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THE MULTIPLICATION PROBLEM FOR SPHERES

Howard Stauffer*)

RINGEAS AW

. Masalah pendarapar  bagi bola adalah mas -
alah wntuk menentukan bola-bola dalam  Ruang

Fuclid 871 > E" membenarian suatwu pendarcpan
yang kontinu., Tulisan ini menyampatkan  bukits
teori K topologi bahwa hanya dapat terjadi
apabila n =1, 2, 4, dan 8. Kasus ini berge-

2
suaian dengan s° » g1, 514 g% gL 4 4

57+ &f di mana pendarapan-pendarapan diberi-
kan oleh bilangan-bilangan riil, kompleks, ku-
aternton, dan bilangan Cayley.

ABSTERACT

The meltiplication prohlem for spheres is

to determine which spheres in Fuclidean space
BRI permit a continuous multiplieation.
This paper presents the topolegical  K-theory
proof that 4t is only possible when n = 1, &

0

]

4, and 8. These cases eorrespond to S
ol WA 4 7 8 .y
SOE LS B and 3 BY here the multi-
plications are given respectively by the real
numbers, complex numbers, quatermions, and
Cayiley numbers.
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Rt : Pllustrates  tne yuwe? of k-
Chaorv, & ooy e o e o we . on an (nel)

satisfying the additional property

m(e,x) = m{x,e) = x, x € Sn_l

where e is some fixed base point, The multiplication problem
for spheres is simply to determine for what n such a multipli-
cation m exists, 1t does exist for n=1, 2, 4, and 8. The
case n = 1 is trivial, and, for the cases =n = 2, 4, and 8,
multiplications are given respectively by the complex numbers,
gquaternions, and Cayley numbers. These are Iin fact the only
n. This answer was only obtained around 1960 by J.F. Adams
after at least 25 years of Investigation by many leading math-
ematicians. Historically, several papers made leading contri-
butions toward solving the problem. H. Hopf presented some
valuable machinery in a paper in 1935. G.W. Whitehead elimi-
nated all possible values of n except n = 2 or 4r {(from now on
we will forget the trivial case and always assume n > 1) in a
paper 1in 1950 (see references)., In papers 1in 1952 J. Adem
further eliminated the possible values of n to n = 2% using
Steenrod squares in ordinary cohomology, and H. Toda eliminat-
ed the wvalue n = 16. Finally J.F. Adams gave a complete
solution to the problem in 1960 using a deeper analysis of
Steenrod squares. We shall present here a different proof
using Adams operations in K-theory.

Throughout the discussion we shall always be using a
suitable category of pointed topological spaces Topo. The

multiplication problem considered in the homotopy category be-
comes a problem of H-spaces. The entire ensuing discussion
could be considered for the homotopy category yielding similar

R . n=-1 .
resuits. That is, we would conclude that S 1 is an H-space
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Let us now assume we have a map {nut necessarily a con=-
tinuous multiplication with unic}

We shall obtain from this the Hopf construction

mo:ostlogn

as follows. First rewrite m as
m: S. XS, >8S

where Bl and B2 are n-cells such that B(Bi) = Si' Then

o(Bl X B2) = Bl X 52\; S} X 52

is a (2n-1) sphere S2n~l, and

n = )
By x§,n S xB,=5 x5,

Let $° = 85§ be the suspension of S (i.e. §° is the quotient
space S X I/(8 x 0, S x 1, e x I} with base point e x I}, S”

is an n sphere. Then §7 = H y H_ where H+ and H_ are n-cells

and H+r\ H_ = 5. We want to extend m to a map

m:BIXSZUSlez-*S

such that m(B]L X 82) s H+ and m(Sl X BZ) C H_. Clearly this

*
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is possible. MWe can make things explicit by defining the .’

* . This i i ipace 5, X 5 X U
Sl 52 his is the quotient space 1 32 X 1/(‘:l X v x4,

x X5, x1, e Xxe X 1I)with base point ¢ x e x I. Then

<

Proof. The map f defined by
f(x,y,t) = (2 min (1-t,%)x, 2 mia (t,%)y)

is easily seen to be a continuous bijection between compact
spaces, hence a homeomorphism. QED.
Then define the Hopf construction as the map

ﬁ:sl*sz+s’
given by

m(x,y,t) = {(m(x,y),t).

