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Abstract

It is well known that Moore digraphs do not exist except for trivial cases (degree 1 or diameter 1), but there are digraphs of
diameter two and arbitrary degree which miss the Moore bound by one. No examples of such digraphs of diameter at least three are
known, although several necessary conditions for their existence have been obtained. A particularly interesting necessary condition
for the existence of a digraph of degree three and diameter £ > 3 of order one less than the Moore bound is that the number of its
arcs be divisible by k + 1.

In this paper we derive a new necessary condition (in terms of cycles of the so-called repear permutation) for the existence of such
digraphs of degree three. As a consequence we obtain that a digraph of degree three and diameter & > 3 which misses the Moore
bound by one cannot be a Cayley digraph of an Abelian group.
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Sari
Catatan untuk keberadaan graf berarah hampir Moore derajat 3

Telah lama diketahui bahwa tidak ada graf berarah dengan orde (jumlah titiknya) sama dengan batas Moore, kecuali untuk kasus-
kasus trivial, yakni untuk derajat 1 atau diameter 1; tetapi, ada graf berarah dengan diameter 2 untuk sebarang derajat dengan orde
satu lebih kecil dari batas Moore. Hingga kini belum dapat ditunjukkan adanya contoh graf berarah yang sejenis dengan diameter
paling sedikit 3, walaupun beberapa syarat perlu akan keberadaannya telah diberikan. Salah satu syarat perlu yang cukup menarik
untuk keberadaan graf berarah dengan derajat 3, diameter & 2 3 dan orde satu lebih kecil dari batas Moore adalah bahwa jumlah
busur yang dimilikinya harus dapat dibagi oleh bilangan k + 1.

Dalam tulisan ini, kami akan menurunkan syarat perlu lain yang berkaitan dengan permutasi perulangan yang harus dimilikinya.
Sebagai konsekuensi, kami dapat menunjukkan bahwa graf berarah tersebut (bila ada) bukan merupakan graf berarah Cayley dari
suatu grup komutatif.

Kata kunci: Graf berarah hampir Moore, masalah devajat/diameter, pemetaan voltase, grah berarah Cavley.

[10] it follows that, for example, nyp <AH, -2 for3 <k
< 107, k # 274485, 5035921. The question of whether or
not equality can hold in ng <Ay, —1ford23 and k2
3 is completely open.

1 Introduction and preliminaries

The well known degree/diameter problem for digraphs
is to determine the largest order n,, of a digraph of
(out)degree at most 4 and diameter at most k. A

straightforward upper bound on ngy is the Moore bound
Afd,kf

I’I‘]'kS A/[d,k <1 +d‘+‘d2 +...+ a*

It is well known that ny, = Af;, only in the trivial cases:

when d = 1 (directed cycles of length k + 1y or k =1
(complete digraphs of order d + 1), see [12] or [7]. For k
= 2, line digraphs of complete digraphs are examples
showing that ng, = A, — 1 if d 2 2. On the other hand,
if d = 2 then nayy < A7, ~ 1 for bk 2 3 (see [11}]).
Moreover, from the necessary conditions obtained in

For convenience, a digraph of (out) degree at most d,
diameter at most & (where d 2 3 and & > 2) and order
My — 1 will be called a (d k)-digraph. Tt is an easy
excrcise to show that a (d,k)-digraph must be diregular
of degree o (the in-degree and out-degree of cach vertex
are exactly ), and its diameter must be cqual to £.

Several necessary conditions for the existence of (d,k)-
digraphs have been proved in [2-06]. In particular, for ¢
= 3 it was proved in [3] that (3,k)-digraphs do not exist



9
if k is odd or if k¥ + 1 does not divide —(3k - 1). All
2

these conditions refer in one way or another to the so-
called repeats which were first introduced in [11} and
which we recall next.

