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OSCILLATION THEOQREMS FOR SECOND ORDER
DELAY EQUATIONS

*)
Sahala Nababan

RINGKASAN

Dalam tulisan ini kriteria cksilasi untuk
suatu persamaan diferemsial, diperluas.

Hasil yang diperoleh dari perluasan itu
menjadi berbentuk

(r(t)y"(t)) ' + Flt,yl(t),ylglt))) = 0_
untuk t > a > 0.

* ABSTRACT

Recently, oscillation eriteria for cer-
tain second order delay differential equations
have been substantially studied by (2], 131,
[5], and others.

In this paper, we gemeralize and extend
some of their resulte to a more general delay
differential equation of the type

(r(t)y'(t)) ' + P(Lt,y(t),ylg(t))) =0

tza>0.
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1. INTRODUCTION

Consider the following delay differemtial equation
(e()y' ()" + FE,y(t),y(g(t))) =0 t2a>0 (1-1)

where F € C([a,®) x R x R, R); g € C([a,»),R); r € C'([a,”)R);
r(t) > 0 for t 2 a; and g(t) + @ as t + =,

Clearly, Eq.(1-1) is more general than the following two
differential equations

(e(t)y" ()" + pde) £(y(),y(g(t))) =0 t2>a>0 (1-2)

where f € C(R x R,R); p, g are assumed continuous on [a,%);
rec'([a,®),R); r(t) > 0 and p(t) > 0 for t 2 a; and g(t) + =
as t + @,

y'(£) + F(t,y(t),y(g(t})) =0 t2a>0 1-3

where F @ C([a,») x R x R,R}; g¢g ¢([a,®), R), and g(t) +=
ag t +» o=,

Recently, Chiou [3], Erbe [5], and Ladas [8] have obtain-
ed some oscillation criteria for Eq.(1-3) and Bradley [2] for
Eq.(1-2). The purpose of this paper 1s to present conditions
for the oscillatory of solutions of Eq.(1-1). We would see
that oscillation criteria . depend significantly on the rate of
increase of the function g(t) and the boundedness of the func-
tion r(t). The main results of the paper generalize and ex-
tend some of the previous results of Bradley [2], Chioun [31,
Kung [7], Travis [10], Waltman [11], and Wong [13]. These
results are obtained by using integral inequality and a well-
known theorem of Wintner [12]. As a comsequence of our main
results, an oscillation criteria is given for Eq.(1-2).

Consider the equatiom )

F(E) + Ap(t) y(&) = 0 O a-

We shall call p(t) a strongly oscillatory coefficient if (1-4)
is oscillatory for all positive A. For the case p(t) 20,



79

Nehari [9] has shown that

lim sup t (w p{s)ds = =
= t

is a necessary and sufficient condition for p{(t) to be a
strongly oscillatory coefficient.

A nomtrivial selution to (1-1), (1-2) or (1-3) is called
oscillatory 1if it has arbitrarily large zeroes in [a,®), and
nonoscillatory if it is eventually of one sign on f[a,®).

Eqs.(1-1), (1-2} or (1-3) is said to be oscillatory if
its every solution is oscillatory. We shall assume the exist-
ence of nontrivial solutions of (1-1), (1-2) or (1-3) in the
interval [a,=), A general discussion of existence and unique-
ness of solutions to delay equations is given 1in El'sgol'ts

[4].

2. OSCILLATION CRITERIA

In order . to prove the oscillation theorem, we need the
following Lemma. 1Its proof is similar to those of Bradley [2,
Lemma 2] and Erbe [6, Lemma 1-2].

Lemma 1. Consider the differential equation (1-1). Suppose
that the following conditions are satisfied:
(1) F(t,u,v) has the sign of u and v when they have the
same sign for t > a;
(ii) F(t,u,v) 1is nondecreasing in both u and v for t > a;
and

(1i1) r;%:—) = w,

Then, if y(t) is a solution of (1-1) that is eventually post-
tive (negative), y'(t) > 0 (y'(£) < 0) for all large t.

