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Abstract. This paper presents an H∞ estimation approach to active control of 
acoustic noise inside an enclosure. It is shown how H∞ filter theory and 
algorithm can be effectively applied to active noise control to provide important 
robustness property.  Real-time implementation of the algorithm is performed on 
Digital Signal Processor. Experimental comparison to conventional FxLMS 
algorithm for active noise control is presented for both single channel and 
multichannel cases. While providing some new results, this paper also serves as 
a brief review on  H∞ filter theory and on active noise control. 
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1 Introduction 
Acoustic noise can basically be described as unwanted sounds whose 
emergence can not be avoided. There are numerous sources of acoustic noise 
that we encounter everyday such as typical heavy daily traffic, airplanes passing 
above, fans, and air conditioners. Acoustic noise problems become more 
evident as more and more noisy equipment such as engines, transformers, and 
compressors are used in industry.  

Traditional methods of attenuating acoustic noise involve the use of damping 
materials or sound absorbers. Such materials are placed around the noise source, 
or inside a room where noise is to be reduced. Other methods of noise reduction 
include using sound mufflers to protect the ears and moving the noise source to 
a remote location. The methods aforementioned are known as passive methods. 
Utilization of damping materials or sound absorbers are only effective for noise 
of high frequency. The reason for this is that the thickness of the material is 
proportional to the reciprocal of the frequency of noise. Thus for acoustic noise 
of low frequency one would need thicker materials, meaning adding more bulk 
(if we were to place dampers inside a vehicle such as a car, tractor or airplane) 
and providing more space for the materials. It is not a very economical choice 
either, as damping materials are quite expensive.  
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An alternative method to acoustic noise attenuation which has attracted a lot of 
attention recently is the active method of noise attenuation. Active noise control 
(which we shall abbreviate as ANC from this point on), as it is popularly 
known, is based on the principle of destructive interference between acoustic 
wave from a noise source and another acoustic wave from a different source (a 
secondary source, usually called the anti-sound). The control system  generates 
a secondary signal which is 180o out of phase with the noise signal  and the 
superposition of the two signals will result in a minimum residual signal (the 
residual noise). The idea is illustrated in Figure 1. 

Basically acoustic ANC is implemented using microphone(s) or any other type 
of sensor to convey some characteristic information on the acoustic noise source 
(called the reference) and detect the noise  

 
 
 

 
 
 

 
 
 
 
 
 

Figure 1   Principle of Active Noise Control. 
 

signal (called the error signal) that is to be attenuated at a certain location(s) in 
space. To generate the secondary signals, or the anti-sound, actuators in the 
form of loudspeakers are generally employed. The idea has been around for a 
while and some analog ANC systems have been implemented. The problem 
with the analog system is that it was rather limited due to human intervention 
necessary in adjusting some necessary parameters [1,9]. In the early days of the 
development of adaptive signal processing, the impediment in applying the 
technique to active noise control was the sheer bulk of computation needed to 
achieve a system working in real time. Computing power demands in such an 
application were beyond the capability of microprocessors available at the time. 
Thanks to the recent advancement of digital signal processor (DSP), real-time 
implementation of ANC presently becomes feasible. 
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This paper presents investigation of adaptive H∞ filter algorithm and its 
application to active control of acoustic noise inside a 3-D enclosure. Real-time 
implementation of the algorithm is performed on DSP. Experimental 
comparison to conventional FxLMS algorithm is presented for both single 
channel and multichannel cases. Specifically, contribution of this paper over 
existing literatures on active noise control [1,2,4,6,7,9,11,13-18] is twofold : 1) 
to investigate H∞  filter performance in rejecting noise inside 3-D enclosure and 
its robustness property through real-time DSP based ANC experiment, 2) to 
extend its structure to multichannel case in both centralized and decentralized 
fashion. As an aside, this paper also studies how H∞ filter is applied to ANC and 
should be modified by providing a state estimation interpretation of the 
feedforward ANC[3,5,8]. While providing some new results, this paper also 
serves as a brief review on  H∞ filter theory and on active noise control, 
although it is not aimed at providing exhaustive literature survey in these fields.  