The Hopf Invariant

_Next we shall want to define the Hopf invariant of this
map m. We shall need K-theory to do this, so let's first re-
view ‘the brief amount of EK-theory needed here. We shall be
using the complex K functor: Top + Rings and the complex re-
duced K functor K : TopD + Rings. Given any map

f:X~>Y
we have the Puppe sequence
f
X-Y~» Cf + sX > sY




where Cf is the rapping cone 0f 7 given by the quotient space
XA T Y/ (X x0, x Xx1= f(x), X, x 1) with base point x)xl.
8

This gives rise to the exact sequence
K(sY) * K(sX) * K(C;) > K(¥) > K(0).
There is defined a cap product
K(X) ®K(Y) » K(XA T)

where the smash product X A Y is the quotient space X X Y/XV
Y (the wedge preduct Xv Y is the quotient space X (9 ¥/(x =
yo)). We then have the composition °

~ - ~ - A*
K(X/a) @K(X/B) *> K(X/A A X/B) = K (XxX/AxXUXxB) + K(X/AvB)

where A ! X + XxX is the diagonal map. Note, finally, that
K(S™) = ¢ if n is odd. E(Sz) is the free abelian group with
generator Bz = [H} - [1], where H is a line bundie, subject
to the single relation Bi = 0. For general even dimensional
spheres K(Szn) is the free abelian group with generator 82(:)
82®...®82 {n times) = an.

Now we can proceed to define the Hopf invariant of m :

In—
S -l -+ Sn. The Puppe sequence

+ 21

In-1

gives rise e the exact sequance
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Lhioovse x,v o K{(C ) such that (.")1) = v and (x) = 7, Since
= k4l : 5 1l
. M . RN ks B -
and © are ring homomorphisms [(x7) = %7 = 0 and w2 = W)y
n

for some integer H{m). Define H(m) as the Zopd Joeoyl oo of
m.  We need first to show that H{R) is well-defined (i.2. in
dependent of the x chosen). So let =Ty = F . Then x~ =
"z 2 2 :

X + ry for some integer r. Hence (x7)° = x™4 2rxy + ¢ y© o= x

- >
= H(m).y. For, clearly v~ = 0. To show x.y = (3, consider the
two cases. If n is odd, ¥ = ty for =ome integer t and X.¥y =

2
ty = 0. If a is even, © is a monomorphism. So x.y = uy for

some integer u and uzy = xzy = H(ﬁ)y2 =0, and u = 0. So H(m)

is well-defined. Note that if n is odd, H{m) = 0,

The Multipiication Problem

We now quickly outline the solution to the multiplication
problem for spheres. Given any map

(not necessarily a continuous multiplication with unit) we
define the bidegree of m to be the ordered pair of integers
(dl,dzj where dl is the degree of the map

-1 -
1t { ,yo) : 8" x y_ > st !

and d2 is the degree of the map
m{x , } : x X8 + 5 .
o o

From now on we shall assume n > 1 is even. Later we shall
justify this assumption. But for now let's state the main
results.

Theorem I. Let m : thl X Sn_l - Sn-l be a map of bidegree
(dl'dq)' Then H{(m) = dldz.
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o1 . .n-l n-1 n-1 ] -
Theorort L. Let om S X 5 + 8 be a map. Then ii H(m)
is edi, n = 2, 4, or 8.

.. n-1 n-1 n-1 \ .
Jorciiary,. lLet m 1 S X 5 + 5 be a continuous wmu.ti-

plication with unit. Then n = 2, 4, or 8.

Prooy to Coreliary. Since m(x,e) = m{e,x) = %X,V x, the bi-
degree of m is (1,1). Hence, by Theorem 1, the Hopf invariant
H(m) of its Hopf construction ® is 1. By Theorem 7, n = 2,5,
or 8. QED.

Proof to Theorem 1.

We want to prove that H(m) = d

d, where (d_,d_} is the
Sn—l x Sn—l

172
2n-1
S = B1 X SzLJ

1
and m :

=

bidegree of m : > "7

S1 X 32 + 5% = H+ + H_. We have the attaching map

g (B1 X BZ’ Bl X SZ’ Sl X Bz) - (Cﬁ, H+, H).

where the mapping cone C_ = B1 X Bzg{ s™. Taking the cup pro-

m o
duct, using exact sequences and homotopy equivalences, we have
the commutative diagram (recall, we are assuming n is even)

K(B; X B,/B, X Sz)®K(Bl X B,/S, X 8,) »

K(BL X leBl X S?_u S1 X 32)

x4 ~ 4
- il - 2n
K(B,/5,) (OK(B /5 ) K(s™)
= 4
k(s k™.