Let G be a (d k)-digraph. A simple counting argument
shows that for each vertex v of G there exists exactly
one vertex (&) in G with the property that there are two
u — r(u) walks in G of length not exceeding & The
vertex r(u) is called the repeat of u. 1t can be shown {3]
that the mapping v -» r(y) 18 an automorphism of G. In
what follows we shall therefore refer to » as the repeat
automorphism of the (d k)-digraph G.

Very recently, for = 3 it has been proved in [6] that all
cycles of the repeat automorphism » (when written as a
permutation of the vertex set of a (3.k)-digraph) must
have the same length. However, cycles of length one are
impossible, due to an earlier result of [3] which says that
for k > 3 and d > 2 there is no (d,k)-digraph for which »
is an identity automorphism.

The purpose of this note is to examine the other
extreme; we show that the cycles of a repeat
automorphism of a (d,k)-digraph cannot be too long
(Section 4, Theorem 1). As a consequence of our method
we shall prove that a (d k)-digraph cannot be a Cayley
graph of an Abelian group. We use an algebraic
approach to the problem; the basics are introduced in
Sections 2 and 3.

2 Algebraic background

Let G be a digraph and Iet 1 be a subgroup of Aut(G),
the group of all automorphisms of G, viewed as a group
of permutations of the vertex set V(G). In addition, let us
assume that I is semi-regular on V(G), that is, for any
ordered pair of vertices u,v € F(G) (possibly v = v) there
exists at most one automorphism g € I' such that g(u) =
v. Then we may define the quotient digraph G/T as
follows. The vertex set F(G/T) is the set of all orbits
Ou) = {g(u), g € I'} of the group I on I(G). If O(u),
O(v) is any ordered pair of vertices of the quotient
digraph G/I' (that is, any pair of orbits of I on M(G); we
do not exclude the case O(w) = O(v)) and if in the
original digraph G there are ¢ arcs emanating from u
and terminating in O(v), then there will be ¢ parallel
arcs in G/I" emanating from O(x) and terminating at
O(v). Note that in the case when O) = O(v) the t arcs
will become ¢ loops attached at the vertex O(u). The fact
that quotient digraphs are well defined (i.e., incidence in
the quotient graph does not depend on the choice of a
particular vertex in the orbit) is an easy consequence of
semi-regularity of 1" on }(G). It is more important to
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notice that the projection p: F(G) — W(G/T)) given by
p(u) = O(u) is a digraph epimorphism.

Note that if, in the situation above, the group I is
regular on (G) ~ that is, if for any ordered pair (4,v) €
() x 1(G) there exists exactly one automorphism g €
I such that g(v) = v — then G is isomorphic to a Cayley
digraph for the group I' and the quotient digraph G/T’
consists of a single vertex only (with d loops attached to
it if G is d-regular).

We shall soon be facing the following converse problem:
Given a digraph H, what are the possible digraphs G
and semi-regular subgroups I' < 4uf(G) for which the
quotient digraph G/I" is isomorphic to 77 A complete
answer can be given in terms of the so-called voltage
assignments and lifts. Voltage assignments on
(undirected) graphs were introduced in the early 70's [8]
as a dual form of current graphs; the latter played a key
role in proving the famous Map Color Theorem. Most of
the theory (summarised in [9]) can be immediately
transferred to digraphs, and in what follows we outline
only the basic facts.

Let H be a digraph, possibly containing directed loops
and/or parallel arcs. Let I' be an arbitrary group. Any
mapping o . D) - T is called a voltage assignment
on H. The /ift of H by o, denoted by A, is the digraph
defined as follows: JV(H™) = V(H) x I', D(H*) = D(H) x
I', and there is an arc (x) in A* from (u,g) to (k) if
and only if /= g, x is an arc from u to v, and /» = go (x).
The mapping n . H* — H which erases the second
coordinates, that is, n(u,g) = v and n(x,g) = x for each u
€ V(H), x € D(H) and g € T, is called a natural
projection. Clearly, n is a digraph epimorphism; the sets
7' (u) and ' (x) are called fibres above the vertex u or
above the arc x, respectively.