The rest of this paper is outlined as follows. In Section 2, single channel and 
multi-channel ANC are briefly discussed. In Section 3, feedforward ANC is 
presented. In Section 4, adaptive H∞ filter for ANC is discussed. Experimental 
set-up and results are presented in Section 5. Finally, conclusion is drawn in 
Section 6. 
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Figure 2   Single channel ANC inside a narrow duct. 

2 Single Channel and Multi Channel ANC 
Based on the number of error sensors and secondary actuators used in the 
system there are two types of ANC systems. If there is only one error sensor 
and a single secondary actuator then the system is called a single channel ANC. 
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It is typically used in situations where the acoustic wave can be assumed to be a 
plane wave traveling in one direction or if the waveform is not very complex 
such as in a narrow duct or pipe [1,6,9]. In such physical systems one actuator 
and one error sensor is sufficient to attenuate the noise encompassing a region 
encircling the sensor. Such a single channel ANC is illustrated in Figure 2 for 
active control of noise inside a duct.  
   
When the noise to be controlled is in a relatively large volume of space such as 
in an enclosure or large dimension duct, the acoustic noise field is relatively 
more complex and we will be dealing with a standing wave rather than a simple 
planar wave [9]. The noise to be attenuated can be spread out in several 
different distant locations. Therefore to achieve widespread attenuation, a noise 
control system must be set up with multiple error sensors and multiple  
actuators, and perhaps multiple reference sensors too. Such a system is called 
the multi-channel ANC system and is commonly applied in 3-D enclosure. An 
example where multi-channel ANC could be implemented is in the cabin of a 
car or a commercial airplane. Figure 3 depicts the idea of a multi-channel ANC 
system.  
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Figure 3   Multichannel ANC. 

In real-life systems, characteristics of the acoustic noise source(s) and 
environment  varies in time. The frequency, amplitude, phase and speed of 
sound is not really constant but is slowly changing (or statistically non-
stationary). Thus the control system has to be adaptive and be able to track the 
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changes and tune its control signal accordingly. This is necessary so that the 
ANC system’s stability and performance will be robust to such variations. In the 
multi-channel case this results in some compute-intensive algorithms [9,13] 
demanding powerful and fast digital signal processors for real-time 
implementation to be feasible. 

Another fundamental problem to be considered in multi-channel ANC systems 
is determining what attenuation strategy we seek to carry out, i.e. the nature of 
the noise cancellation: global or local. Global attenuation is defined as reduction 
of the overall mean acoustic energy throughout the whole room or enclosure. 
Local attenuation refers to attenuation of noise in certain regions of the room or 
enclosure, usually surrounding the error microphones. Obviously, global 
attenuation is much more difficult to achieve and when the frequency content of 
the noise source is not low enough, a large number of microphones and 
secondary speakers will be needed [1,9] thus requiring more computing and is 
less practical to implement. On the other hand, local attenuation is more 
tractable. For example, in a car we may only require that noise be attenuated in 
the regions around a passengers head rather than throughout the whole cabin. 
Theoretically, the radius of the region surrounding the error microphone where 
the level of attenuation is still appreciable is approximately one-tenth the 
wavelength of the acoustic noise source. If the speed of sound is 340 m/s and 
the acoustic noise frequency is 100 Hz then this radius is about 34 cm but if the 
noise frequency is 1000 Hz then this radius drops to 3.4 cm. This is the reason 
why ANC will only be effective for attenuating low frequency noise. A 
disadvantage of the local attenuation strategy is that there is the possibility that 
the noise level of regions not surrounding the microphone may actually 
increase. 