L ime d d is ¢ i is B . lot a, be
The image of Rn(:)Bn under this composition is 70 a, be



the imags of “n La K(ﬁl % Hifﬁl ES Bl) and i the {mae o
in K(Bl b3 B"!bl ® 52). Thew the  cup  product JLC& t, .5 The
generator of K(B1 X BZ/Bl X SELJ Sl X BZ) whichh projects to

Using exact sequences, hcomotopy equivalences, excisien

~

52n

properties, and the attaching map, we have the commurative
diagram

0+ k(2™ -+ K(C) > K(s™ >0
m
~ ) a3
K(C_/H ) > K(s"/m))
m
I =¥
K(C_/H) - Rat, /8" - K™
* B * *
g ¥+ g ¥ g v

1t

K(Bl./Sl) + K(sSl) .

+

K(B1 X B2/S1 X BZ)

N -
So g . is multiplication by dl, and the image of x in K(B1 X
§2/Sl X Bz) is dlal'
I-((Bl X 132/131 X SZ) is d2a2.~
ponds to dleal® a, in I;(Bl X Bz,/B1 XS
projects to d.d,.8 in K(S

12 2n _ on

ponds to H(m)Bzn in K(87). Hence H(m) = dldz.

From a similar diagram the image of x in
Taking cup products, x2 corres-—
¢ ngsl X Bz) which

Y. But x" = H(M)y also corres-

QED.

Proof to Theorem 2

To prove Theorem 2, we shall need to discuss Adams opera-
tions in K-theory. An operation in K-theory is a mnatural
transformation F : K * ¥ where K is regarded as a set-valued
functor. We shall first define some operations in K-theory

: 1 v Fr——
e e g o N T A O A
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dimensional vector spaces by PV = VAVALLLAY (1 tines).

They define natural transformations At ¢ vect » vecr where
Vect : Top » Ens. is the contravariant functor given by
X » set of isom. classes of complex vector bundles over X
f: XY~ f*, the pullback. .
We wish to extend these to operations A i K+ K. To do this
we use a neat trick. Defime A _[V] € KQGO[[t]], [V] £ Vect(X),
to be the power series t

et
i=0

Since Ai(v ®w)

L Fwm " mw,
jHkemd

ht[VC)w]

At[V]At{W].

Also note that each At[V] is a unit in X(X)[[t]] since it has

constant lending term 1. Thus we have a homomorphism
) +
Aot Veet (X) »~ L+ KMX){[t]]

of the additive semigroup Vect (X) into the multiplication
group of power series over K(X) with constant term 1. By the
universal property of K(X), this extends uniquely to a homo-
morphism

Aot KXy + 1+ K(X)[ltl]+

. Lo i . .
taking the coefficients of t”, we have defined the operations

ARG 0 KD



cwie tiat 1f L is oa line bundice

LR 1 L , .
So 40fLl = (1], A (L) = [L], and 7 [L] = [0}, & - i.
o Now we  can define the Adams operarions L S Y
Y (x) = rauk x (component-wise the trivial bundle wish dimen-

sion zqual to that of a fiber). Dnefine

?t{x) e K(X)[{t]], = ¢ K{X), by

¥ = 000 -t %z(log b GO

Then define the Adams operations ¥* ag the coefficients of the

i,
t; L.e.,

¥o(x) = £elvlc.
t .
i=0Q

Lemma. The Adams operations ¥' o K- K satisfy the following
properties:
i i i .
(D ¥+ ) =¥ (x) + ¥ (y) x,vy £ E(X).

(2) 1f L is a line bundle, ¥1(1) = Lt.
Properties (1) and (2} uniquely characterize the operations

yt,

In addition,

@ vy = Yoo vy, xy e k).
@ ¥ = ¥, x e k.

(5} If p is prime, ¥P(x) = xP mod P

6) If u e K(s?™, viqw) = M.

Froof, Since Wt(x + v}

Wt(x) + Tt(y), (1) follows. We have




[¢=]
wn

shown that } t(L) =1 - tl. where L is anv line hundle, hence

- ey = 1+ e (e h
L-th {20

Wt(L)

i
gl
~+
—

and (2) is proved. That properties {1} and (2) uniquely char-

acterize the operations Y1 follows immediately iIrom Lemma
(Splitting Principle). Let Ei + X, 1 <1< n, be complex vec-

tor bundles over X. Then Jmap m : ¥ > X j

(a) n* 1 K(X) + K(Y) is injective

(b) each ﬂ* (Ei) is a direct sum of line bundles.