Proof. Let y(t) > 0 for all large t. Firstly, we show that
y'(t} > 0 for all large t. If this 1s not true, then there
exists a t, larger than the last =zeroes of y{(t) and v(g(t))

such that y'(to) < 0. Fort>t
Q

(r(t)yy" ()" = - Fle,vle),v(glt))) < O (2-1
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Integrating (2-1) from tO to t, we have

r(t)y'(t} < l’(to)y'(to) <0

r(e )y ()

Hence, y'(t) < )

for t 5_t0. (2-2)

Integrating (2-2) from to to t, and letting t + @, we see that

y(t) is eventually negative. This contradicts the hypothesis.
Next, let us assume that {Tn} is a sequence of real num-

bers at which y'(Tn) =0, ¥n, and Tn + «, Thus, it follows

from the above result that y(t) is nondecreasing for t suffi-
ciently large. Therefore it has a limit (finite positive or
+ ®). This implies that there exist a constant ¢ > 0 and a
sufficiently large t. such that y{t) > ¢ and y(g(t)) > c for

1
all t > t- By conditions (1) and (11), F(t,v(t),yv{g(t))) >
F(t,c,c) > 0 For t > tl. Thus, by choosing a Tke {Tn} s0

that T, 2 tl,' we obtain from Eq.(1-1) that for all t » t

(x{)y'(£))" < - F(t,c,c) ' (2-3)

Integrating (2-3) from Tn to Tn+1 (n > k), summing over the
indices n and wusing the fact that F(t,c,e) > 0 for t 2_Tk, we

obtain a contradiction. Thus, we have that y'(t) > 0 or
y'(t) = 0 for all large t. However, if y(t) = 0 for all large
t, then y(t) = ¢ for some constant ¢ > 0. A contradiction
follows immediately from Eq.(1-1) and condition (1), There-
fore, y'(t) > 0 for all large t. The proof remains the same
if y(t) < 0 for all large t. This completes the proof.

With the help of Lemma 1, we prove the following tehorem.

Theorem 1: Consider the differential equation (1-1). Suppose
that the following conditions are satisfied
(i) F(t,u,v) has the sign of u and v when they have the
same sign for t > a;

(ii} F(t,u,v) is nondecreasing in both u and v for t 2> a;

(iii) r—‘g§—)~ = w; and
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(iv) Im |F(t,c,c) |dt = =, for every constant c # 0.
Then Eq.{l-1) is oscillatory.

Proof: Let y{(t) be a nonoscillatory solution of (1-1). Since
all the assumptions of Lemma 1 are satisfied, it follows from
Lemma 1, that we may assume y(t) > 0 and y'(t) > 0 for all t >
to_z a. This implies that y(t) L as t +» =, where L. is a

finite positive or + =. 1In either case, there exist a con-
stant ¢ > 0 and a tl, t1 z_to, such that y(t)} > ¢ and y(g{(t))

> ¢ for all t 2_t1.

By conditions (i) and (ii}, it follows from integrating

(1-1) from t1 to t that for all t = t1

r(e)yy'(e) = x(e))y'(t)) - {t F(s,y(s),y(g(s)))ds
t
(t
g,rftl)y'(tl) - lt F(s,c,c)ds (2-4)
1

Thus, we obtain from condition (iv) that r(t)y'{(t) is eventu-
ally negative for sufficiently large t. Further, since r(t) >
0, it is clear that y'(t) is eventually negative. This con~
tradicts the fact that y'(t}) > 0 for all t 2_t0. A similar

argument applies to the case in which y(t) < 0 for all large
t. This completes the proof.

Note that Theorem 1 contains Theorem 3-1 of Ladas [8] in
the case n = 2 as a special case.

