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Abstract. A simple Ising model and a statistical theory of gel formation in a 
polymer matrix were combined to explain the effect of temperature on the 
mobility of protons in ice. Cowin et al observed that protons in ice bulk were 
immobile at temperatures below 190 K, and suddenly become mobile at 
temperatures above 190 K [Nature 398, 405 (1999)]. We proposed here that the 
transport of protons is controlled by a percolation mechanism. The proton 
transport is facilitated by the occurrence of easily reoriented water molecules in 
the ice bulk. The fraction of this molecule depends on temperature and was 
calculated using a simple Ising model. The formation of network of these 
molecules which provides pathways for proton transport was calculated using a 
statistical theory of gel formation in a polymeric system. Our model succeeded to 
reproduce the variation of potential difference between the ice film surfaces with 
respect to temperature as observed by Cowin et al based on a soft landing 
experiment. 
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1 Introduction 
Using a method of soft landing of hydronium ions on the surface of ice film, 
Cowin et al observed that protons were immobile in ice at temperatures below 
190 K [1]. This observation seems to contradict the Grotthuss mechanism, 
whereby protons tunnel from one water molecule to the next [2,3], which can 
persist even at 0 K [4,5]. The reason proposed to explain this observation was 
the tunneling over long distances should only occur if the potential is periodic. 
Cowin et al argued that normal ice is proton disordered, thereby destroying the 
periodicity [1]. Another proposal was the self-trapping mechanism of 
hydronium ions in a polarization well. More specifically, a hydronium ion will 
force a nearby water molecule to reorientate, with their hydrogen ends pointing 
away from it. This results in a polarization pattern acting like a deep potential 
well that prevents the proton to escape. 
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The data observed by Cowin et al is reproduced in Fig. 1 [1]. After “soft 
landing” deposition of hydronioum ions on the top surface of the ice film, 
electric potential difference between the top and the bottom surfaces of the film 
was measured. They concluded that the protons become immobile at 
temperatures below 190 K. From the figure, we can see a sudden decrease in the 
potential difference at temperature around 150 K and 190 K for curves (a) and 
(b), respectively. It indicates that the resistivity of the film becomes very large 
at below 190 K, and then decreases suddenly at 190 K. This behavior is usually 
found in percolating systems. Therefore, it is challenging to examine the 
relation of this observation with the percolation mechanism. Until presently, no 
work has been reported to explain the proton transfer in ice using a percolation 
approach. 

In this work, we describe the transport of proton in the ice film using a simple 
percolation model. As a starting point, we accepted the proposal of Cowin et al 
that proton transport is facilitated by the ability of the water molecule to 
reorientate [1]. We proposed that at low temperatures, only a small fraction of 
water molecules can reorientate easily. This fraction, however, increases with 
temperature. At certain temperature, this fraction is high enough to form a 
network of easily reoriented water molecules. This network serves as the 
pathways for proton transport, resulting in a sudden decrease in the potential 
difference between the film surfaces. 
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Figure 1 Effect of temperature on the potential difference between ice film 
surfaces. The data were adopted from Cowin et al [1]. Curve (a) was measured at 
low charge deposition and curve (b) was measured at high charge deposition. 
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The problem to be solved is how to calculate the fraction of easily reoriented 
water molecules. To this aim, we used a simple Ising model. After finding this 
fraction, we calculated the fraction of these molecules that forms continuous 
networks, on the basis of a statistical theory of gel formation in polymeric 
systems. Combining the two approaches, we found a behavior very similar to 
that observed by Cowin et al [1]. 

2 Theory 

2.1 Model Development 
The basic assumptions of our model development are as follows: 

1. The ice bulk is considered to consist of “easily reoriented (ER)” and “hardly 
reoriented (HR)” molecules. 

2. Each molecule can be connected with n nearest neighbor (each molecule 
has n hands). In the connected ER molecule network, the proton can move 
from one molecule to another. 

3. The range proton transport is related to the size of ER molecule network. 
4. The fraction of ER molecules should depend on temperature, i.e., increases 

with temperature. 
5. To predict the effect of temperature on the proton transport in the ice bulk, 

one needs to understand the development of the connected ER molecules. 
To this aim, we performed two step calculations of: (1) the fraction of ER 
molecules in the ice bulk using a simple Ising model, and (2) adopting the 
statistical theory of gel formation in a polymeric system to determine the 
fraction of connected ER molecules. We have also applied similar approach 
to predict the temperature dependence of electrical conductivity in polymer 
electrolytes [6] and porous silicon [7]. 

