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DESIGN PROCEDURE FOR OPTIMAL MULTI - INPUT CONTROL
SYSTEMS VIA TIME * DOMAIN TECHNIQUE-

by: R.J. llidodo

ABSTRACT

Design procedures for Linear-optirnal control syslems wi ir'r respccl io a cluadratic perfor-
mance index are developed. Via a Time-donrain Technique and based rtn lhe phasc-variable
caronical-syst€m description, the optima.l feedback vector i and the wei6jr ting nratrix 0 can
be directly detemlined ftom the characteristic equations of the open anrl closed loop sys-
tems. Fonnerly the design procedures has been developed for single input systems, and then
to be extended to multi-systems.

SARI

PROSEDUR RANC,CANGAN IJNTUK SISTEM SISTEM KONTROL OI'TIMAL DENGAN
MAS1JKAN BANYAK MELALUI BIDANG WAKTU

Suatu prosedur rancangan untuk Sistem-sistem Kontrol Optirnai Linier dengan indeks perfor-
mans kwadrat telah dikembangkan. Berdasarkan deskripsi sistern perubah pasa dan melalui
bidarg waktu, yektor catubalik optimal f dan matrik pembobotan Q dapat ditentukan secara
langsung dari persamaan-persamaan karakteristik sistem putaran terbuka dan putaran tertutup.
Semula prosedur rancalrgan dikembangkal untuk sistem-sistem masukan tunggal dan kemu-
dian dilanjutkan untuk sistem-sistem masukan banyak.

1. INTRODUCTION

Over the past f-ew years a subtantiaj amount of literature has appeared dealing
with the problem of optimal control systems with respcct to a quadratjc
performance index. The gencral approach in solving of these problems is to
choose an initial weighting matrices of the performance index, thcn to calcr-rlate
tlre optimal f'eedback and the resulting system response is th,:n obtainerj by si-
mulation. Usually. thc response is unsatisfactory, arrd so the perfonlance index
is modiiled by tnal-and-error; the process is repeated until a srticfactory res_
ponce is :ichievecl. T)rcse processes are nrade necessary to be donc since the lack
of kno* ledge of the rdlationship betwcen the weighting rnatrices of the perfor_
mance index and the response of the optimal system.
The purpose of this study is to devr.lop a design procedure for thc linear opti_
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2. DESIGN PROCEDURE FOR SINGLE INPUT SYSTE]\ IS VIA TIN{E_
DO] \ IA IN  TEHNIQUE

2.I INTRODUCTION
' fhe 

systems to bc rliscrrssed tre of thc nrrr order, lincar.
input ,  conlp lc te ly  contro l lab le and they are descr ibcd
equat ion:

x  =  A x +  b t l

were { is the n state vector. ir is thr control inlrut, A is
matrix and b is a given vector.
The optimization problcm can be stated as follows:
Fint of all find linear feedback control law of the fomr:

u = kr-{.

so that the quadratic performance index

J  =  J  l r  Q X  +  r U - )  O t

should be minimized, where Q is a synrmetric non-negative-definite matrix, r is
a positive constant scalar and superscript T denotes transpose.

It is well known that the optimal feedback vector k can be written as
follows (l'5 )

(2-4)

a solution of the

(2-s)

tinre-invariant, single-
by tlre vcctor-matrix

(2  t )

a glven nx n conslant

(2  2 )

(2  3 )

-  t_
k '  = -b 'P-  r -

where P is the symmetric positive-de finite matrix, which is
followins Riccati equation :

I

PA+ArP :Pbb rP= ,Q
r

if the weighting matrix Q and r are given, then the closed{oop poles are com-
pletely determined. ln general, however, the resulting response of the close-
lopp system may not be the desired one, but on the other hand, if the closed-
loop poles are given, then the feedback vector L can be easily determined.
However, the resulting system may not be an optimal system with respect to
the requirement (2-3) that is minirnized. In this work, a design procedure is
developed and this procedure combines the two approaches to find k and
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matrix Q for a given r, so that the closed-loop system can achieve the desired
poles and simultaneously ihe minimized quadratic performance index (2_3).
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2.2 DEWLOPMENT OF DESIGN PROCEDURN
Without lost of generality, the systems to be treated in
in tlie following phase-variable-canonical form (2 6.)16\

0 l  0 . . . . .  0 l  fo
0  0  0 . . .  0 l  lo

t t .