3 Adaptive Filters 
As we have discussed in the first section, ANC systems must be adaptive as to 
be robust to variances in the statistical properties of the acoustic noise source(s) 
and environment. Some robust ANC systems have been implemented using 
analog controllers with fixed parameters [1,9] but the design is for a relatively 
stationary environment. Traditional approaches in adaptive ANC involving the 
use of linear adaptive filters as controllers (to produce the control signals) is 
motivated by the fact that propagation of sound wave is very linear at all but the 
highest of pressure levels (up to around 140 dB). Utilization of adaptive linear 
filters has been very successful and satisfying levels of acoustic noise 
cancellation have been obtained [1,2,4,6, 9]. In this section we will briefly 
discuss adaptive linear filters in the context of ANC but we will not get into a 
detailed mathematical analysis as this can be found in literatures such as 
[1,2,9,11,12]. 
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Theorem 2 (An H∞ A Priori Filter) [3,8,23]: For a given γ > 0, if the [Ff  Gj] 
have full rank, then an estimator that achieves ║Ti (Fp)║∞ < γ exists if, and only 
if 

 1 1 2 * 0, 0,...,j j j jp P L L jγ− − −= − > = i

j

ˆ j

           (13) 

where Pj is the same as in Theorem 1. If this is the case, then one possible level 
-γ H∞ filter is given by 

  z                (14) ˆj jL x=

  1 ,ˆ ˆ ( )j j j a j j jx F x K y H x+ = + −  
  0x̂ =  initial guess                                                                (15) 

where 
 
 * *

, ( )a j j j j j j jK F P H I H P H 1−= +              (16) 
 
Comparisons with the Kalman Filter  
As is well known, the Kalman-filter algorithm for estimating the states in (1), 
assuming that the {ui} and {vi} are now uncorrelated unit variance white noise 
processes, is 

 * * 1
1ˆ ˆ ( ) (j j j j j j j j j j j jˆ )x F x F P H I H P H y H x−
+ = + + −  

 * *
1 1 1 1 11 1

ˆ ˆ ( )j j j j j jj j j jx F x P H I H P H 1−
+ + + + ++ + = + + 1 1 ˆ( )j j jy H x+ + +1−  

where 

 * *
1j j j j jP F P F G G+ = + j

* 1 *
0( ) ,j j j j j j jF P I H P H P F P−− + = ∏0. 

As pointed out by several authors[3,8,23], the H∞ solutions are very similar to 
the conventional Kalman filter. The major differences are the following: 

•  As can be seen from Riccati recursion (9), the structure of the H∞ 
estimators depends on the linear combination of the states that we intend to 
estimate (i.e., the Li). In contrast, in case of the Kalman filter, the estimate 
of any linear combination of the state is given by that linear combination 
of the state estimate. Intuitively, this means that the H∞ filters are 
specifically tuned toward the linear combination Lixi. 

•  Additional conditions, (8) or (13), must be satisfied for the H∞ filter to 
exist; in the Kalman filter problem the Li would not appear, and the Pi 
would be positive definite so that (8) and (13) would be automatically 
satisfied. 
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•  Indefinite (covariance) matrices, e.g., 

        appears versus just I in the Kalman filter. 2

I o
o Iγ

 − 




•  As γ → ∞, the Riccati recursion (9) reduces to the Kalman filter recursion 
(17). This indicates that the H∞ norm of the conventional kalman filter may 
be quite large, and that it may have poor robustness properties. Note also 
that  condition (13) is more stringent than condition (8), showing that the 
existence of an a priori filter of level γ implies the existence of an a 
posteriori filter of level γ, but not necessarily vice versa.) 

Although there are differences between H∞ solutions and Kalman filter, it has 
been shown in [3] that the filters of Theorems 1 and 2 can in fact be obtained as 
certain Kalman filters, not in an H2 (Hilbert) spaces, but in a certain indefinite 
vector space called a Krein space. The indefinite covariance and the appearance 
of Li in the Riccati equation was explained easily in this framework. The 
additional condition (8) arises from the fact that in Krein space, unlike as in the 
usual Hilbert space context, quadratic forms need not always have minima or 
maxima unless certain additional conditions are met [3].  

Parameterization of all H∞ A Posteriori Filters 
The filter of Theorem 1 is one among many possible filters with attenuation 
level γ. Explicit characterization of all possible estimators is given in the 
following theorem.  