Suppose the total number of water molecules in the ice is N . We define the 
“upward” molecule and “downward” molecules according to their polarization 
states, somewhat similar to assignment of spin orientations that used in the Ising 
model, with a total number of N+  and N− , respectively ( N N N+ −= + ). The 
ER water molecules correspond to molecules that can change easily their 
“orientation” from “upward” to “downward” and vice versa. On the other hand, 
the HR water molecules correspond to molecules that cannot easily change their 
“orientation” from “upward” to “downward” and vice versa. The average 
energy per molecule is approximated by 

 
,

( , ) i j
i j

J
N N

Nn
ε σ σ+ = − ∑  (1) 
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having assumed the strength of interaction between “upward”-“upward”, 
“downward”-“downward”, and “upward”-“downward” molecules to be the 
same. In Eq. (1),  is assigned to “upward” molecules and  is 
assigned to “downward” molecules, J is the strength of interaction between 
neighbor molecules, and n is the number of nearest neighbors. 

1iσ = + 1iσ = −

Using Bragg-William approximation, after defining the parameter of long-range 
order,  which satisfies , we obtain the approximated form 

of the energy per molecule as , and the partition function is 
given approximately by [8] 

L / ( 1) / 2N N L+ = +

( ) (L Jε = − 2/ 2)L

 
21

1 1
1 2 2

!
( ) exp

[ (1 )]![ (1 )]! 2L

N NnJL
Q T

N L L k

+

=−

=
+ − T

 
 
 

∑  (2) 

As usual, assuming , we can approximate the factorial terms with a 
Stirling formula. Selecting only 

N →∞
L , i.e., the value of L that maximizes the 

summation of Eq. (2), we obtain the final solution satisfied by L  as 

 tanh
nJL

L
kT

=
 

 

  (3) 

The parameter L  is called the ordering parameter, which can be associated 
with the fraction of the HR molecules. Therefore, the fraction of the ER 
molecules is expressed by 

 1 Lφ = −  (4) 

Next, we consider the fraction of continuously connected ER molecules. We 
used the statistical theory of gel formation to determine this fraction. At low 
fraction of ER molecules, the molecules tend to disperse homogeneously in the 
ice bulk. No connected ER molecules is developed, so that the transport of 
proton is suppressed. At higher fraction of ER molecules, the ER molecule 
clusters are developed, the size of which increases with increasing fraction of 
ER molecules. At certain fraction of ER molecules (at a certain temperature), an 
infinitely connected ER molecules appears, resulting in a sudden increase in the 
proton conductivity. By further increasing the temperature (fraction of ER 
molecules), the infinitely connected ER molecules will dominate the ice bulk 
volume, along with decreasing the fraction of HR molecules. 
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2.2 Formation of Connected EF Molecules 
We define β as the probability of direct bonding between two ER molecules. In 
a cluster of m ER molecules (we call m-ER), some hands form bonds and the 
rest remain free. It requires the attachment of (m-1) new ER molecules to a 
preselected ER molecule to form m-ER cluster [6]. If only one bond is created 
at each attachment of a new ER molecule, then m-1 bonds and (n-2)m+1 free 
hands (excluding the freely preselected hand) appears after the formation of m-
ER cluster. Since the probability of a hand to form a bond is β and to become 
free is (1-β), the total probability for forming m-ER of any configuration is 

 , (5) ( )( 2) 11 n mm
m mP β β − += Ω −

with  is the total number of possible configurations. mΩ

To form m-1 bonds in an m-ER, we can select m-1 bonds from the total (m-1)n 
bonds belonging to the added ER molecules in 

distinct ways, and the added ER molecules 
can be attached sequentially in (
[ ( 1)]!/{[( 2) 1]!( 1)!}n m n m m− − + −

1)!m −  ways. Noting that since all ER 
molecules in m-ER cluster are identical, we have to add a dividing factor of  
and obtain 

!m

 
[ ( 1)]! ( 1)! [ ( 1)]!

[( 2) 1]!( 1)! ! [( 2) 1]! !m

n m m n m
n m m m n m m

− − −
Ω = × =

− + − − +
. (6) 

The number of free hands belonging to the m-ER (preselected ER molecule and 
the added ones) is (n-2)m+2. Suppose Nm is the population of m-ER and No is 
the total number of ER molecules. The number of free hands belonging to all m-
ER is [ , the total number of hands belonging to all ER 
molecules is N

( 2) 2] mn m N− +

mP
on, and the total number of free hands is Non(1-β). The alternative 

expression for  is therefore given by [9], 

 
[( 2) 2]

(1 )
m

m
n

n m N
P

N n β
− +

=
−

. (7) 

Combining (5) and (7) we obtain 

 2(1 )
m

m o mN N n
ξ

β
β

= − Ω , (8) 
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with . The volume of m-ER is 2(1 )nξ β β −= −