Remark I. The condition {iv) of Theorem 1 {is mot a necessary
condition as shown in the following example.
Consider the equation

¥t + Lz y(t) =0
2t

Clearly, the condition (iv) 1is not satisfied. However, the
equation is oscillatory, (see Bellman [1]. Theorem 10, p.
121).

o v aee oeems
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In order to obtain the desired oscillation criteria for
Eq.(1-1), we shall impose scme restrictions on g(t) and r(t).
Suppose that there exists a differentiable fucntion q(t} such
that

g{(t) < min {g(t),t} and q'(t) Z.Y >0 ‘ (3-1)

for sufficiently large t.

We prove the folowing theorem using a well-known theorem
of Wintner [12, part 4, p.371].

Theorem 2. Consider the differential equation (1-1). Let
g(t) and q(t) satisfy (3-1) and suppose that
(1) F{(t,u,v) has the sign of u and v when they have the
same sign for t > a;
(i1) F(t,u,v) is nondecreasing im both u and v for t > a;
(iii) there exists a positive nondecreasing continuous func-
tion k{(t) for t > a, and a constant M > 0 such that
|ui > M implies

k_(ptlvl)F(t,u,v)

v

lim inf > e |F(t,c,0)] (3-2)

[v[>e

for every constant « > 0, for some constant ¢ ¥ 0, for
some £ > 0 and for sufficiently large t.
1

(iv) O 23 >0 and r'(t) > 0 for sufficiently large t;
and
fm F(s,c,c)
{(v) 1lim sup t ds = « (3-3)
foco }t k(g(s))

for every constant ¢ # Q. Then Eq.(1-1) is oscillato-
V.

Proof: Let y(t) be a nonoscillatory solution of Eq.(1-1).
Then, by (iv) and Lemma 1, we may assume that y(t) > 0 and
y'(t) > 0 for all large t > to > a. (The case y(t) < 0 can be

similarly treated). Choose a tl Z_to so that q(t) =~ ¢t and
Q

' (t) > 0 for ¢t > ty: Then it is easily verified from
Eq.{1-1) that y"(t} <0 for t > t,



Define wit) = x(t)y (t) for t >

y(a(t)) >ty
Clearly, for t > tys w(t) satisfies
wi(r) + ECEy(O),y(g(e))) , w(t)y'(a(t))q' () _ (3-4)

y(q(£)) y{q(t))

Since y{(t) is increasing and positive for all t 2t it has a

limit (a finite positive or + =). We shall discuss these two
cases separately.

(1) If lim y(t) = L, where 0 < L. < =, then we may choose a
o

t, * tl, so that, for t > t

2 2

y(t) > % L and y(g(t)) > % L (3-5)

Since y'(t) is nonincreasing for t > t it follows from the

) 1’
mean value theorem that 0 < a y(t) < t for some positive con-
stant & and for all large t 2_t3 > tz. Thus, if we choose a

>
t, 2 ty SO that g(t) > t, for t > t,s we have

a y{g{e)) < g(r) {3-6)

for t 2_t4.
Since F,k are nondecreasing, and y(t) is increasing for

t 2‘t2, it follows from (3-1), (3-5) and (3-6) that for t z't&

F(e,y(t),y(g{t))} . kfay(g(t))) F(t,y(t),y(z(t)))
y(q{t)) = k(ay(g(t)))-y(t)

k(o) F(t,%L,5L)
= k(g(t)) L

_ o PG,k b1 i
=P TG -7

where
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(1i) Now, suppose that y(t) + = as t + ©, Since y'(t) 1s
nonincreasing for t > tl, it follows from the mean value the~

orem that § < a y(t) < t for some positive comstant a and for

all large ¢t > t5 > tl. Thus, 1f we choose a t6 > t5 so that
g(t) 2 t5 for t > t6’ we have i

0 < ay(g(t)) < glt) (3-8)
for t > t6.