Theorem 3 (All H∞ A Posteriori Estimators)[3]; All H∞ a posteriori  estimators 
that achieve a level γf (assuming they exist) are given by 

1
2 1 * 1 2ˆ [ ( )j f j j j jj j j jz L x I L P H H Lγ − −= + − + * ]j                                     

1
* 2 ˆ(( ) ( ),...,j j j j j j j jS I H P H y H x× + −

1
* 2

0 0 0 0 0 0
ˆ( ) ( jI H P H y H x+ − ))                    (17) 

where ˆ
j jx  satisfies the recursion 

, 1 1 11 1
ˆ ˆ ( )j s j j j jj j j j j j

ˆx F x K y H F x+ + ++ + = + − , ˆ( )c j jj j j jK z L x− −            (18) 

with  Ks,j+1 the same as in theorem 1 
* 1

, 1 1 1( )c j j j jK I P H H −
+ + += + 1 * 2 *( )j j j j f j j

1 *
jF P H H L L Lγ− −+ − −                        (19) 

and 
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0 0

1 1 0
0

0

( )
( , )

( ,..., )

( ,..., )

j

j j

S a
S a a

S a a

S a a

 
 
 =  
 
  

is any (possibly nonlinear) contractive causal mapping, i.e., 
2

2

0
0 0

( ,..., )
k k

j j
j j

S a a a
= =

<∑ j∑  for all k = 0,1,…,i. 

Note that when the contraction of Theorem 3 is chosen as S=0, then we have 
,

ˆjj jz L x= j j and (18) reduces to the recursion of Theorem 1. Furthermore, the 

full parameterization of all H∞ filters with level γf is given by a nonlinear causal 
contractive mapping S, despite the fact that the filter obtained in Theorem 1 is 
linear . The filter of Theorem 1 is known as the central filter, and as we have 
seen, corresponds to S = 0. This central filter has a number of other interesting 
properties. It corresponds to the risk-sensitive optimal filter and can  be shown 
to be the maximum entropy filter. Moreover, in the game theoretic formulation 
of the H∞  problem, the central filter corresponds to the solution of the game.  

All H∞ A Priori Filters 
Full parameterization of all H∞ apriori estimators is given in the following 
theorem. 
 
Theorem 4 (All H∞ A Priori Estimators)[3]: All H∞ a priori estimators that 
achieves a level γp (assuming they exist) are given by 

1
2 * 2ˆˆ ( )j j j p j jz L x I L PLγ= + −  

1
* 2

1 1 1 1 1 1(( ) ( ),...j j j j j j jS I H P H y H x
−

− − − − − −+ − , 

 
1

* 2
0 0 0 0 0( (I H PH y H x

−
× + − ))                                                         (20) 

where 

 * 2 * 1ˆ ( ) (k k k k p k k k kˆ )x x P L I L L z Lxγ −= + − + −                                       (21) 

jx̂  satisfies the recursion 

 * *
1 1

ˆ ˆ [ ]j j j jj j j j jx F x F P L H+ −= +
11

,
1

ˆ

ˆ
j j j j

e j
j j j j

z L x
R

y H x
−−

−

− 
×  

−  
                      (22) 

 



Bambang Riyanto 168

 
with , ,j jP P  and ,e jR given by Theorem 2 and S is any (possibly nonlinear) 
contractive causal mapping. 

5 H∞ Estimation Interpretation of Active Noise Control  
The objective of noise cancellation is to generate control signal  u(k), such that 
secondary output signal y(k) is, in some sense, sufficiently close to primary 
signal d(k) by using available measurement, as shown in Figure 6. 
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Figure 6   Block diagram of feedforward ANC. 

The feedforward ANC can also be viewed as the problem of producing y(k) as 
an estimation of d(k), where, x(k) is reference signal (primary noise), y(k) is the 
secondary output, e(k) is noise residue which is utilized to adjust adaptive filter, 
vm(k) is the external disturbance which models measurement noise, uncertainties 
in initial conditions, and modeling error[5,10]. The reference signal is applied to 
adaptive FIR filter through reference microphone, while noise residue is the 
actual signal measured by error microphone. Output of FIR filter, u(k), is 
applied to secondary path through a speaker, which in turn generates antinoise 
signal. Note that, FIR filter cascaded with secondary path is an approximated 
model of unknown primary path. In Figure 7, the feedforward active noise 
cancellation is redrawn where primary path is replaced with approximated 
model. The approximated model is constructed from the knowledge of FIR 
filter and the secondary path. Note that as long as the modeling error is 
bounded, it can be viewed as disturbance signal component, vm(k).  