 
2(1 ) mm

m
o

N
W m nm

N
β

mξβ
−

= = Ω , (9) 

which satisfies the normalization condition 

  
2

1 1

(1 )
1m

m
m m

W nm
β

ξ
β

∞ ∞

= =

−
m= Ω =∑ ∑ . (10) 

The summation results in (10) depends on the ξ, and for a certain ξ, Eq. (10) 
gives only one summation result. Since ξ is a polynomial of β, certain ξ results 
in more than one β’s. For example, by replacing β with β*, which also satisfies 

, the summation results remains equal to unity. However, 
since in general 

2* (1 *)nξ β β −= −

(1 2) / (1 *) / *2β β β− ≠ −

(1ξ β

β , changing β with β* may results in 
different , which seems unphysical. The physical soundness is secured 

only when the smallest root of 
mm

W∑
2)nβ −= −  is used [9]. Therefore, the 

accepted expression for Wm is 

 
2(1 *)

*
m

mW nm
β

mξβ
−

= Ω  (11) 

with β* is the smallest root of 2 2(1 ) *(1 *)n nβ β β β− −− = − . 

Summing Wm over all finite m’s gives the fraction of the so called molecule sol 
(finite connected ER molecules) with respect to the fraction of ER molecules as 

 
2

2

(1 ) *
(1 *)s m

all finite m

W W
β β
β β

−
= =

−
∑ . (12) 

The fraction of the gel (infinite connected ER molecules) with respect to the 
total fraction of ER molecules is therefore, 

 
2

2

(1 ) *
1 1

(1 *)g sW W
β β
β β

−
= − = −

−
. (13) 

The volume fraction of gel with respect to total volume of ice bulk becomes 
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 *
g gW Wφ= . (14) 

2.3 Effective Resistivity 
To determine the effective resistivity, we assume that the material is composed 
of two phases: (a) the ER gels and (b) a mixture of HR molecules and separated 
ER molecules. The resistivity of the first phase is denoted by 1ρ  and that of the 
second phase is denoted by 2ρ . 

The resistivity of gels depends on the gel volume. If the average dimension of 
gel is , the resistivity of gels can be approximated by 

  2 *

1 1 1

1 1
( / ) ( / ) D

1 1
g

g

A W
ρ ρ ρ ρ

∝ ∝ ∝ ,  (15) 

with D as the fractal dimension. We can write *
1/ ) (1/ )D(1 g gcρ ρ= W , where c 

is a constant. When W , * 1g → 1gρ ρ→ , one finds c = 1. The gels and the 
second phase form a parallel network, so the effective resistivity satisfies 

 
* *

2

(1 )1 g g

e g

W W

ρ ρ ρ

−
= +  

* 1 1/ *

1 2

( ) (1D
gW W

ρ ρ

+ −
= +

)g  (16) 

3 Results and Discussion 
The probability of a hand to form a bond can be taken to be equal to the fraction 
of the ER molecules, or β φ=

2

 [6]. Normally, each hydrogen bond in the ice has 
four neighbors [1], therefore we used n = 4 in the calculation. Figure 2 is the 
calculation result using 1100ρ ρ= , with V∆  assumed to be proportional to 

eρ . The voltage difference, V∆ , was then normalized to give a maximum 
value of 12 Volt. The gel was assumed to have a fractal dimension D = 2.5. This 
value is close to the fractal dimensions of 2.57 to 2.87 for sandstone pores as 
observed by Katz and Thompson [10]. The behavior of the theoretical result 
fairly reproduces the behavior of the experimental data from Cowin et al [1]. 
The percolation-like transition of the potential difference was observed 
experimentally, which is also showed by the theoretical curve. 
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Figure 2 Theoretical curve showing the effect of temperature on the potential 
difference between ice film surfaces. For the calculation, the following 
parameters were used: 2 1100ρ ρ= , 4n = , 2.5D = , and eV ρ∆ ∝ . 

From Fig. 2 we can see that the potential difference suddenly drops at 
. From the experimental data [1], the transition from high to low 

potential difference takes place at 190 K. This result, therefore suggest a 
“Curie” temperature of T  = 230 K. 

/ 0.82cT T ≅ 8

= 190 / 0.828c

4 Conclusion 
As a final remark we summarize that the simple Ising model and the statistical 
theory of gel formation in a polymeric systems can be used to explain the effect 
of temperature on the transport of protons in ice. The model succeeded in 
explaining the behavior of the measured data, which is likely to exhibit a 
percolation transition at certain temperature. The percolation transition was 
caused by the formation of the network of the easily reoriented (ER) water 
molecule to serve as the pathways for proton transport. The fraction of the ER 
water molecules was calculated by a simple Ising model, while the fraction of 
network of ER molecules was calculated using a statistical gel model. We also 
showed that the “Curie” temperature of the ice is around 230 K. 
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