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DESIGN PROCEDURE FOR OPTIMAL MULTI — INPUT CONTROL
#*
SYSTEMS VIA TIME - DOMAIN TECHNIQUE

by: R.J. Widodo

ABSTRACT

Design procedures for Linear-optimal control systems wiil respect 1o a quadratic perfor-
mance index are developed. Via a Time-domain Technique and based on the phasc-variable
canonical-system description, the optimal feedback vector k and the weighting matrix Q can
be directly determined from the characteristic equations of the open and closed loop sys-
tems. Formerly the design procedures has been developed for single input systems, and then
to be extended to multi-systems.

SARI

PROSEDUR RANGCANGAN UNTUK SISTEM—SISTEM KONTROL OPTIMAL DENGAN
MASUKAN BANYAK MELALUI BIDANG WAKTU

Suatu prosedur rancangan untuk Sistem-sistem Kontrol Optimal Linier dengan indeks perfor-
mans kwadrat telah dikembangkan. Berdasarkan deskripsi sistem perubak pasa dan melalui
bidang waktu, vektor catubalik optimal E dan matrik pembobotan Q dapat ditentukan secara
langsung dari persamaan-persamaan karakteristik sistem putaran terbuka dan putaran tertutup,
Semula prosedur rancangan dikembangkan untuk sistem-sistem masukan tunggal dan kemu-
dian dilanjutkan untuk sistem-sistem masukan banyak.

1. INTRODUCTION

Over the past few years a subtantial amount of literature has appeared dealing
with the problem of optimal control systems with respect to a guadratic
performance index. The gencral approach in solving of these problems is to
choose an initial weighting matrices of the performance index, then to caleulate
the optimal feedback and the resulting system response is then obtained by si-
mulation. Usually. the response is unsatisfactory, and so the performance index
is modified by trial-and-error; the process is repeated until a suticfactory res-
ponce is achieved. These processes are made necessary to be done since the tack
of knowledge of the relationship between the weighting matrices of the perfor-
mance index and the response of the optimal system.

The purpose of this study is to develop a design procedure for the linear opti-
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mal control svstems with respect to a quadratic pertormance index and simul-
taneously the closed-loop system performance can be achicved from o set of
prescribed poles,

2. DESIGN PROCEDURE FOR SINGLE-INPUT SYSTEMS VIA TIME—
DOMAIN TEHNIQUE

2.1 INTRODUCTION

The systems to be discussed are of the nt" order, lincar, time-invariant, single-
input, completely controllable and they are described by the vector-matrix
equation:

X = Ax+bu (2—1)
were x 1s the n state vector, v is the control input, A is a given nx n constant
matrix and b is a given vector.

The optimization problem can be stated as follows:
First of all find linear feedback control law of the form:

u=-k'x (2-2)
so that the quadratic performance index
1= [ (xTOx + ru?) dt (2-3)

should be minimized, where Q is a symmetric non-negative-definite matrix, ris
a positive constant scalar and superscript T denotes transpose.

It is well known that the optimal feedback vector k can be written as
follows 1)

]
kT =—bTp (2—4)
T

where P is the symmetric positive-definite matrix, which is a solution of the
following Riccati equation:

1
PA+ATP — —PbbIP=-0Q (2-5)
r

If the weighting matrix Q and r are given, then the closed-loop poles are com-
pletely determined. In general, however, the resulting response of the close-
lopp system may not be the desired one, but on the other hand, if the closed-
loop poles are given, then the feedback vector k can be easily determined.
However, the resulting system may not be an optimal system with respect to
the requirement (2—3) that is minimized. In this work, a design procedure is
developed and this procedure combines the two approaches to find k and
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matrix Q for a given r, so that the closed-loop system can achieve the desired
poles and simultaneously the minimized quadratic performance index (2-3).

2.2 DEVELOPMENT OF DESIGN PROCEDURE

Without lost of generality, the systems to be treated in this chapter are written
in the following phase-variable-canonical form (2—6)®

k)

"0 1 0., ... 0 ] [ 0]
0O 0 o0..... 0 0
A= . . “ e e w. . andb=1 * 2-6)
O 0 0..... 1 Q
|~dg —d; —a,. . . .. =25 i ld
where a9, - - -,a, | are the coefficients of the following open-loop characteris-

tic equation
n n—1 =
AfM+a A t... ta A+a, =0

or (A=2A)...(A=X)=0 (2=-7)
where Ay, A, are the open-loop poles.
Given A, ..., A, then 4y, ...,4a, _, can be calculated or vice versa.
The closed-loop system equation can be described as follows:

