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Abstract

The exact solution of free-surface flow over a weir in a channel of finite depth is presented for a thin weir with varicus weir heights.
This exact solution can be obtained by neglecting the effect of gravity. This is an extreme case which can be used to answer
a question: why do we have to incline the wall to obtain solutions with a curving back jet but the flow leaves the wall smoothly.
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Sari
Gravitasi nol dari aliran permukaan bebas yang melewati bendung

Solusi eksak dari aliran perimukaan bebas yang melompati bendung pada suatu saluran dengan kedalaman-hingga disarapaikan dalam
tulisan ini, yaitu untuk bendung tipis dengan ketinggian bervariasi. Solusi ini dapat diperoleh dengan mengabaikan pengaruh
gravitasi. Hal ini merupakan kasus ekstrem yang dapat digunakan untuk menjawab pertanyaan: mengapa kita harus memiringkan
dinding bendung untuk mendapatkan solusi dengan jet yang membalik tetapi alirannya meninggalkan dinding dengan mulus.

Kata kunci: Persamaan Bernoulli; rumus integral Cauchy,; aliran permukaan bebas, variabel hodograph; persamaan Laplace;

gravitasi nol.

1 Iatroduction

A free-surface flow producing a jet can be seen in many
engineering problems. An example for this flow is the
problem here, i.e. when water flows over a weir. Since a
free boundary is the character of the jet, and this
boundary expresses a nonlinear condition, the boundary
value problem of the weir flow is difficult to solve
analytically, even for a steady flow. This major difficulty
increases by the elevation of the free surface which is
unknown before,

In this paper, we present an exact solution of flow over a
weir by assuming that the influence of gravity relative to
inertia is negligible. Physically, the jet asymptotes
downstream to a uniform stream which is straight and
inclines upward at the same unique angle to be
determined. The mathematical solution can be obtained
exactly via the hodograph transformation. This neglect of
gravity simplifics the problem of determining the free-
surface angle, since the velocity magnitude is then
constant along these free surfaces. The samc result, but
only for a vertical wall, can be seen in the paper by Dias
& Tuck [1]. In the present work, we solve the problem
for a general angle B of the wall (see the sketch of the
flow in Figure 2(a)). Other references for zero-gravity
solutions of different problems can be read in works such

as Goh [2] for a jet emerging from a nozzle, and recently
Tuck & Vanden-Broeck [3] for ploughing flows.

The extreme casc of flow over a weir can contribute to
answer a question in Dias & Tuck [1}], i.e. transitional
solutions between flows over a weir (Figure 1(a)) and a
back-turning jet (Figure 1(b)). Note that Figure 1(a) and
(b) are from Dias & Tuck [1] and Wiryanto & Tuck [4]
respectively. The transitional solution is a back-turning
jet with a smooth separation of the free surface leaving
the wall (see Wiryanto & Tuck [5]). The zcro-gravity
solution indicates that the last type of solutions, such
computed by Wiryanto & Tuck [5], can be obtained by
inclining the wall as described at the end of this paper.

2 Boundary value problem of zero-gravity
case

Let us consider the steady two-dimensional flow of an
inviscid incompressible fluid in a channel of finite depth.
A uniforim stream is generated far upstrcam with velocity
U and depth D, and an inclined wall with height W
disturbs the stream. Therefore, the flow rises up
continuosly when the effect of gravity is neglected. This
rising stream tends to become a uniform one with angle
0. The sketch of flow is shown in Figure 2(a).
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Figure 1 (a) A free-surface profile of flow over a vertical weir for g = 0. (b) Flow producing a back-turning jet
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Figure 2 (a) Sketch of flow. (b) f-plane. (c) s-plane

For convenience, we nondimensionalize the problem by
taking U as the unit velocity and D as the unit length. In
addition, we denote the potential function by ¢ and the
stream function by y, so we can introduce the complex
potential /= ¢ + iy and the complex velocity u — iv =
dfldz, where z = x + iy represents the flow domain in the
physical plane. ¥ and v are the x and y components of the
velocity. Without loss of generality we choose ¢ = 0,
v = 0 at the scparation point D. The free surface 1J is a
streamline = 1.

On the free surfaces 1IJ and DJ, where the pressure is
constant, the Bernoulli's equation yields

w+vi=1. )
Meanwhile, the kinematics conditions on IC and CD
yield

P -
= =0 @

where 7 is the normal vector of the wall. The
mathematical model is to determine the potential

function ¢ satisfying Laplace's equation subject to the
conditions (1) and (2).