A=l  landu=1.
0 0 0.  I  I  Io

: a o  
- a t  - a 2 .  .  - ? n _ l I

where a0., . . . ,on_ I are the coefficients ofthe following
Ilc equatlon

) . t +an  ,  ) . n - l  + . . .  * a r  t r +ao=0
or  ( I - t r , ) . . . ( l - t r " )=o

this chapter are written,

(2 6\

openloop characteris-

(2-7)

(2-8)

(2 -  10)

where Lr, . . . , ),n are the open-loop poles.
G i ven  t r r , . . . , I n  t hena0 , . . . , 3n_ ,  can  be  ca l cu la ted  o r  v i ce  ve rsa .
The closed-loop system equation can be described as follows:

I
t=  (A -  UbrP)  x

r
x=F I

where the matrix F has the following canonical form:

(2-9')

-d f0, , L _ , are the coefficients of the foliorving closed{oop characteris-
tlc equation

Xn  + fn_ l  t r n ,  + . . . + f r  l + f o  =0

( t r - , r , ) . . . ( t r - .an)=0or

where
Given

er, . . . . an are lhe desired closed-loop poles.
Q r , . . - , a n ' , t h e n  

% ,  , f "  ,  c a n  b e  c a l c u l a t e d  o r v i c e  v e r s a .
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Now.  lc t  us  de{ ino  vec ton  i l  i l n ( l  l ' i l s  l i ) l l ows .

-!- = lr I l')

a n t l  b r b  =  l ,  f r o r n  c q r r s .  ( 2  9 ) ,  ( l - 1 3 )  a n d

f  a = (  t . t - * r l t  1 l r
=  1 1 5  1 r t  1 > , |  1 ,

t - -

=In.,
t -

Hence, using eqns. (2- 4) and (2 - l5 ). thc optimal feedback vector is given by
l = l  i r

o r  k ' l  = ( 1 ,  r r r , . . . . l - n  r  a n _ t )

1]  =  {u , , .  , ,  .
and

f r  =  ( t l f  l l .  .

I r rom eqns .  (2  6 ) ,  ( l  9 ) .  ( l

a  -  A rb

:,rnd

Sincc I'r = P
concl  ude t l r  at :

whcrc

ln tl

w l r t t  c

'  '  '  '  l t , '  ,  )

'  '  I ' ,  
t  )

l i )  a r r l  ( l  l l ) .  w e  o b t l i n :

( l  l l )

( l - l l )

( 2  l 3 )

(2_ t4 )

(2 14;,  we could

(2-  1s)

(2 -  l 6 )

Eqn. (2- l6) gives thc optimal fecdback vector k as an explicit function of the
coefficients of the characteristic equations of the open and closed{oop systenl,
and it forms the basis for the design proccdure.
Using cqns. (2 l5) arrd (2 l6) and choosing r  = I  and Q as a diagonal matr ix,
the solut ion of  eqn. (3-4) and thc Riccat i  equat ion (2-5) can be uniquely
dctennined in an interact ive way by thc fol lowing eqns. (2--17),  (2 l8) and
(2 l9).  as fol lows.

P i . n = i i . - r  i l i  r . i = 1 . .  . , n

P i . ,  =  P ;  j , j * r  + ( 1  . , t ,  
- - a ,  

'  a r )

j > i
i , i  =  1 . . . . .  n  t
p , , , i  =  0 .  i =  1 , .  . . ,  r ' )

Q i , i =  l P ,  r , i + ( 1 , ' ,  u i - r )

Q = t . l i .  r l  is  a  d iagon:r l  tnat r ix  and,

n  = ( p , . , )  i s  r  s y n l n l c t t i c  m a t n x .

lf thc dcsired closed{ot.rp poles arc located in the region of optimality, the
rcsulting system will be an optinral one; that is to say P is a positive{efinite
nrrtrix and Q is a non-ncgative-dc finitc matrix( 2 ):