For any two vertices in the same fibre 7' () there exists
an automorphism of the lift which sends the first vertex
to the second. Indeed, without loss of generality, let
(u,id),(u,g) € 7' () be a pair of such vertices. Then it
can be easily checked that the mapping By H* —» H°,
given by B,(v,/1) = (v.gh) for each (v,h) e V(H%), is an
automorphism of the lift 7% such that Bg(u,id) = (u,g).
Observe that the collection T’ = {Bg, g € I'} forms a
senii-regular subgroup (isomorphic to I) of the group

Aut(H™); the fibres coincide with the orbits of T .

A close connection between quotients and lifts may
already be apparent from the definitions. Indeed, the
basic result on semi-regular group actions on undirected
graphs, which is Theorem 2.2.2 of [9], immediately
translates to the following directed version:

Proposition 1 Let G be a digraph and let T < Aut(G) be
a semi-regular subgroup on V(G). Then there exists a
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voltage assignment o on the quotient digraph G/T in the
group T such that the lift (G/T')* is isomorphic to G.

Thus, for a given quotient digraph /, all possible
digraphs G (and semi-regular groups I" on }{(G)) can be
re-constructed by considering voltage assignments on
the digraph H and the corresponding lifts.

3 The diameter of a lift

We shall also be interested in recovering some
properties of a lift from properties of the quotient. For
this purpose we outline the connection between closed
walks in the quotient and in the lift. Let o be a voltage
assignment on a digraph / in a group I'. Let IV = xx,...
x, be a walk in H, ie., an arc scquence in which the
terminal vertex of x;_; coincides with the initial vertex of
x; for each i, 2 < i < m (we allow an arc to be used
repeatedly). The number m is the length of the walk I,
The walk W is closed if the initial vertex of x; and the
terminal vertex of x,, coincide. The net voltage of IV is
simply the product o(J#) = ofx))o(xz)... ofxn). For
convenience, at ecach vertex we also admit a trivial
closed walk of length 0 and of unit net voltage.

It is easy to see that for each walk IV = x;x;... x,, in H
from a vertex u to vertex v and for each g € I there

exists a unique walk W in the lift #* emanating from
the vertex (#,g) and such that n(J7 ) = J¥. This walk has
the form 7 = (1,2)(2g0(x1))... (mg0X(ry) 0L(xa)...
a(x,-1)); it emanates in the lift from the vertex (1,g) and

terminates at the vertex (i»,goc(W)). The walk 17 is often
called a /ift of IV.

Note that for any two distinct vertices (u,g),(v,/) in
V(H*) there exists a path /7 of length at most k from
(u.g) to (v,h) if and only if the projection IV = n( Wyisa
walk in the digraph A of length at most £ from u to v
with o(#) = g'h. This immediately implies the
following result on the diameter of the lift (cf.[1]):

Lemma 1 Let o be a voltage assignment on a digraph H
in a group U. Then diam(H*) < k if and only if Jor each
ordered pair of vertices u,v of H (possibly u = v} and for
each g € I there exists a walk of length <k from u to v
whose net voltage is g.

For any vertex u € H and any non-negative integer f let
o[u;t] denote the set of all distinct voltages on closed
walks in A of length f emanating from ». We now have
an obvious corollary of Lemma 1:

Lemma 2 Let o be a voltage assignment on a digraph H
in a group I. If the diameter of the lift Ho is equal to k,
then for each vertex u € H,

k
2 afu; 1]2IT]

Proof. According to Lemma 1 (the case v = v), if
diam(H*) = k then for eachw € V(H) and foreach g e T
there exists a closed walk at v of length < & whose net
voltage is equal to g. In other words, the union of all scts
afu], 0 £t <k, is equal to T; this proves our
incquality. [

4 Results

Recall that for d =2 3 and k 2 2, by a (d k)-digraph we
understand any diregular digraph of degree d, diameter
k and order Ay, — 1. When referring to cycles of the
repeat automorphism » we mean the cycles in the cycle
decomposition of », written as a permutation of I(G).

