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A NECESSARY AND SUFFICIENT CONDITION FOR
THE UNIQUENESS OF MINIMUM SPANNING TREE

Oleh Maman A. Djauhari’

SARI

Dengan menggunakan relasi samar sebagai sudut pandang, dalam tulisan ini
dikembangkan suatu sifat fundamentai dari penutup transitif min-maks suatu disimilaritas,
dalam hubungannya dengan ultrametrik sub-dominan. Sifat tersebut memungkinkan kita
merumuskan dan membuktikan suatu syarat cukup dan periu agar suatu disimilaritas
memiliki pohon kerangka minimum yang tunggal. Apabila tidak tunggal, sifat itu dapat
menjadi landasan untuk menentukan semua pohon kerangka minimum lokal.

ABSTRACT

We develop a fundamental property of min-max transitive closure of a dissimilarity,
considered as a fuzzy relation, in connection with its subdominant ultrametric. This will
enabic us firstly to derive a necessary and sufficient condition for the uniqueness of its
minimum spanning tree, and secondly to find all possible local minima.
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1. INTRODUCTION

The concept of minimum spanning tree (MST) was originally developed in the field
of graph theory. In the last two decades we see its widespread use in many disciplines
such as biology, social science, economy, antrophometry and general taxonomy [1],
data analysis [2], regression analysis [4] and [5], computer science [6], networking
[8], and multivariate and clustering analysis [10].

The ability to detect the uniqueness of MST is the first great problem for statisticians
in using MST for their statistical analysis. The complexity of statistical analysis of a
dissimilarity data matrix depends on the uniqueness of its MST (see [5}, and [10]).
Unfortunately, as far as we know (see [1], [3], [7], [8], [9], and [11]), there is no
algorithm that can detect the uniqueness of MST. The second great problem is the
fact that only one MST can be given by all existing algorithms, even for the case
where there are actually more than one MST. This fact can also be found in
theoritical literatures (see [6], [9], and [11]). In these two circumstances, Proposition
1, Proposition 2 and Proposition 3 are the main result of this work. In particular,
Proposition 3 provides us with two fundamental results:

1. A necessary and sufficient condition for the uniqueness of MST.

2. An algorithm for constructing the union of all possible MSTs which, if it is not
unique, gives us all MSTs. .

The basic problem in this paper, firstly is to propose and to show a necessary and
sufficient condition for uniqueness of MST of a dissimilarity. Secondly is to give an
algorithm for finding all possible MSTs, if there are actually more than one MST.
For this purpose we consider a dissimilarity as a fuzzy relation. Some basic concepts
can be found in [3].

Suppose R a fuzzy relation on a set I; Card(I) = n and for every (x,y) in IxI we have
0 < pg (x,y) < o, where pg is a membership function on R. In this paper we develop
a fundamental property of min-max transitive closure R* of R, where R is a
dissimilarity, in connection with subdominant ultrametric. Another representation of
R” can be seen in [7] and [11]. The relationship between sub-dominant ultrametric
and minimum spanning tree such as shown in [2], [6], and [9] will be exploited in
order to derive a necessary and sufficient condition for the uniqueness of minimum
spanning tree in a dissimilarity.

2. TRANSITIVE CLOSURE

A fuzzy relation R on I is called max-min transitive if for all x, y, z in I we have

Hr (X, 2) <V, {pr (X,¥) A R (Y,2)}

It is known that max-min transitivity of R can be verified through max-min
composition o. If R = R o R is a fuzzy relation defined by
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Hem (%,2) = Vy {pr(x,y) A pr (y,2)}
for all x, v, z in I, we have the following properties [7].
Theorem 1  If R” =R, then R is max-min transitive.
Theorem 2 R is max-min transitive if and only if R® c R.

Since I is finite, the max-min transitive closurc R™ of R has the following
representation:

R =RURZUR®U ... UR%

for an integer k; 1 <k <n, where R* =R oRo ... o R, k times max-min composition
oof R.

Like R, the min-max transitive closure R" can be written as
R'=RARZ"AR”~ .. ~AR™

for an integer k , 1 <k < n, where R“=R * R * .. * R, k times min-max
composition * of R and

Men (2) = 5 (e (63) v e (1,2)}

If R® and R™ represent respectively the complement of R™ and min-max transitive
closure of R°, it can be shown that R = R™ and R™ = R* . Hence by De Morgan's
rule we have R" = R™ and R" = R**. These equalities enable us to work with either
R” or R". Although those representations are very usefull, but it is still not
comfortable to work with. The following alternative form which is more convenience
for constructing R’ is given in [7].