. 1

X=(A-_bb'P)x (2-8)

T
X =Fx

where the matrix F has the following canonical form:

o100 ..., . 0
i oo1 ... . 0
F=A vFi—) _pr = e e e e
000 ..., . 1 {2-9)
-fO—fl—f2 ..... —fn_ld
and f,, ..., fnh; are the coefficients of the foliowing closed-loop characteris-

tic equation
A T L A S A
or A —o)...(A-a)=0 (2--10)

where Qy, .. .. @ are the desired closed-loop poles.
Given @y, ...,a ' then fys ..., £, can be calculated or vice versa.
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Now, et us define vectors a and {as follows

gT:(a“,u,....\;nn ) (2-11)
and o

=, fo () (2-12)
From eqgns. (2--6), (2--9 (2= 11y and (2 -12). we obtain:

a= ATh (2-13)
and . -

f= F'b (2-14)

Since PT = P and b'b = 1, from eyns. (2-9), (2-13) and (2--14), we could
conclude that:

foa=(FT +A'I.)l_1
(

“(Eh bt P (2-15)
= l Pl
l“ f—
Hence, using eqns. (2- 4) and (2 -15), the optimal feedback vector is given by
k=f -u
or K'=(, cay..... foy-a, ) (2—16)

Egn. (2—16) gives the optimal feedback vector k as an explicit function of the
coefficients of the characteristic equations of the open and closed-loop system,
and it forms the basis for the design procedure.

Using egns. (2--15) and (2-16) and choosing r= 1 and Q as a diagonal matrix,
the solution of eqn. (2-4) and the Riccati equation (2—5) can be uniquely
determined in an interactive way by the following eqns. (2-~17), (2—18) and
(2--19), as follows.

P =ty A ci=hoooon 2-17)
Piy =™ Py e +(f - I" - nj) (2-18)
j=i
Lji=1..... n--1
where pn!i=0.i=i,...,n
and G =2yt -aly) (2-19)
where Q= [qi‘l} is a diagonal matrix and,

P={(p, j} is a symmetric matrix.

It the desired closed-loop poles arc located in the region of optimality, the
resulting system will be an optimal one; that is to say P is a positive-definite
matnix and Q is a non-negative-definite matrix‘2):
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Hovoover, if the matrix Q is not chosesn us a diagonal matrix, there is no
unique solution to eqns. (2 -y and (2 -5) for P, Q und k.
The optimal value of the performance index is given as

1* = xT (0) Px (0) (2-20)

where X (0) is a given initial state vector.
Now. one should revert to the original state variable description, using the fol-
lowing equations(®’:

kT= k" M~! (2-21)
P =M pMm! (2-22)
Q =M HT om-! (2—23)
o= g (2-24)

It should be noted that the restriction on Q as a diagonal matrix does not imply
that Q is a diagonal matrix. However, it can bL shown that if Q is a non-nega-
tive-definite matrix then the same is valid for Q The feedback vector k is consi-
dered to be an optimal one if the corresponding weighting matrix Q is a non-
negative-definite matrix.

The condition of optimality, can also be determined from the region of optima-
lity of the closed-loop polest?).

The procedure stated above will be summerized as follows:

1. Transform the orginal state variable discription into phase-variable
canonical form,

Calculate the feedback vector k using eyn. (2-16),

Calculate the matrices Q and P from eqns. (2-17), (2—18)and (2—19),
Calculate the optimal value of the performance index from eqn. (2—20),
Then, one should revert to the original state variable description using
eqns. (2--21), (2-22), (2-23) and (2--24).

Example will be discussed in chapter 3.

RS

3. DESIGN PROCEDURE FOR OPTIMAL MULTI-INPUT SYSTEMS

3.11 INTRODUCTION

In the previous chapter, the system to be treated are single-input systems. This
is due to the computational difficulties that arose in handling polynomial
matrices. The purpose of this chapter is to extend the design procedure
presented in Chapter 2 to multi-input systems. Porter and Crossley(”, Fallside
and Seraji'*’ suggested an eqeivalency design technique for modal control sys-
tem with multi-input. However, the procedure presented in this chapter is
derived for modal and optimal control system.
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32 DESIGN PROCEDURE

