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Zero gravity of free-surface flow over a weir
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Abstract

The exact solution of free-surface flow over a weir in a charurel of hnite deptr is presented for a thin weir with various ueir heights.
This exact solution can be obtained by neglecting the efTcct of gravity. This is an exteme case u'hich can be uscd to tuiswer
a question: why do we have to incline the wall to obtain solutions with a curving back jet but the tlow leaves thc wall snroothly.

Keywords. Bernoulli's equation; Cauchy's integral formula; frc'e-surface flow; hodograph variable; I.aplace's ctluatiorr; 'zcro gravitl'.

Sari

Gravitasi nol dari aliran perrnuhaln bcbas yang melervati bendung

Solusi eksak dari aliran pennukaan bebas yang melompati beudurg pada suatu saluran dengan kedalarnan-hingga disrurrpaikm dalam
tulisan ini, yaitu untuk bendung tipis dengan kstinggian bervariasi. Solusi ini dapat dipcroleh dengm mengabaikan pengaruh
gravitasi. Hal ini merupakan kasus ekstrcm yang dapat digunakan untuk menjawab pertanyaan: lnengapa kita hans rncrniringkan
dinding bendung untuk mendapatkan solusi dengan jet yang mernbalik tetapi alirarurya meninggalkan dinding dengan mulus.

Kata kunci: Persanuan Benroulli: runtus integml' Cauchy; aliran pernrukaan bebas; vaiabel lrc<logmph; persanaa,t laplace;
gravitasi nol.

I  Introduct ion

A free-surface flow producing a jet can be seen in mally
engineering problerns. An exarnple for this florv is the
problem here, i.e. rvhen rvater flows over a $eir. Since a
free boundary is the cluracter of the jet, and this
boundary expresses a nonlinear conditiorq thc boundary
value problem of tle rveir florv is difllcult to solve
analytically, even for a steady florv. This rnajor dilliculty
increases by the elevation of the free surface rvhich is
unknown before.

In this papcr, we present an exact solution of florv over a
weir by assuming that the inlluence of gravity relative to
inertia is negligible. Physically, the jet asynrptotes
dorvnstrearn to a urifonn strearn wldch is straight ard
inclines upn'ard at the same unique angle to bc
deterrnined. The mathematical solution can be obtained
exactly via the hodograph transfonnation. This neglect of
gravity sirnplifies the probleur of dcterrnining tftc free-
surface angle, since the I'elocity magnitude is thcn
constzurt along these free surfaces. The siune result, but
only for a vedcal wall, can bc secn in the paper by Dias
& Tuck []. In the prescnt rvork, t'c solve tlte problern
for a general angle p of the rvall (see the sketch of the
florv in Figure 2(a)). Other refereuces for zero-gravity
sQlutions of different problems can be read in rvorks suclt

as Goh [2] Ibr ajet cutergilg front a rro:azle, artil recently
Tuck & Vanden-Broeck [3] for ploughing {lou's.

Tlte extrerne casc of flow over a weir can coutributc to
zurswcr a queslion in Dias & Tuck [l], i.e. transitional
solutions betrveen florvs over a weir (Figure l(a)) and a
back-tuming jet (Figure l(b)). Note that Figure l(a) and
(b) are fronr Dias & Tuck [] and Wiryanto & Tuck [1]
respectively. The transilional solution is a back-turnirrg
jet with a smooth separation of thc free surface leaving
the wall (see Wiryanto & Tuck [5J). nre zero-gravity
solution indicates that the last rype of solutions, such
cornputed by Wiryanto & Tuck [5], can be obtaincd by
inclining the wall as described at the end of this paper.

2 Boundary value problem of zero-gravi ty
case

Let us consider the steady trvo-dimensional flow of an
inviscid incornpressible fluid in a charurel of finite dcptlr.
A urifonn slrerun is generai.ed far upstrcan rvith veloclty
Lr and depth /), ard an inclined rvall rvitl height lIz
disturbs tlte stream. Therefore, tlte flow rises up
continuosly rvhen tle effect of gravity is neglected. Tliis
rising strearn tcnds to beconre a urifonn one u'ith algle

4", The sketch of Ilorv is sho* n in Figure 2(a).
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(b)

Figure 1 (a) A free-surface prolile of flow over a vertical weir for g * 0. (b) Flow producing a back-turning jet
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Figure 2 (a) Sketch of f low. (b) f-plane. (c);-plane
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For convenience, we nondimensionalize the problem by
taking U as the unit velocity and D as the unit length. In
additioq we denote the potential function by / and 0re
stream function by tz, so we can introduce the complex
potential/= (+ iV and the complex velocity u - iv =
df dz, wltere z = N + r/ represents tlte flow dornain in tlrc
physical plane. a and v are the x and y components of the
velocity. Without loss of generality we choose 0 = 0,
y = 0 at the sepantion point D. The free surface IJ is a
strearnline yr= l.

On the free surfaces IJ and DJ, where the pressure is
constant, the Bernoulli's equation yields

u 2 + r ? = 1 .  ( l )

Meanwhile, the kinematics conditions on IC and CD
yield

4_^
:  - v ,  ( 2 )
al

where fr is the nonnal vector of the rvall. The
mathematical model is to detenninc the potential

function / satisSing Laplace's equation subject to the
conditions (l) and (2).