Theorem 3 Suppose that R is a fuzzy relation on 1 . Let
1" (xy) = }/ . 1(c), where

a.g= {cic=(x=xil,x.

2

N Y)} is a chain from x to y}

b. 1) = ke ((x;, X VP Re(X, X VAR (X LX)

Then B (x.y)=1"(x,y), forall xand y in 1.

In practice this theorem is still difficult to be implemented. In the next section we will
restrict our discussion in the case where R is a dissimilarity and we derive a

fundamental property in connection with its sub-dominant ultrametric in order to
construct simple computation.
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3. MIN-MAX TRANSITIVE CLOSURE AND SUB-
DOMINANT ULTRAMETRIC

Suppose R a dissimilarity associated to dissimilarity index d on 1. Hence R is a
symmetric and anti-reflexive fuzzy relation, where pg (x,y) =d(x,y) forall x and y in
I. In the following proposition we show that, in this case, R* has a Very convenience
representation.

Proposition 1 If R is a dissimilarity on 1, then R* = R™® Jor an integer k;
1<k<n
Proof
We know that for an integerk ; 1 < k <n,

R"=RAR%A ..~ R*
Now we show that the right hand side is equal to R™.
By definition,

He (6,2) =) (U (X, Y)V Ug (v, 2)},
for all x, y and z in I. Especially if y = z, then
Hp= (%,2) S pp (X,2) Vv g (2,2)
But pr(z,z) = 0. Hence,
Hee (%,2) < pr(x,2)

forallx and zin Ior R? ¢ R . In general we have

R*c . cR"cR?cR
It implies that R* =R,

Now we show a fundamental property of R* in connection with sub-dominant
ultrametric (SDU) of dissimilarity R.

Proposition 2 If Ris a dissimilarity on 1, then R" is the SDU of R.

Proof
Theorem 3 tells us that

He-c (x.y) = Hec- x,y) = lg\d?»‘f 1(C)

where C = (x= x  x .. .x =13)isachain from x to y.
ot 2 r

Ha=u . (ox)ferall x in 1L then
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“R’*C (xy) = mcax {mtn {PR (xik > x'k+l M

= mcax {min {“'Rc (xil ,x,z ) R "‘-Rc (xir—l ’xir )}
= mcax {a -max {a ‘l»'-Rc (xi] ,sz )a AR a- P"Rc (“(11__l 5xir )}}
=max {o-max {pg(x; ,X; ), - Br(X; . )}}
=a- mcm {a = {a -max {pR(xi] ax|2 )9 reey uR(xir_‘ ,xlr )}}}
= -min {max {pg(x, ,x;, )}}
This equality implies that:
Boe (xy) = min{max{pg (x, ,x; )}
Now we will show that R" is the SDU of R.
1. Itis clear that e (x,y) <pr(x,y)forallxandyinI, since R"=R™ c R.

i IfC=(x= Xi> Xiys oo X, = y) is a chain from x to y, we note that L(C) =

o

k+1

Suppose that C; is a chain from x to y and C; is a chain from y to z, such that
B (53 =L (C)and p_, (1.2) =L (Cy)

mE'x {,"'R (xik ] X

Suppose also that C; is a chain from x to z, constructed from C, and C, such
that;

L(C5) = max {L(C)), L(C>)}
In this case,
L(Cy) =max {n_, (xy), u_, (v.2)}
and we have,

B, (x2)= g}hm; L (C) <L(Cy).

smax {{p_.(xy), u_,(.2)}
It implies that R" is an ultrametric on 1.
ui. Suppose that U is the USD of R. Now we show that U=R".
Consider a chain C;, = (x XX, o, Xy S y) from x to y where

Hg- (xy) =L(C)). Then,
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a. My (x,y) £ max {py (x,2), py (y,2)} for all x, y and z in I, because U is an
ultrametric. Especially,

Hu(X,y) < max {uy(x, X ) mu(x; )}
forallk=1,2, .., r. Hence,

Hu(x,y) < max {pu(x, X,,) > b X, )}

< max {pu(x, X;, ), max {uu(x.2 s X0 )5 uu(x%,y)}}

smax {pox, x, )5 pu(x, L x, ) (X, ,v)
In general we have
Hu(x,y) < max {pu(x; , x, )} I<ks<r-1.

b. Uis the USD of R. Then by definition, U c R or
Hu(X,¥) < pr(x,y), forall x and y in 1.
From a and b, we have;

Hu(x,y) < max {pr(x; ,x, )}, 1sk<r-1
SLC)=p . xy).
or pu(x.y) < 1, (x,y).