In solving thc boundary value problem of ¢ we
introduce a hodograph variable 2 = r — i@ having a
relationship

a4 _ a

e, 3
p €))
and an artificial plane ¢= £ + iz satisfying
1
= —— . 4
f=-—log¢ @

The relationship (4) represents a mapping of the flow
domain from the f-plane to the {-plane. This artificial
plane is a half plane lower where C, D and J are mapped
to ¢ = &, 1 and O respectively. In the case where the
hodograph variable €2 is related to ¢, our boundary value
problem is

V=0 or V=0 5)
subject to

7=0 foré<l, ©6)
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0 for £>¢
= ¢ 7
¢ {H—B for 1<é< ¢, 0
along the real (plane. A condition (6) is the

consequence of the Bemoulli's equation (1) and
condition (7) expresses the kinematics condition (2).
This boundary value problem is shown in the f~-plane in
Figure 2(b), and the flow domain in the ¢-plane is shown
in Figure 2(c¢).

3 Exact solution

The boundary value problem described in the previous
section is solved analytically in this section. We first
define a complex quantity y related to £2

A9 =29 -9™* @®)
This quantity takes into account the square root
behaviour at the separation point D of the flow. We then
express (8) along the real -axis by substituting (6) and
(7), giving

.

-i6
— foré <1
. 1_5
l@)zﬂ% forl<g<éc ©)
—-ir
fi .
T oré> &,

On the other hand, 7 is an analytic function and tends to
be zero as |{] & . Therefore, the Cauchy's integral
formula can be applied to (<) on a path consisting of the
real {-axis, a semi-circle at [] = o in the lower half
plane, and a circle of vanishing radius about the point ¢
We then let Im(¢") — 0™ giving

z(i)
#6)= ,ﬂj Lo de, (10

where &= & +i0.

The tangential of the streamline along free surfaces can
be determined by substituting (9) into both sides of (10).

For any point & in (~eo, 1), the left hand side of (10)

reduces to ~id&*)/ 1~ & . Meanwhile, the right hand
side of (10) contains a complex form of integral. The
imaginary part of this integral is a definite integral of

(n- Py JE-1 inthe interval (1, &), the terms containing
rand @are the real part. Therefore, these imaginary parts

give
Ji-¢ jé y;
T

6(E ) = - dg for £ <1.
Je- @ &Ho

(1D

ojcl

The integral in (11) can be determined by a substitution

method, and (11) becomes

» 2 - - l *
a¢ )=Marctan i——T foré <L (12)
7[ p—
The rising uniform stream forms a jet with angle
0" - 8, 2028 arctan JE -1 (13)
/s

as £ — 0. The jet angle (13) depends on the inclining
wall £ and the height of the wall presented by artificial
parameter &.
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Figure 3 Plot of Ojer versus w for g = /4, n/3, n/2, and
27/3 (from top to bottom)

Similarly, the function #«($) can be derived by
substituting (9) into (10) for 1 < £< & and £> &. Since
7(&) appears only in the imaginary part of the left hand
side of (10), we cquate the same part of the right hand
side in the form of a definite integral. The integration of

this form gives
Je -1-y&-1|
J +JE-1 }

Se ™

The results (12) and (14) are then used to evaluate the
coordinates of the free surfaces from the relationship

-0

ﬁ_ = _6..__*' (15)
¢ #g

Note that (15) is obtained from (3) and (4). If w=W/D is

the nondimensional height of the top edge of the wall,

this height satisfies the relation

(9= £

for &> 1 (14)
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For a fixed value f, the height w increases on increasing
¢&.. Therefore, a plot of 8. versus w can be made for
various values of &. We show this plot in Figure 3 for
p= a4, 73, @2 and 24/3. We found that the jet emerges
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upward with a larger value 8, as we increase the wall.
But 6, never exceeds 7 — 8. Therefore, the jet always
crosses the wall for # > /2. This explains why solutions
with a jet curving back do not exist for a vertical wall, as
expected in Dias & Tuck [1].

On the contrary, we can expect to obtain solutions with a
Jet curving back for non-zero gravity if 8, > /2. Two
physical quantities play an important role to obtain this
condition. They are the wall angle f and the wall heigh
w. For the first quantity, // must be less than 72. Then,
the relation between w and 6, is given by the curve in
Figure 3. Only for points lying above the dashed line Gt
= 772 can the jet curve back.
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Figure 4 A typical zero-gravity free-surface profile for
p=n2

Figure 2(a) and 4 are typical free surface for different
values of B. We computed these figures for = 74 and B
= 712 with the same value & = 3. We obtain that the
height of the wall is w = 1.712 for Fig.2(a) and w = 1.015
for Fig 4.
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4 Conclusion

We have solved the extreme case of free-surface flow in
a channel of finite depth, and blocked by an inclined
wall. In the absence of gravity, the jet emerges upward
asymptotically to a uniform stream with angle 6
depending on the height w and the angle 8 of the wall.
The plot of 6. versus w can be used to indicate when
solutions with a jet curving back exist.
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