clusters. The table shows that HOMOGEN performs 

comparably well to or better than the other systems. The clustering of 

HOMOGEN is relatively not affected by the cluster shapes. For example, the 

cluster boundaries on Voting and Soybean Large are not clear-cut, indicating the 

irregularity of cluster shapes and/or the overlap between clusters. Yet HOMOGEN 

performs better on these data sets. To some extent, this confirms the expectation 

that the homogeneity property can guide the incremental process of HOMOGEN 
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to reconstruct clusters of fairly arbitrary shapes. 

 

Table 2 The quality of hierarchy structures. The quality is measured according 

to Equation 5 averaged over 25 trials. 

 HOMOGEN COBWEB ARACHNE-L ARACHNE-G Max 

 Random Ordering Scores 

Grid 38.00  24.20 24.25 38 

Triangle 12.00  11.99 12.00 12 

Symbol 12.00* 9.62 9.75 11.31 12 

Soybean Small 4.67* 4.23 3.81 4.29 5 

 Bad Ordering  

Grid 37.97    26.65 26.65 38 

Triangle 12.00*  11.81 11.85 12 

Symbol 12.00* 7.12 10.18 11.19 12 

Soybean Small 4.61 2.91 2.78 3.30 5 

 * The differences are statistically significant at most at 0.026 levels. 

A B C D E F G H 

I J K L 

M N 

1  2  3  4  5  6  7  8  9   

A B C 

 

D1 D D2 

D3 D4 

Grid 

Triangle 

Soybean Small 

(A, *, *) 

(A, B, *) (A, C, *) 

(B, *, *) 

(B, D, *) (B, E, *) (B, F, *) 

(C, *, *) 

(C, G, *) (C, H, *) (C, I, *) 

(*, *, *) 

Symbol 

Figure 6 Target hierarchy structures of Triangle, Soybean Small, Grid and 

Symbol data sets. 
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4.4 Performance Comparison with HAC Algorithms 

A subset of the Reuters-21578 1.0 test collection [13] was used for this 

evaluation. Only six topics were used from the training set part of the ModApte 

split [14] with moderate topic sizes. The number of selected documents was 951 

consisting of target topics Coffee (90), Crude (253), Gold (70), Interest (190), 

Sugar (97) and Trade (251). 

Table 3 The quality of distinct clusters. (measured using Equation 6) The 

differences of bold numbers are statistically significant from non-bold numbers 

on the same row at 0.001 levels. 

 HOMOGEN COBWEB ARACHNE-L ARACHNE-G 

 Accuracy (%) on Random Ordering 

Soybean Small 96.00 94.03 83.38 96.83 

Soybean Large 59.18 55.91 47.61 53.66 

Voting 79.07 75.22 74.10 76.42 

 Accuracy (%) on Bad Ordering 

Soybean Small 97.28 72.32 67.96 85.92 

Soybean Large 61.61 50.31 49.74 53.26 

Voting 79.60 68.40 63.79 75.22 

Each document was represented by a feature vector containing a set of unique 

terms and their term frequencies. All stop words such as “a”, “the”, "although”, 

etc were removed. The feature selection process was applied to remove 

irrelevant terms using two alternatives of heuristics:  

MDF-FS: minimum document frequency-based feature selection that selects 

terms occurring in at least n documents. 

MTF-FS: minimum term frequency-based feature selection that selects a term t 

if there exists at least one document in which t occurs at least m times. It 

assumes that term frequency is an indicator for topical words. 

HOMOGEN performs feature selection and weighting on the fly as it receives a 

new document to learn. Therefore, MDF-FS feature selection and TF-IDF 

weighting method are not applicable for this system. In batch systems, the 

feature selection and weighting processes are performed over all documents 

well before the clustering process begins.  

Seven variants of HAC (i.e., non-incremental algorithms for hierarchical 

clustering) were considered for performance comparison. These variants were 

Single-link, Complete-link, Group-average, Weighted-average, Centroid, 
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Median-method and Ward‟s method [10], [11]. They differed from each other in 

their methods in calculating the distances of a cluster to a non-singleton cluster. 

The distance between two documents or clusters in HOMOGEN was measured by 

the Euclidean distance function. 

Table 4 Peak accuracies achieved by HOMOGEN and HAC methods. The 

accuracy of HOMOGEN is averaged over 25 runs. The italic numbers following 

the accuracies are the parameter values of their respective feature selection 

methods (i.e., mtf or mdf values) that produce the results. 