Since F,k are nondecreasing, and y(t) is increasing, we
deduce from (3-1), {3-8) and condition (111), thar for ¢t > t_’

2t

Fle,y (), y(g(t)) | k(ay(g(t))) Flr,y(t),y(g(t)))
y{q(t)) = k(a(y(g(t))) y(g(r))

> k(ay(g(e))) F(e,y(t),y(g(r)))
- k(g(t)) y(g(1))

- th,c,c) _
€ Rty (3-9)

for some € > 0, and for some constant c # 0,
In view of jnequality (3-7) and inequality (3-9), we gee
that (3-9) holds true for both cases, for t > t,. Further,

since y"(t) is nonincreasing for t > tl’ we have 7
w(t) y'(q(t)) q' () YO
BEETCTO)! =Y v SN
2y A wi(e) | (3-10)
Thus, (3-4) is reduced to
W) + e DEaCae) Ly 200 g (3~11)

k{g(t))
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Now, let R(t) =y X w(t). Then, we obtain the following Ric-
catil inequality from (3-11)

' 2 F(t,c,c) _
R(t)+R(t)+Y)\€"kTg—E——Lm__<_0 (3-12)

Thus, it follows from the result of Wintner [12, part 4, p.
371}, that the equatiom

F(t,c,c

(gt Y& =0 (3-13)

¥ (t) + YAe

is nonmoscillatory.
But this contradicts the fact that conditien (v) is a

necessary and sufficient condition for E{iff;%l- to be a

strongly oscillatory coefficient for Eq.(3-13). Thus com—
pletes the proof.

Remark 2. 1If g(t) < t in Theorem 2, the conditions ({i{it) and
(iv) can be replaced, respectively, by

(111)" there exists a positive nondecreasing continuous fune-
tion k(t) for t > a such that for sufficiently large t

I?m inf }k(“ivl)z(t’“lf) 2 e |F(t,eoo)|  (3-14)
vw
lu|2]v]

for every constant a > 0, for some £ > 0, and for some
constant c # 0

(1v) " lim sup ¢t ,fiﬁi%g§l' ds = (3-15)
tm

for every constant c # 0.

Consider the following equations

y'{(t} + %(t% n t)-Li y®@no t) =0 t > 1 {3-16)

and

-7/4

oyt rxe gm0 m0 e G-17)
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We see that both equations have nomoscillatory solutions y(t)
= Vt. However, in view of Eq.(1-4) we note that p(t) =

-7
L3 (t:&.n t:)--!5 and p(t) = 5 t 14 are strongly oscillatory coef-
ficients. Thus, the assumptions on the rate of increase of
g{t) and the boundedness of r(t) givem in Theorem 2 are nec—

essary.
We shall prove the following theorem.
Theorem 3: Consider the differential equation (1-1). Let

g(t) and q(t) satisfy (3-1), and suppose thar conditions (i),
(ii), (iii) and (iv) of Theorem 2 are satisfied. Then, if

k(g(t)) 4t

r (Av t|Ft,e,0] l_] dr = (4-1)

for every constant ¢ # 0, Eq.{1-1) is oscillatory.

Proof: Let y(t) be a nomoscillatory solution of (1-1). Using
the argument similar to that of Theorem 2, we may assume that
y(t) > 0, y(q(t)) > 0, y'(t) > 0, and y"(t) <0 for all t > ¢

1
> a. t r(e)y' (¢
v = = —-—-g—)—L(—l £ > .
Define w(t) (g () or t 2 tl

Differmtiating the expression for w(t), it follows from
Eq.(1-1) that for t > tl :

W) = EEEy(®),y(a(e))) _ r(e)y'(r)
y{(q(t)) y{q(t))

Lt r(t)y;(t) (y{q(t)))" (4-2)
y (q(t))

Arguing as for theerem 2, we have for all ¢ > To 2> I:1

th,z(c;,zgg(tn{; F(t,c,c) -
32 () 2 € v g 0 (-3

for some constant ¢ # 0, and some £ which is chosen in such a



way that U - 1. fuarcoer, fince s+l Is= nondecreasiug for
£ > tl, it follows from tne argument similar to that of Theo-

rem 2 that

e ey () a5, W (6 (4-4)
2 = t
vy (q(e))