The procedure is mainly based on the equivalence of the closed-loop character-
istic polynomijal of a multi-input system and a corresponding single-input

system.
Consider a multi-input system described by

X =Ax BU (3-1)
and the quadratic performance index

I = [xTQx +UT RU) dt (3-2)

is minimized, with the optimal control law
U* = —K'x (3-3)

and the closed-loop system can achieve a set of prescribed closed-loop poles,
“wherex is an n state vector, U is an m input vector, A is a constant n x n matrix,
B is a constant n x m matrix, Q and R are, respectively, n x n non-negative-
definite and m x m positive-definite matrices, K is an n x m feedback matrix.
The closed-loop poles are the roots of the following characteristic equation:

H(s) = Isl—A+BKF { =0 (3-4)
Now, consider a single-input system described by

X = Ax +bu (3--5)
and the performance index

V= (T Qu+ru?)dt (3-6)

is minimized, with the optimal control law
u* = —kTx (3-7)

and the closed-loop system can achieve a set of prescribed closed-loop poles.
It should be noted that the vector b in egn. (3—5) is not necessary of the

0
tvpe.
0
L l
The closed-loop poles are the roots of the characteristic equation:
H(s) = Isl—A+bkT =0 (3-8)

If the roots of the eqns. (3—4) and (3--8) are required to be same value, then
the following equations can be concluded!’}.



PROCELLINGS [TB Vol 15, No. 2, 1982 41

KT = d k! (3-9)
and Bd = b tor some m vector d. (3—-10)
Furthermore, the following cquations can be obtained.

U = du {3—-11)
and the weighting factor for the single-input system:

r=dT R¢ (3-12)

By making use of this equivalency technique, the design procedure for single-
input systems presented in Chapter 2 can be extended to multi-input systems,
once the vector d has been chosen.

3.3 THE CHOISE OF VECTOR d

The choise of vector d, in general, is arbritrary as long as the resulting equiva-
lent single-input system is completely controllable or the open-loop poles are
not cancelled in the open-loop transfer vector of the equivalent single-input
system. The choice of vector b such that the cquivalent single-input system is
completely controllable, can be easily determined form the following open-
loop transfer vector (1-3) .-

G@)=GIl-A)'hb (3-13)
From eqn. (3—10), however, the vector d can be uniguely determined once the
vector b has been chosen, such that rank B = rank [B b].

34 EXAMPLE
Constder the system

0 1 1 O
x= x+ 9] (3—-14)
-2 -3 12 -
The open-loop poles are A; = —1 and X, = 2.
Find the optimal feedback matrix such that the closedloop system achieves
the poles at a; = —3 and «a, = —4, and at the same time minimized the follow-
ing quadratic performance index,

J= ST Qx+UTRU) dt

2 1

el
Il

where and Q is a n x n non-negative-definite matrix.

1 4
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d,
Let d=
dy
d, ]
Then, b=8Bd = .
d, + 2d2J
Hence, the equivalent single-input system is found to be
0 i d,
X = X + u (3—-15)
""2 '—3 d1 + 2d2

The system of egn. (3—15) will be 3 completely controllable system, if the
vector b is to be chosen as -

d, ) [o

Then, eqn. (3-10) yields
0

—[—_lz

g_ =
0,5

The system of eqn. (3-- 15) with the vector d given as above js already in phase-
variable form. The probiem now, can be solved by using procedure presented in
Chapter 2 eqns. (2 -1 1), (2-12) and (2—16). The vector a and f are found to

be QT = (2, 3} and l‘T = (12, 7). Hence, eqn. (2—16) yields 1(_1— = (10, 4)

Now, one should revert to the multi-input (original) system using eqn. (3—-9)
and we get the optimal feedback matrix as follows:

o

Using eqn. (3-12) we obtain that r = l. Hence the matrices P and ( can be
determined by using eqns. (2-17), {(2—19) in chapter 2. By choosing () as a
diagonal matrix, we find that:

,’78 10 140 0O
P = | and § =
[10 4 0 20

KT =
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It should be noted that the multi-input system and the equivalent single-input
system should have the same matrix P and matrix Q.

4. CONCLUDING REMARKS

The objective of this study is to develop a design procedure foralinear optimal
control systemwith Prescribed: closed-loop poles. Via a time-domain technique

and based on the phase-variable canonical-system description, the optimal
feedback vector k and the weighting matrix Q can be directly determined from
the caracteristic equations of the open and open-loop system. This design pro-
cedure is general, that can be applied to any order of the system and the type
poles, i.e., real, complex, distinct or multiple.

The procedure developed for single-input systems has been extended to multi-
input systems based on the equivalence of the closed-loop characteristic poly-
nomials of a multi-input system and a corresponding single-input system.
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