(2-t7)
(2 -  l8 )

(2-t9)
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l{or , , .  r t r ,  t l  the ur i r t r ix  Q is  lo t  e l roscs l  ns u r l i : r - {onal  r t ra t r ix ,  t l terc  is  no
t t n i ( l u c  s o l r t i o n  t o  c q n s .  ( l  4 )  l  t l  ( l  5 )  l t r l .  I ) .  Q  l t r t l  ! .
T l rc  opt i rna l  va lue of  thc pcr lbr r r rarrcc indcx is  g iverr  ls

J *  =  I r  ( 0 )p I  ( 0 ) (2 20,
wltcre x  (0)  is  a g ivcn in i t ia l  s tatc  vector .
Now. one should revert to thc original statc variatrlc tlescription, Lrsing the fol-
lowing equat ions(6) :

I
I

I

l r =  k rM  I

p  = l y  t y rpp1  r

Q  = fU  t y l q l 4  t

i -  =J4

(2 2l')
(2-22)
( ) - ) 1 )

(2-24)

! .
3 .

5 .

It should be noted that the restriction on Q as a diagonal ntatrix does not imply
that 0 is a diagonal matrix. However, it can be shown that if Q is a non-nega-
tive-definite matrix then the same is valid fbr Q. The feedback vector L is consi-
dered to be an optimal one if the corresponding weighting matrix Q is a non-
negative-definite matrix.
The condition of optimality, can also be detenrrined from the region of optima-
lity of thc closed-loop poles( 2 I .
The procedure stated above will be summerized as follows:

l. Transfonn the original state variable discription into phase-variable
canonical form,
Calculate the feedback vector ! using eqn. (2- l6),
Calculate the nratr ices Q and P from eqns. (2 l7),  (2-18) and (2-19),
Calculate the optima.l valut' of the performance index from eqn. (2-2O),
l-hen, one should revert to the original state variable description using
eqns. (2 '  -21),  (2-22\,  (2-23) and (2-24).

Exarnple will be discussed in chapter 3.

3. DESIGN PRoCEDURE FoR OPTIMAL MULTI-INPUT sYsTEMs

3.I I INTRODUCTION

In the previous chapter, thc systenr to be treated are single-input systems. This
is dLre to the computational dilliculties that arose in handling polynomial
matrices. The purpose of this chapter is to extend the design procedure
presented in Chapter 2 to multi-input systems. Porter and Crossley(3 ), Fallside
and Seraji(a ) suggested an eqeivalency design technique for modal controt sys-
tem with multi-input. However, the procedure presented in this chapter is
derived for mr:dal and optimal control system.
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3.2 DESIGN PR@EDURE

The procedure is mainly based on the equivalence of the closedloop character-
istic polynomial of a multi-input system and a corresponding single-input
svstem.
Consider a multiinput system described by

_L =Ax BU

and tile quadratic performance index

r  = ferer+Ur Rq)dt

is minimized, with the optimal control law

U*  =  -K rx

(3 -1 )

(3-2)

(3 -3)

and the closed-loop system cal achieve a set of prescribed closed-loop poles,
wherelis an n state vector, ! is an m input vector, A is a constant n x n matrix,
B is a constant n x m matrix, Q and R are, respectively, n x n non-negative-
definite andm x m positive-definite matrices, Kis an n x m feedback matrix.
The closedJoop poles are the roots of the following characteristic equation:

H  ( s )  =  l s l -A+BKr  i =0

Now, consider a single-input system described by

*  =A I+bu

and the performance index

J  = . l .  ( 1 ,  ex+ ru r )d t

is minimized, with the optirnal control law

t t *  =  k T x

(3-4)

(3-s)

(3 -6)

(3  7 )

and the closed{oop system can ac}rieve a set of prescribed closedJoop poles.
It should be noted that the vector b irr eqn. (3 -5) is not necessary of the

ty pe.

The closed-loop poles are the roots of the characteristic equation:

H(9= l s r -A+r ' k r  l=0  (3 -8 )
If the roots of the eqns. (3 4) ard (3-8) are required to be same vahre, then
the following equations can be concluded(7 ).