Theorem 1 Let G be a (3,k)-digraph, k 2 3, and let r be
the repeat automorphism of G. Then all cycles of v have
equal length, smaller than 3nlogs k/(k + 1 - logsk).

Proof. Let I' be the cyclic subgroup of Auf(G) generated
by . By Theorem 3 of [6], I' acts semi-regularly on
I(G); let the size of each orbit of I' on (G) be equal to
m. Consider the quotient digraph A = G/I" and let I'(H)
= g, clearly n = [I{(G)| = mq. In order to prove our
theorem it is sufficient to show that ¢ > (A + 1 -
logsk)/(3logsk).

According to Proposition 1, there exists a voltage
assignment « on the quotient digraph 77 in the (cyclic)
group T such that the lift H* is isomorphic to the
original digraph G. Although we have no information
about the structure of the quotient digraph H (except
that it has ¢ vertices, each of degree three), we
nevertheless may establish an upper bound on the
number of distinct voltages on its closed walks as
follows.

Let x;, 1 <7 < 3q be the collection of all arcs of A and let
ofx;) = a; € ' be the corresponding voltages. Fix a
vertex v € V(H) and estimate the number of elements in
the sct afu;f] for a fixed # < k. Let H be a closed walk in
H of length £, emanating from (and terminating at) u.
Assume that the walk traverses j, times the arc x,, where

3q
Z?fl Ji =t. The netvoltage of W is then a(W) = Z jiai
i=1

From this we immediately see that the number of
voltages appearing in the set o[w;f] is ncver greater than
the number of ordered 3g-tuples (1,..../3,) of
nonncgative integers whose sum is equal to r The
number of such ordered decompositions is well known



t+3g~1

to be equal to [ J For the number of possible

3¢ -1
voltages on all closed walks at » of length < & we
therefore obtain:

k k(t+3g-1) (k+3q M
2lalust)l< 2 =
=0 =0\ 3g-1 3q

Since diam(H*) = k, by Lemma 2 and the inequality (1)

k+3

q .
we have [I] < ( j Recalling that the lift /7 is

3q
isomorphic to our (3,k)-digraph G with n = 3(3* - 1)/2
vertices and that || = m = n/q, we obtain

33k - 1) (k + 3qj (2)
— <
2¢  \ 3g

k+1
In order to eliminate ¢, we observe that I[ J< K
1

foreach £ 2 3 and / 2 1. (Indecd, this is trivially true for
/= 12, and an easy induction works for / > 2)
Combining this inequality with (2) we finally obtain

o k +3q k +3q "
3 <2g +3<3q < I
3q 3q

and hence g > (k + 1 — logsk)/(3logsk). The proof is
complete.[]

We have the following obvious corollary announced
earlier.

Corollary 1 Let G be a (3.k)-digraph, k 2 2, and let r be
the repeat automorphism of G. Then r cannot consist of
a single cycle.

Proof. If k 2 3, the result follows directly from Theorem
1 because g > 1. For & = 2 it is sufficient to observe that
the inequality (2) is not valid for ¢ = 1.0J

The last result can be extended slightly by reformulating
it in terms of Cayley digraphs. Let I be a (finite) group
and let X be a generating sct for I'. The Cayley digraph
C(I,.X) has vertex set I', and for any ordered pair of
vertices g.h € T there is an arc emanating from g and
terminating at # whenever gx = 4 for some x € .\, We
observe that C(I',X) is a vertex-transitive digraph of
degree [X]; the group I" acts regularly on the vertex sct of
the Cayley digraph by lcft translations.

Corollary 2 Let G be a (3.k)-digraph, k > 2. Then G
cannot be a Cayley digraph of an Abelian group.

Proof. Assume that a (3,k)-digraph G is isomorphic to a
Cayley digraph C(I'.Y) where T" is an Abclian group.
Since I acts regularly on I'(G), the quotient digraph G/T°
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consists of preciscly one vertex incident to three loops.
Examining the proof of Theorem 1 one quickly sees that
it is valid for all Abclian (not only cyclic) groups. The
Corollary follows.
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