By (4-3) and ({(4-4), we see that Eq.{4-2) can he reduced to

t Ft,c,c) + wit)

2
w (L) _
(g(£) e TAY T (4-5)

w'(t) 2 ¢

for t 2T .
©

Since 0 < £ < 1, Eq.(4-5) becomes

i

2
1, t F(t,c,c) w{t) w (t)
pu W (t) 3 k(g(t)) + t + Y t

Let H(t) = VXy w(t) + w%— . Then, for ¢ 2T

) .
w'(t) _ H'(t) t Fr,e,e) ,B7(E) 1 4t
/iy z k(g{t)) T2 LAy t (4-6)

Integrating (4-6) from To to t, we obtain

we , th SR ICOTI
ey e/ To k(g(s)) 4iys
t 2
+ [ H(s) 4 (4-7)
T S
o]

By (4-1) and the fact that ky > 0, we see that the sum of the
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first two terms on the right side of (4-7) will be positive

for sufficiently large t > T1 3_T0, and hence for t 2_T1

ds = K(t)
eVxy JTO
Hzgtz 2 K2(t2
Thus, K'(t) = L 2 € Ay — » and
L
%—5_ ; K £ fort » 1, (4-8)
Ay K7 (1)

Integrating (4-8) from Tl to t, and letting t + <, we obtain

TP
T1 £ kY K(Tl)

r

This 1s a contradiction. The case y(t) < 0 can be treated in
the same way. This completes the proof.

Note that we can see from Theorem 3 that the assumptions
on the rate of increase of g(t) and the boundedness of r(t)
are required for (4-1) to hold.

Remark 3
(i) In particular, Theorem 3 shows that Eq.(1-1) 1is oscilla-
tory, if

lim inf __lﬂ.t_ﬁzﬁ)_J. (4-9)

k(g(t)) 417

for every constant c ¥ 0,
(ii1) If g(t) £ £ in Theorem 3, condition (iii) can be re-
placed by (iii)' of Remark 2, and (4-1) by

k(t) 4t

fn [AY ElIKE;ELElL -1 de = o ' (4-10)

for every constant c # 0.
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As a consequence of Theorem 3, we have the following <o-
rollaries.

Corollary 1: Consider the differential equation (1-1). Let
g(t) and q(t) satisfy condition (3-1), and suppose that condi-
tions (i), (i1), (iii), and (iv) or Theorem 2 are satisfied.
Further, if

§
t |Flt,c,c) . o _
‘ (e (c)) dt (4-11)

for every constant ¢ # 0, and for some § < 1. Then, Eq.(1-1)
is oscillatory.

Proof: From (4-11) it is clear that for any € > 0

taiF(tzc!c) N 1 (4-12)
k{g(e)) “'t1+ﬁ

s

for all t 2_To.z a. Thus, if € is chosen so that € +§ < 1,
we have

t ]F(t,c,cl] 1 YA 1 1 1-(e45) 1
[M T R R -

Therefore, for all t 2_T1 2 To

AL

(XY t IF!t,czc)] _ 1 (4=13)

k{g(t)) 4t =

Integrating (4-13) fromrT1 to t, and letting t > w,. we obtain

(4-1). Thus, it follows from Theorem 3 that Eq.(1-1} is os-
cillatory. '

In view of the inequality (4-12), it is readily secen that
the condition (4-11) implies the condition (3-3).
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Using the similar technique as for Corollary 1, we have

Corollary &: Consider the differential equation (1-1). Let
g(t) and q(t) satisfy condition (3-1), and suppose that condi-
tions (i), (ii), (iii) and (iv) of Theorem 2 are gatisfied.
Further, if

oo t iF(th9C)|

- dt = (4-14)
I (log ()Y k(g(e))

for every constant ¢ # 0, and for some § > 1. Then Eq.{1-1)
is oscillatory,
Proof: Clearly, the condition (4-14) implies that for any

given o > 1

t |F(t,c,c)| 1

B Ed m forallt.?..tola
(log g(t}}" k(g(t)) t(log t)