:

;
I
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KT = . l  k l

and B!  = b tbr  sonre nr  rcctor  L l .
l - t t r l l t e r  r r r o r . . .  t l r c  f o l l o u i r r y  c ( l l t J l i u n s  e : r r r  h l  o l r t r r i r r , . r l .

L I  -  dLr

an{ l  the wcight ing factor  lor  thc s jngle- inpLl t  systcn l :

r=dr t td
By making use of  th is  ec;u iva lency technique,  the design
input  systenls  presr .nted in  Chapter  I  c : rn be cr tcnded to
once the vector  d has bccn chosen.
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( l  9 )

(3_  l 0 )

(3  l r )

(3 t2)
proccdrrre for single-
mult i - input systcnts,

3.3 THE CHOISE OF VECTOR d

The choise of vector d, in general, is arbritrary as long as tlle resulting equiya-
Ient single-input systenl is completely controllable or the openloop poles are
not cancelled in the openJoop transfer vector of the equivalent single-input
system. Thc choice of vector b such that thc cquivalent single-input system is
completely controllable, can be easily detenlined form the folowing open-
loop t ransfer  vector  (1 5) : ;

G (s)  = (s t  A)  |  L ' |  (3  13)
From eqn. (3 l0), however, the vector d can be uniquely detemrined once the
vectorb has been chosen, such that rank B = rank [B bl.

3.4 EXAMPLE

Consider the system

,=f''lo.f' 'lo
[-u -: l  l r  2]

(3- l4)

The openJoop poles are tr, = I and tr, = -2.
Find the optimal feedback matrix such that the closed-loop system achieves
the poles at ar = 3 and a, = -4, and at the sane time minimized the follow-
ing quadratic performance index,

Qx + UT RU) dt

'l
4)

IQ '"P
L
L r

where R= and Q is a n x n non-negative-definite matrix.
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fo' lThen,  b=Bd= I
la' * zt']

Hence, the equivalent single-input system is tbund to be

. fo ,l la, lx= I  l - r  +  |  lu
L-2 3.1 [0, + zaJ

The sV1t9m of eqn. (3-15) will be a completely controllable system, if th€vector! is to be chosen as :

foI
d  = t  I- 

Lo,sl
The system of eqn. (3-. I5) with the vector d g.iven as above is alreacly in phase_variable form. The problern now, can be solvert by using procedrre presented irrChapter 2 eqns. (2 - l  l ) ,  (z 12) and (2_16).  l i .  

" . i l ' r ' j  
r ra f  are found to

be  a r  =  ( 2 ,3 )  and  f  =  t f : . 7 ) .  Hence .  eqn .  ( 2  t 6 ) l i . t a ,  t .  =  ( 10 ,4 )
Now, one should revert to the multi_input (origjnal) system using eqn. (3_9)and we get the optimal feedback nratrix as follows:

, r  [o ol
K'= iLs zl

Using eqn. (3 12) we obtain that r = l_ Hence the rnatrices p and e can bcdetermined by using eqns. (2 l7), (2_19) i; 
"h;;;;';;choosing 

(.) 35 ndiagonal matrix. we tjnd that:

fo 'J
d=  I  I-  

[0, ]

fd' I tol
b= l  l= l  I- 

La, * u,r,l | 'J
Then, eqn. (3- I 0) yietds

l7B lo l  | l4o ol
P= i  lande= I  I

Llo  4)  [o2o l

(3-1s)
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It should be noted that the lltulti-inplll systet)l and the equivalent single-input
systenr should have the sanle n)atrix P and ntatrix Q.

4. CONCLUDING REMARKS

The objective of this study is to develop a design procedure foralinear optimal
control system with Prescribed closed-loop poles.Via a tine-domain technique
and based on the phase-variable canonical-system description, the optimal
feedback vector ( and the weightlng miltrix Q can b.'directly determined from
the caracteristic equations of the open and openJoop system. This design pro-
cedure is general, that can be applied to any order of the system and the type
poles, i.e., real, complex, distinct or multiple.

The procedure developed for single-input systems has been extended to multi-
input systems based on the equivalence of the closed{oop characteristic poly-

nomials of a multi-input system and a corresponding single-input syst('m.
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