In solving thc boundary value problem of d we
introduce a hodograph variable d2 = r - id having a
relationship

d f n
1 = 

"" ,  
(3)

az

and an artificial plane (= 6+ iry satis8ing

f= -Ltoe (. (4)
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The relationship (a) represents a mapping of the flow
domain from the y'plane to 0re (-plane. This artificial
plane is a half plane lower where C, D and J are mapped
to C = $, t and 0 respectively. In the case where the
hodograph variable J2is related to 6 our boundary value
problern is

v20=0 or  Yzr=0

subject to

r=  0  fo r  {<  l ,

(5)

(6)
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for (> ("
f o r  l < € < € " ,

along the real (-plane. A condition (6) is the
consequence of the Bernoulli's equation (l) and
condition (7) expresses the kinematics condilion (2).
This boundary value problem is shown in tJte y'plane in
Figure 2(b), and the florv domain in tlte (-plane is sltorvn
in Figure 2(c).

3 Exact solution

The boundary value problem described in the previous
section is solved analytically in this section. We first
define a complex quntity 7 related to Q

A0 = Qa\ - O'o (8)
This quantity takes into account the squtre root
behaviour at the separation point D of the florv. We tltcn
express (8) along the real f-axis by substituting (6) and
(7), giving

The integral in (ll) can be determined by a substitution
method, and ( I l) becomes

05"t

The rising unifonn sream forrns a jet with angJe

( 1 3 )

as { -+ 0. The jet anglc (13) dcpcnds on the inclining
wall p and the height of the wall presented by artificial
parameter 4.
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Figure 3 Plot of 01et versus w lor p = nl4, a13, #2, and
2al3 (from top to bottom)

Similarly, dre function 4$ can be derived by
substituting (9) into (10) for | < 6 < 4 arrd €> f. Since
(fl appears only in lhe imaginary part of the left hand
side of (10), we equate thc same put of the right hand
side in the fonn of a dehnite integral. The inte$ation of
this form gives

The results (12) and (14) are then used to evaluate the
coordinates ofthe free surfaces from the relationship

(  l5 )

Note tlut (t5) is obtained from (3) and (4). If v = ll'/D is
the nondimensional heiglrt of the top edge of the wall,
this height satisfies the relation

for f' < l. (12)

(16)

f o r f c l

f o r l < ( < ( ,

for { > {".

4.5

lG) =

On tlre other hand, f is an analytic function and tends to
be zero as l(l + co. Therefore, the Cauclty's integral
formula can be applie d to x0 on a path consisting of the
real (-axis, a semi-circle at 141 = o in tltc lorvcr half
plane, and a circle of vanishing radius about tlc point t'.
We then let Im(t'; -r o- giving

(10)

where t '= f+ io .
The tangential of the streamline along free surfaces can
be determined by substituting (9) into both sides of (10).
For any point f in (-co, l), the left hand side of (10)

reduces to -iqfyJl-{' . Meanrvhile, tle right hand
side of (10) contains a complex forrn of integral. Tlte
imaginary part of this integral is a definite integral of
(n - p1t ,,[ I - 1 in the interval ( l. 6"), the tenns containing

rand 0are dre real part. Therefore, these irnaginary parts
give

k+r -  p
- . /6 - t
- i r

, l€ - t

(e)

tlz e-Q- = - _

For a fixed value p, the heiglrt w increascs on incrcasing

{. Tlrcrefore, a plot of d,a versus w can be made for
various values of f". We show this plot in Figure 3 for
p= /d4, td3, rd2 utd2rd3. We found tlut the jet emerges
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upward with a larger value Qo, as we increase the wall.
But Opt never exceeds 7r - p.Therefore, tlre jet always
crosses the wall for p > rd2. Tltis explains why solutions
with a jet curving back do not exist for a vertical rvall, as
expected in Dias & Tuck ul.
On the conlrary, we can expect to obtain solutions with a
jet curving back for non-zero grayity ff e,, > rd2. Two
physical quantities play an important role to obtain this
condition. They are the wall angle B and rhe wall heighj
p. For the first quantity, p must be less than r/2. Then-,
the relation between w and Qo is given by the curve in
Figure 3. Only for points lying above the dashed line C",
= d2 canthe jet curve back.
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4 Conclusion

We have solved the extretne case of free-surface flow in
a channel of finite dept[ and blocked by an inclined
wall. In the absence of gravity, the jet emerges upward
asymptotically to a unifonn stream with angle d,.t
depending on the heiglrt w and tlre angle / of the wall.
The plot of Q"t versus w can be used to indicate when
solutions with a jet curving back exist.
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Figure 4 A typical zero-gravity free_surface profile for
f = trl2.

Figure 2(a) and 4 are rypical free surface for dillerent
values of B. We computed these figures for p = da nd B= td2 tvith the same value | = 3. We obtain tlat ffieheiglrt of the wall is w = l.jll for Fig.2(a) andw = t.OtS
for Fig.4.