As shown in Figure 7,  e(k) = d(k) – y(k) + vm(k), where e(k) signal measured by 
error microphone. The measurement component in the estimation process 
presented in the subsequent discussion is given by 
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m(k) ≡ e(k) + y(k) = d(k) + vm(k)                       (23) 

Assume that [As(k), Bs(k), Cs(k), Ds(k)] is state space representation of the copy 
of secondary path. Denote W(k) = [w0(k), w1(k), ...,wN(k)]T and θ(k)T as dynamic 
state vector of FIR and of secondary path dynamic, respectively. Using ξk

T = 
[W(k)T θ(k)T], the augmented system is given by  

1

( 1 ) ( 1 )
*

0( 1 ) ( )
( ) ( )( 1 ) ( )

k kk F

N x N

s k s

IW k W k
B k h A kk k

ξξ

θ θ

+

+ ++     
=     +    

 
 
 
 (24) 

 

where hk = [x(k) x(k-1) . . . x(k-N)] covers the effect of reference signal  x(.).  
Measured output is modeled as  
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Figure 7   Model approximation of primary path. 

* ( )
( ) ( ) ( )

( )

kH

s k s

W k
m k D k h C k

kθ
 

 =   
 

                      (25) 

with m(k) as defined in (23). Now, assume that linear combination of state be 
defined as the estimated variable    
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1 , 2 ,

( )
( ) [ ]

( )

kL

k k

w k
s k L L

kθ
 

=  
 

                          (26) 

where m(.) ∈  R px1 , s(.) ∈  R qx1, θ(.) ∈  R rx1 and W(.) ∈  R (N+1)x1. Furthermore, 
one can choose Lk = Hk. The estimation problem is shown in Figure 8, 
comprising two major parts : FIR Filter and Secondary Path Model. 

Our objective in the active noise cancellation is to constrain worst-case of 
energy gain of estimated error s(k) under the presence of measurement 
disturbance and uncertainties in initial conditions. In other words, we seek sub-
optimal H∞ causal estimator ˆ( )s k k = F(m(0),...,m(k)) which satisfies  

 
*

20

* 1 *0
0 0 0

0

ˆ ˆ[ ( ) ( )] [ ( ) ( )]sup
, ( ) ( )

M

k
M

m
m m

k

s k s k k s k s k k

v V k v k
γ

ξ ξ ξ

=

−

=

− −
≤

Π +

∑

∑
               (27) 
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Figure 8   Estimation problem. 

for a prespecified γ > 0. As shown previously, solution to the Finite Horizon γ-
Suboptimal Filter is given as follows : There exists a positive value  satisfying  
(27), if and only if, matrices R

γ
k and Re,k defined by  



H∞  Estimation Approach to Active Noise Control 171

 * *
2,

0
[ ]

0

kR

p k
e k k k k

q k

I H
R P H L

I Lγ
   

= +   −   
              (28)                                          

have the same inertia for all 0 ≤ k ≤ M, where P0 = Π 0 and Pk > 0 satisfies 
recursive Riccati equation, 

 Pk+1 = FkPkFk
* -  Kp,kRe,kKp,k

*                                                                              (29) 

with Kp,k = (FkPk[Hk
* Lk

*]). In this case the H∞ central estimator is given by 
 

1 1,
ˆ ˆ ˆ ˆ( ( ) ), 0k k k k k kF K m k Hξ ξ ξ ξ+ = + − =0

k̂

        (30) 

* 1
,

ˆ ˆ ˆ( / ) ( ) ( ( ) )k k k k He k kS k k L L P H R m k Hξ ξ−= + −         (31) 

where K1,k = (FkPkHk
*)RHe,k

* and RHe,k = IP + HkPkHk
* . 