 Accuracy (%) (parameter value) 

Feature Selection MTF-FS MDF-FS 

Term Weighting TF TF-IDF TF TF-IDF 

HOMOGEN 89.32 (5)    

Single-link       70.20 (9) 61.71 (12) 59.80 (48) 62.45 (64) 

Complete-link     72.81 (2) 68.04 (1) 72.81 (4) 68.01 (1) 

Group-average     89.16 (4) 86.86 (4) 81.12 (2) 80.24 (8) 

Weighted-average  88.62 (5) 83.94 (4) 76.05 (8) 80.42 (32) 

Centroid          83.43 (14) 79.05 (14) 58.31 (64) 50.18 (80) 

Median Method     74.37 (8) 67.80 (12) 62.09 (80) 61.34 (64) 

Ward's Method     84.36 (5) 83.37 (6) 77.19 (8) 80.11 (32) 

Two feature weighting methods are considered: term frequency (TF) and term 

frequency inverse document frequency (TF-IDF) [15].  All features are then 

normalized using Eucledian Normalization.  

The experiments exploited the peak accuracies that could be achieved by 

HOMOGEN and the seven HAC variants on the full data set (951 documents 

consisting of six topics). More specifically, the best result was taken by varying 

the minimum term frequency values from 1 to 15 for the MTF-FS feature 

selection, or by varying the minimum document frequency (mdf) values to 2, 4, 

8, 12, 16, 32, 48, 64, 80 and 96 for the MDF-FS feature selection.  

Table 4 presents the best results for each variation of feature selection and 

weighting methods as well as their corresponding parameter settings. The best 

accuracy from HAC algorithms is achieved by the Group-average method 

(89.16%) and the peak performance attained by HOMOGEN is slightly higher 

(89.32%). A higher parameter value, shown next to the accuracy in the table, is 

an indication that the corresponding clustering algorithm is more sensitive to 

noise since it needs to be more aggressive in removing irrelevant features in 

order to maximize its performance.  
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Table 5 The confusion matrices of clusters generated by HOMOGEN and 

Group-average HAC methods. 

HOMOGEN 

 Document Topics Total 

 Coffee Crude Gold Interest Sugar Trade Docs. 

Cluster-1   81.28     0.20          0.16          0.72   82.36 

Cluster-2    0.08  226.72    1.60     1.24    0.16     3.44  233.34 

Cluster-3      0.08  64.88               0.08   65.04 

Cluster-4    1.04     2.96    0.24   175.32    0.88     6.64  187.08 

Cluster-5    0.60     0.32    0.68          90.28     0.12   92.00 

Cluster-6    0.24     0.96    0.04     5.24    0.04  227.92  234.44 

#Excluded 

docs.   

  6.76    21.76    2.56     8.04   5.64    12.08   56.84 

 

Group-average Hierarchical Agglomerative Clustering 

 Document Topics Total 

 Coffee Crude Gold Interest Sugar Trade Docs. 

Cluster-1  83     1 84 

Cluster-2  1 226   1 1 229 

Cluster-3   1 66    67 

Cluster-4  3 12  186  11 212 

Cluster-5      94  94 

Cluster-6   10 3 2  233 248 

#Excluded 

docs.   

3 4 1 2 2 5 17 

The detail results of HOMOGEN and Group-average algorithms are provided by 

Table 5. The fractional numbers in HOMOGEN are due to the averaging of the 

experiment results over 25 trials. Let precision be the percentage of correct 

assignment of documents in all found clusters and recall be the percentage of 

correct assignment over all 951 documents. The precision and recall of 

HOMOGEN are 96.9% and 91.1%, respectively. The group-average algorithm, on 

the other hand, produces clusters with slightly lower precision (95.1%) but 

higher recall (93.4%).  

5 Concluding Remarks 

This paper highlights the problem inherently faced by batch hierarchical 

clustering methods in an online situation. It has also described a new concept 

formation system called HOMOGEN that addresses the problem by incrementally 

creating a concept hierarchy from a sequence of instances. Experiments 

conducted on a variety of domains involving structured and unstructured data 

sets indicate the effectiveness of the system. It is relatively insensitive to input 
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ordering and can produce a quality structure inherent within the input data. Its 

performance in the given unstructured data set is also comparable to the best 

performance achieved by HAC methods. 