Similarly (3), (4), and (5) follow from the Splitting
Principle. Finally, in ﬁ(Sz), Wi(Bz) = 182, so, applied to
;2(;: generator an = 82®82® ®Bz (n times) of IE(SZD), we

i _.n
VrlRy) = 18,y

and hence (6). QED. N

Note that the Adams operations restrict to K. Then we
are in a position to prove Theorem 2. Since we are assuming n
is even, we have the short exact sequence

~ g ¢
0+ K(s*™) » R(c) » K(s%®

m

)y > 0

where O(Bén) =y, ¢(x) = an, and x2 = {m)y. We shall apply

some Adams cperations to x and y. Note that
Wz(x) = 2% 4 ay, a £ 2,
% + by, b ¢ 2

any

3 ()

and

¥ ()
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by property (6} of the Adams operations.  But by propecty (5),

- 9

“() -2 omod 20 H{@)w nod 2.

So, since H(m) is odd, a must be odd. Hence, by property (4},

oo = vl = P s+ ay)
2
= 2% + 2y + 1 May
and
>
W0 = ¥5 0 ) = wE (3% + by)
= 3" + 3nay + Zznby.
Thus

%A -1y = 2% - b,
and, since a is odd,

273" 1.

By elementary number theory this can happen only if n = 1, 2,
or 4. QED.

Ordinary Cohomology

The multiplicatien problem was originally solved using
Steenrod’'s equivalent definition of Hopf invariant given in
terms of ordinary cohomology. We shall discuss this approach,
Qur aim will be to obtain our previous assumption that n must
be even., We shall also outline Adem's proof that n must be
a power of 2.

So, let H be reduced singular cohomology with coeffi-
cients in G. The map

gives rise to its Hopf construction

sZn—l . Sn.




(¥ =]
~d

. . 3!
Looking at the exact sequence of the pair (C_,53), we see that
i

G v =n, ZIn

0 otherwise.

Let G be either Z or Z2 and let x be the generator of Hn(C_)

m
and y the generator of Hzn(C_). Then taking the cup product
m
2 -
¥ = H{m)y

for some integer H(m) defined to be the Hopf invariant. For
thiz ordinary cohomology definition of Hopf invariant, Theorem
1l holds v n > 1 (odd or even).

Theorem 1. Let m: S0 x s%1 » §71 e a map of bidegree

(dl’dZ)' Then H{m) = dle'

Proof. Completely analogous to the K-theory proof, only using
the exact sequence

o-+nYc) »u™ ™ + 0. .
m

Note by the commutativity preperties of the enp  prodvet that

So letting ¢ = 2, 1if n is odd, sz = and Hm) = 0. We have
thus reduced the multiplicatien preoblem to a cousiderotion ol
nOCVETn.

we can further reduce the values of n under consideration

3

S K s . .
oopovers ot 0y f.e. no= 200 This result by Adew user Steen—
vl sedaro. We ghall cutline the prood,  From now oo oassun

L c
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Theorem 4. There exist unique Steenrod square vperations Sqlz
i
Hr(X,A) > Hr l(H,A), L > 0, which are homomorphisms and have
the following properties
0 .
(1) 5q = id. 5

(2) If dim x = 1, 5 (x) = x".

(3) 1f i » dim x, Sq (x)
(4) Cartan formula:

i ' j k
S (xy) = I Sql(x).54"(y).
J+k=i
(5) Sql is the Bochstein homomorphism £ of the exact co-
efficient sequence

o~ 22 + Z4 - 22 - Q.
(6) Adem relations: if 0 < a < 2b, then

b =2:[a/Z](b-l-j) Sqa+b—J.qu_

a
59°-59 §=0 ‘a-2j

Define R(2), the Steenrod algebra mod 2, to be the graded as-

sociative algebra generated by the Sql. In detail, let M be

the graded Zz—module with Mi = ZZ' Denote the generator of Mi

as Sql. R(2) is the quotient of the tensor algebra I(M) by
relations of the form

b-1-j

a . b _.[a/2]
=t a-2j

Sq~.Sq =0 ( } Sqa+b—JSq], 0 < a< 2b.
k

Thearem B. The elements qu generate R(2) as an algebra.

1 1

n-1 > Sn— be a continuous multi-

Corollary. Let m: 8%+ x 8"

plication with unit, n > 1. Then n = Zk.

. - *
Procf. We have the relation xz = H(m).y in H (C_.). By Theo-
rem 1, H(m) = 1. Hence o

Sqn(x) = x2 # 0.




T

g9

k

Using Theorem B, qu (x) # 0 for some k > 0, But looking at

k

*
H (C.), we must have 2 = n. QED.
m
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