Based on this result, the adaptive filter algorithm which provides robustness 
guarantee proceeds as follows[5,10] : 

1. Set Ŵ(0) = Ŵ0, 0
ˆ(0) ˆθ θ=  as an estimator of initial values for state vector 

of primary path approximation. Assume that θ actual(0) = θ actual,0, and that 
θ copy(0) = θ copy,0. Denoting d(0) as primary path output, then for  0 ≤ k ≤ 
M (finite horizon): 

2. Calculate control signal u(k) = hk
*Ŵ(k), 

3. Using the control signal for secondary path, the dynamics of actual state 
vector and output is given by   

   θ actual(k+1) = As(k)θ actual(k) + Bs(k)u(k) 

              y(k) = Cs(k)θ actual(k) + Ds(k)u(k)                      (32)                                               

4. Propagate internal copy of secondary state vector and output through  

θ copy(k+1) = As(k)θcopy(k) + Bs(k)u(k) 
    y(k) =Cs(k)θ copy(k) + Ds(k)u(k) 

5. Calculate measurement vector, m(k), through direct measurement e(k), 
according to m(k) = e(k) + ycopy(k), 

6. Use the state updating in Equation (32) 
7. If  k ≤ M go to Step 2 

 
Diagram block of the adaptive H∞ filter algorithm is shown in Figure 9. 
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Figure 9   Adaptive H∞  filter in ANC. 
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Figure 10   Feedback configuration. 

Active noise cancellation using feedback configuration can be formulated by 
adopting the above algorithm, but now we employ adaptive predictor (see 
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Figure 10). Since reference microphone is not used, input signal to FIR filter is 
synthesized from  

 x’(k) = e(k) – y(k) 

6 Experiment Setup and Results 
Experiment setup of multichannel ANC inside an enclosure is shown in Figure 
11. In this setup,  two error sensors (microphones), two actuators (6“, 8 Ohm 
speakers), and one reference sensor  are used. The objective of the ANC is to 
obtain quiet zones around each error microphone within a wooden 3-D 
enclosure, which mimics cabin of a vehicle. To implement active noise control 
computation and data acquisition, TMS320C6701 Evaluation Module DSP 
Board is used. The board is based on floating point TMS320C6701 DSP 
processor.  The board is interfaced with computer host through PCI to enable 
real-time data exchange. Placement of actuators and sensors are shown in 
Figure 12.  

pre-
amp1

pre-
amp3

pre-
amp2

power
amp3

power
amp2

power
amp1

 TMS320C6701 EVM
board, connected to host

via PCI slot

Sound Blaster 16
sound card

Figure 11   ANC Experiment setup. 
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Figure 12   ANC Geometry (all distances are expressed in terms of λ). 

 

 
Figure 13   Experiment results of secondary path identification  with noise freq. 
of 170Hz and  5th order IIR filter, identification error with MSE=  2,8965e-5 
(top), power spectral density (bottom). 
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Primary noise is generated through Sound Blaster 16 and controlled form within 
Windows operating system. The output of sound blaster, as well as of DSP, are 
applied to power amplifiers which in turn drive the speakers. Pre-amplifiers are 
used to amplify the signal measured by the microphones.  Coding, debugging 
and real-time analysis are performed via Code Composer Studio. 

Figure 13 shows experiment results of identification process of secondary path 
for single channel ANC using adaptive robust filter algorithm. We obtain quite 
small error with IIR filter which shows that model is accurate enough to 
represent behavior of secondary path. Shown at the bottom of Figure 13 is 
frequency response of IIR model and of actual secondary path. Note that in the 
frequency domain the model obtained approximates the frequency behavior of 
the secondary path. 

 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 14   Experiment results of single channel ANC, noise residue (top) and 
power spectral density (bottom).   
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Figure 14 shows experiment results of single channel ANC using secondary 
path model obtained in previous experiment. Observe that transient response is 
fairly fast (1.5 second), while signal residue is sufficiently small. From power 
spectral density plot, attenuation at noise frequency (170Hz) reaches 74 dB.  

 

 

 
Figure 15   Comparison of FxLMS and Robust filter, FxLMS (top) and Robust 
filter (bottom). 