+

Thus, choosing

& < B, and using the fact that q(t) 2 b t for
some b with 0 < b < vy

and for t > tl > a, we have

el Gog ge))® |, (og a(en®

- Qog b0)® | Xy (log be)® (log bt)P™® (4-15)
= t(log t)a -t Llog t

> = .
for t 2z t, = max {to,tl}

Since %g—g%-* 1l as t + =, there exists for every given €

with 0 < e <1, at,>asuch that 22825 5 1 _ ¢ for ¢ > ¢..
3 log t 3

Thus, for t 2 t, = max {tz',t3}, the inequality (4-15) becomes

a L F(t,c,c) > ) (1 - e)a {log bt)BhOl
Y TR gy =Y t



91

Therefore,
t [F(t,e,0)] 1) .1 0 B-a _ 1
[XY (e (0)) AtJ 2 Ay (1 - €} (log bt) A
1
> = f -
27 0ra11t_>_t5>_ta (4-16)

Integrating (4-16) from t_ to t, and letfing £ + =, we obtain

5
(4-1). Thus, by Theorem 3, Eq.{(1-1) is oscillatory.

Applying Theorem 2 and Theorem 3 to the Eq.(1-2) we ob-
tain the following Corollary.

Corollary 3: Consider the differential equation (1-2). Let
g(t) and q(t) satisfy the condition (3-1), and suppose that
the following conditions are satisfied

(1) f(u,v) has the sign of u and.v when they have the same
sign;
(11} £{u,v) is nondecreasing in both u and v;
(111} there exists a positive nondecreasing continuous func-
tion k(t) for £ > a, and a constant M > 0 such that
lu| > M implies

lim inf ’k(alvj-)vf(u"')l >e>0 (5-1)
L]

for every constant o > 0 and for some €.

(iv) r%t) > X >0, and ' (t) > 0 for all large t;
. . p(s) ~ o e
(v} either lim sup ¢ (g(s)) ds (5-2)
L t
or
r [A«{ _Lple) 1—} dt = o (5-3)
k{g(t)) 4t -

Then, Eg.{1-2) is oscillatory.



Remark 4
(1) If g(t) <t in Corollary 3, conditions (iii) and
(iv) can be replaced, respectively, by

(1ii)"' there exists a positive nondecreasing continuous func-
tion k(t) for t > a such that

lim  inf ’k alv]) £(u,f . 4 (5-4)
v v
lulz|v|
for every constant o > 0,
(iv)' either lim sup t [m %%E% dg = o (5-5)
£ t
or
roil
tple) 1 - _
) [}‘Y k(c) " ae) O (5-6)

(2) In the case g(t) and r(t) satisfy (3-1) and condi-
tion (iv) of Theorem 2, respectively, C(orollary 3 contains
Theorem 2 of Bradley [2] as a special case. In particular, if
r(t) = 1, Corollary 3 contains the results of Waltman [11],
and Theorem 2-2 of Travis [10], as special cases.

Consider the following equation

y'(t) + p(e)y(eglt)) =0 vt¢>a>aq (5-7)

where p and g are continuous on [a,=]; p(t) > 0, and g(t) + =
as t + =, Eq.(5-7) is a special case of Eg.(1-2) when r(t)
1, and f(u,v}) = v. TIf k(t) =1 for t > a, we have the follow-
ing corollary.

Corollary 4: Consider the differential equation (5-7). Let
glt) and q(t) satisfy (3-1). Then, if either one of the fol-
lowing two conditions are satisfied

(a) lim sup t fm pi{s)ds = = (5-8)
o 7 t )

b) r (Yt p(t) - l—? dt = <, (5-9)
4t;

Eq.(5-7) is oscillatory.
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Remark 5. Corollary 4 improves Theorem 4-1 of Wong [13}], Co-
rollary 2Z-4 of Erhe [5], Corollary 4-1 of Kung [7], and Corol-
lary 2-4 of Chiou [3].
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