It has been shown that R" is an ultrametric and U is the SDU of R. Hence the
inequality pu(x,y) < p_. (X,y) gives us py(x,y) = k. (xyorU=R"

4. SUB-DOMINANT ULTRAMETRIC AND MINIMUM
SPANNING TREE

Through the notion of sub-dominant ultrametric, in this section we will show a
necessary and sufficient condition for the uniqueness of minimum spanning tree.
Suppose M is a minimum spanning tree of dissimilarity R defined by a dissimilarity
index d. If i and j are arbitrary two vertices in M,and (1=x), x5, ..., X, = ) is the
chain from i to j in M, we know that the distance d between i and ] given by

5(1,]) = mfvc d(Xk, Xk+1)

is the SDU of R. Hence
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B (L3) =8 (i)
=d (xko s xkoﬂ)

for a positive integer k,. This equality and the above popositions show that the
number of zero entries of (R - R"), substraction of two matrices in the usual sense,
determines the uniqueness of its minimum spanning tree. More spesifically we have
the following proposition.

Proposition 3 Dissimilarity R has a unique minimum spanning tree if and only if
the number of zero entries in the lower (or upper) triangle matrix of (R - R*) below
(or above) diagonal, is equal to (n-1).

If in a dissimilarity there are more than one MSTs, then we can find all MSTs by
inspecting zero entries of lower (or upper) triangle matrix of (R - R") below (or
above) diagonal; we delete all unnecessary zero entries.

5. CONCLUDING REMARK

The ability to detect the uniqueness of MST and the fact that only one MST can be
given by all existing algorithms, even for the case where there are actually more than
one MST, is the great problem for statisticians in using MST for their statistical
analysis. We have handled this problem through the notion of fuzzy relation. There
are three propositions resulted in this work; Proposition 1, Proposition 2 and
Proposition 3. In particular, Proposition 3 provides us with two fundamental results;
1. A necessary and sufficient condition for the uniqueness of MST.

2. An algorithm for constructing the union of all possible MSTs which, if it is not
unique, gives us all MSTs.

6. ACKNOWLEDGEMENT

We are very grateful to the anonymous referees for their valuable comments.

7. REFERENCES

1. Benzecri J.P. L'analyse des données: la taxinomie. Dunod-Paris, 1980.

2. Caillez F. and Pages I.P. Introduction a !’ Analyse des Données. SMASH -
Panis, 1976.



18

10.
11

PROCEEDINGS ITB, VOL. 29, NO 1/2, 1996

Jambu M. Classification automatique pour l'analyse des données. Dunod -
Paris 1978.

Djauhan M.A. A Fuzzy Relation Approach in the Detection of Influential
Subsets. Proceedings of The Fourth Islamic Countries Conference on
Statistical Sciences. Vol. 8, Lahore, August 1994.

Gray J.B. and Ling. R F. k-Clustering as a Detection Tool for Influential Subsets
in Regression. Technometric, Vol. 26, No. 4, 1984,

Kaufmann A. Introduction ala théorie des sousensemble flous; Applications ala
classification, et dla reconnaissance des formes, aux automates et aux
systémes, aux choix des critéres. Masson-Panis 1975.

Kaufmann A. Introduction ala théorie des sousensemble flous; eléments
théoriques de base (Vol. 1), 2éme Edition. Masson-Paris 1977.

Narshing D. Graph Theory with Applications to Engineering and Computer
Science. Prentice-Hall 1974.

Roux. Classification Automatique. Ecole d' Ete d'Analyse Numérique, Paris
1975.

Seber G.A F. Multivariate Observations. John Wiley and Sons, 1984.

Van Cutsem B. Ultrametrique , distance, ¢-distances maximum dominées par une
dissimilarité donnée. Statistique et Analyse des Données, Vol 8 No. 2, 1983,