The main contribution of this paper is the exploitation of homogeneity property 

coupled with the monotonicity property for incremental hierachical clustering. 

Both properties are essential for discovering intrinsic hierarchical structures in 

which one cannot assume about the shape and the class distribution of clusters. 

Although systems such as DBSCAN [16], CURE [17] and CHAMELEON [18] can 

handle clusters with complex shapes and/or different sizes, these systems 

employ non incremental methods. In incremental systems, COBWEB and its 

family [4], [5], [8] prefer clusters with similar sizes. ARACHNE tends to build 

compact clusters. Similar cluster shapes are also formed by the INC system [2]. 

HIERARCH‟s constraints exhibit bias toward certain cluster shapes [7]. 

References 

[1] Fisher, D. H., Xu, L., & Zard, N., Ordering effects in clustering, In 

Proceedings of the 9th International Conference on Machine Learning, 

pp. 163–168 (1992). 

[2] Hadzikadic, M., & Yun, D., Concept formation by incremental 

conceptual clustering, In Proceedings of the 11th International Joint 

Conference on Artificial Intelligence (1989), pp. 831–836. 

[3] Lebowitz, M., Experiments with incremental concept formation: unimem, 

Machine Learning, 1, 103–138 (1987). 

[4] Fisher, D. H., Knowledge acquisition via incremental conceptual 

clustering, Machine Learning, 2, 139–172 (1987). 

[5] Biswas, G., Weinberg, J., & Fisher, D., ITERATE: A conceptual clustering 

algorithm for data mining, IEEE Transactions on Systems, Man, and 

Cybernetics, 28 (2), 100–111 (1998). 

[6] McKusick, K. B., & Langley, P., Constraints on tree structure in concept 

formation, In Proceedings of the 12th International Conference on 

Artificial Intelligence (1991), pp. 810– 816. 

[7] Nevins, J., A Branch and Bound Incremental Conceptual Clusterer, 

Machine Learning, 18, 3–22 (1995). 

[8] Wagstaff, K., & Cardie, C., Clustering with Instance-Level Constraints, 

In Proceedings of the 17th International Conference on Machine Learning 

(2000), pp. 1103–1110. 

[9] Wagstaff, K., Cardie, C., Rogers, S., & Schroedl, S., Constrained K-

Means Clustering with Background Knowledge, In Proceedings of the 

18th International Conference on Machine Learning (2001), pp. 577–584. 

[10] Everitt, B. S., Landau, S., & Leese, M., Cluster Analysis, New York, NY: 

Oxford University Press Inc (2001). 



98 Dwi H. Widyantoro 

[11] Jain, A., & Dubes, R. C., Algorithms for Clustering Data, Englewood 

Cliffs, NJ: Prentice Hall (1988). 

[12] Miyamoto, S., Fuzzy Sets in Information Retrieval and Cluster Analysis, 

Boston: Kluwer Academic Publishers (1990). 

[13] Blake, C., & Merz, C. (1998), UCI Repository of Machine Learning 

Databases,http://www.ics.uci.edu/mlearn/MLRepository.html, University 

of California, Irvine, Department of Information and Computer Sciences. 

[14] Apt´e, C., Damerau, F., & Weiss, S. M., Automatic Learning of Decision 

Rules For Text Categorization, ACM Transactions on Information 

Systems, 12 (3), 233–251 (1994). 

[15] Salton, G., & McGill, M. J., Introduction to Modern Information 

Retrieval, New York, NY: McGraw-Hill (1983). 

[16] Ester, M., Kriegel, H.-P., Sander, J., & Xu, X., A Density-Based 

Algorithm for Discovering Clusters in Large Spatial Databases with 

Noise, In Proceedings of the 2
nd

 International Conference on Knowledge 

Discovery and Data Mining (1996), pp. 226–231. 

[17] Guha, S., Rastogi, R., & Shim, K., CURE: An Efficient Clustering 

Algorithm For Large Databases, In Proceedings of the 1998 ACM 

SIGMOD international conference on Management of data (1998), pp. 

73–84. 

[18] Karypis, G., Han, E. H., & Kumar, V., Chameleon: A Hierarchical 

Clustering Algorithm Using Dynamic Modeling. COMPUTER, 32, 68–75 

(1999). 

 

 

http://www.ics.uci.edu/mlearn/MLRepository.html