Comparison of FxLMS and Robust filter algorithm is shown in Figure 15 (note 
the difference in scale). This comparison shows that attenuation level obtained 
by robust filter algorithm is better than that of FxLMS, without significantly 
degrading transient response. In fact, in most of the cases the transient responses 
for Robust filter are better than those of FxLMS.     
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Robustness property of H∞ filter is examined in ANC experiment by shifting the 
position of error microphone 0.025λ from its original (nominal) position. The 
disturbance is applied for a period of time (5-10 seconds). The results are shown 
in Figure 16. Observe from this experiment that initially after microphone is 
shifted the amplitude of the noise residue increases but decreases afterwards.  

 
                                   (a)                                               (b) 

Figure 16   Effect of disturbance by shifting the error microphone, (a) before 
disturbance is applied, and (b) effect of disturbance 

Table 1 shows results of experiment with respect to the FIR filter order and to 
secondary path model order when the two types of uncertainty are applied. Note 
that robust filter achieves better noise attenuation level than that of FxLMS in 
case of tonal noise as well as superpositioned sinusoidal noise.    

Noise 
frequency 

(Hz) 

FIR order/ 
secondary 

model 
order 

Type of  

uncertainty  
Algorithm 

Attenuation at 
noise main 

frequency(dB) 

Transient 
(s) 

170 11/1 
Microphone  

shifting Robust 48 0,4 

Robust 67 3 
170 3/4 

Modeling/identification 
error FxLMS 42 4 

Robust 54 & 50 3 170 and 
210 11/4 

Modeling/identification 
error FxLMS 28 & 25 3 

Table 1   Results of single channel ANC with the  uncertainty applied. 
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Experiment result for multichannel ANC is shown in Figure 17. In this 
experiment we use 1x2x2 configuration, that is, it employs 1 reference 
microphone, 2 speakers, and 2 error microphones. First, correlation between 
channels is omitted, i.e., a decentralized configuration is employed.  In this 
experiment we obtain total (over all frequencies) noise attenuation level of 
18.9144 dB at error microphone no. 1 and of 19.6670 dB at error microphone 
no. 2, while transient response is 0.1 second, which again shows the 
effectiveness of the H∞ filter algorithm. The results are summarized in Table 2.  

Experiment is also performed by considering correlation between channels, i.e., 
a centralized configuration is employed. Positions of noise sources are varied. 
The results are summarized in Table 3. Note that when the noise sources  are 
spatially distributed, the total level of noise attenuation degrades substantially. 
However, at main frequency, only a slight degradation is observed. 

 
Controller 

Order 
Error Mic. 
Position 

Noise 
Type 

Total  
Reduction 
(dB) 

Reduction at 
main Freq. 

(dB) 

Transient 
Duration 
(seconds) 

11 Microphone 1 
Spatially 

centralized 18.9144 50 0.1 

11 Microphone 2 
Spatially 

centralized 19.6670 40 0.1 

Table 2   Multichannel experiment results (correlation between channel is 
omitted). 

Controller 
Order 

Error Mic. 
Position 

Noise Type Total  
Reduction 

(dB) 

Reduction 
at main 

Freq. (dB) 

Transient 
Duration 
(seconds) 

11 Microphone 1 
Spatially 

centralized 
18.4950 61 0.1 

11 Microphone 2 
Spatially 

centralized 19.7680 47 0.1 

11 Microphone 1 
Spatially 

distributed 8.0184 60 0.1 

11 Microphone 2 
Spatially 

distributed 14.4855 39 4 

Table 3   Multichannel experiment results (correlation between channels is taken 
into account). 
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(a) 

 
(b) 

Figure 17   Experiment results of multichannel ANC with 1x2x2 configuration, 
a) Signal residue at one of the microphones and b) Power spectral density.   

6 Conclusion 
Active control using H∞ method was shown to have better capability in 
attenuating low frequency noise  within an 3-D enclosure as compared to 
conventional FxLMS algorithm. It was experimentally demonstrated that the 
system is robust with respect to modeling error due to inaccuracy in 
identification process, as well as to variations in microphone positions. 
Computational load of this algorithm is moderate, allowing real-time 
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implementation on DSP. Investigation on the distance of microphone shifting in 
which the ANC starts to fail and how it relates to the size of unstructured 
uncertainty predicted by the small gain theorem is left for future research. 
Extension of this work to nonlinear ANC using various nonlinear neural 
networks based filters can be found in [14-18]. 
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