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LOCALLY LINEARIZED SOLUTION OF
LIFTING TRANSONIC FLOW BY METHOD OF
PARAMETRIC DIFFERENTIATION
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ABSTRACT

The governing equation of transonic small disturbaiic: flow presents a non-
linear partial differential equation which is difficalt to solve. Lhe method
of parametric differcutiation reduces the non-linear partial differential
equation of trausonic flow into an ordinary differcutial cquation with
variable coefficients, which is generally much simpler to sofve. Furiber sin-
Plification is introduced, as also done in the method of local linearization,
by assuming (1-My2) 1o vary sufficiently slowly, so that in some part of the
analysis its derivatives with respect fo x can be disregarded. Based upon these
methods, the lifting transonic flow was analyzed. For the subsonic and su-
Jpersonic parts, closed form solutions were obtained. For the case My = 1,
the method yields an integral equation, which can be solved by an iterative
scheme starting from the non-lifting solution.
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LIST OF SYMBOLS

4 — a function defined by equation 4-3
o 820 Exx, 82z — first derivatives of g with respect te x, z, second derivatives

of g with respect to x, z, respectively

h ——a function defined by equation 3-3

p —a parameter

u —-perturbation velocity along the x-direction
Ug — the derivative of u with respect to

U, — u velocity due to camber

u, —u velocity due to thickness

X — coordinate variable along longitudinal direction
z — coordinate variable along lateral direction
B ~—a variable defined by equation 4-18

E — a variable measuring thickness

F — a variable measuring camber

L —a function defined by equation 3-1

M — Mach number

M, — local Mach number

Mg, —- free stream Mach number

Y -— specific heat ratio

B — a variable defined by equation 4-6

© — perturbation velocity potential

5 — dimensionless camber parameter

* -— dimensionless thickness ratio

4 — dummy variable

superscript

’ — differentiation with respect to the argument
subseript

X,Y,6,7T, — differentiation with respect to x, y, o and 1, respectively
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I. INTRODUCTION

Small perturbation potential flow in the transonic regime presents a
particularly interesting problem in that the governing differential equation
is nonlinear, of mixed type and singular. Physically, in a transonic flow, lo-
cal particle speeds both greater and less than sonic speed are found mixed-
to-gether. Since the body travels at nearly the same speed as the forward
going disturbances that it generates, the flow perturbations can be expected
to be generally greater near free stream Mach number M, = | than in purely
subscnic and supersonic flows. This fuct serves to indicate, why linearized
theory, as employed in subsonic and supersonic flows, fails to predict the flow
behavior in the transonic region. However, in the case of unsteady transonic
flow, if the body oscillates rapidly, the nonlinear disturbance accumulation
will not have time to develop and hence the linearized equation is applicable.
Landahl (1961) has given an extensive account on the problems of unsteady
transonic flow.

To solve the governing nonlinear differential equation, some simplifi-
cation has to be introduced in the small disturbance potential flow, and this
has attracted many investigators. In the two dimensional case, the hodograph
method has avoided this difficulty by linearizing the differential equation with-
out approximation, namely by interchanging the dependent and independent
variables. A differential equation, associated with the name of Tricomi, is
then obtained. This differential equation retains the mixed type nature of
the original equation. However, complicated boundary conditions are pro-
duced as a penalty of the linearization process, confining the variety of cascs
(amenable to exact treatment) to two dimensional flows past a relatively small
class of airfoil shapes. Furthermore, the more important three dimensional
cases cannot be freated by this niethod. Exact solutions for the small pertur-
bation flow can be obtained by the hodogriph method, and serve as a refc-
rence in the evaluation of other approximate methods applicable for a larger
class of airfoil shapes and three dimensional bodies. Guderley (1962) gives
an extensive account on the application of the hodograph method to transonic
flow problems.

A new method has recently been introduced by Rubbert and Landahl
(19635, 1967), namely the method of parametric differentiation. This method
reduce the nonlinear partial differential equation of transonic flow into an
ordinary differential equation with variable coefficients, which is generally
much simpler to solve. A short review on their method will be given, and an
extension of their method to the case of lifting flows, but with further simpli-
fication of local linearization, will be presented.
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Il. THE DIFFERENTIAL EQUATION OF TRANSONIC FLOW

The ditterential equation of transonic small perturbation flow is
given by:
[1—=My — (v + DML o] 9 + 92 =0 22—

The derivation of this equation is given in the literature (for example, sce
Ashley and Landahl, 1965), starting from the Keivin-Bernoulli differential
equation for the velocity potential and assuming small disturbances.

. METHOD OF PARAMETRIC DIFFERENTIATION

The method of parametric differentiation (Rubbert, 1965) reduces the
nonlincar differential equation of transonic flow into one in which the non-
linearity is confined in a first order ordinary differential equation, hence it
can be soived by existing methods.

Perturbation method has shown to be successful in many problems to
minimize the nonlinearity of the problem. The propagation of disturbance
in transonic tlow is governed by local flow propertics, and nonlincar
interactions persist if the disturbances are sufficiently large.

A mecthod was formulated, in which the flow about an airfoil is perturbed by
a parameter. Let the solution sought be o and let the governing equation be:

Lip) =0 3—0
with appropriate boundary condition. Let the solution depend on a parameter
p, which can be conveniently chosen, and which may appear either in the dif-
ferential equation, the boundary condition or both.

Differentiate equation (3 — 1) with respect to p to produce a lincar
equation in the differentiated variable of the form:

L(h) =0 (3—-2)
where h— g (3--3)
o

L then becomes a linear differential operator for h, whose coefficients involve
¢ and its derivatives. Let the solution of (3 — 2) be

h=h(g,p) G3—9
Equation (3 —3) and (3 — 4) provide a differential equation for ¢, which
can be solved by integration of

dg = h(p,e)dp B—=79)
Thus the nonlinearity is retained only in the first order differential equation
(3 - 3). The constant arising from the integration of (3 — 5) is provided from
a known condition, vhich is obtained from either the boundary condition
or other (exact) solution.
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IV. LIFTING FLOW

There exists at the present time no method for the calculation of lifting
ransonic flow with satisfactory results for cases in which the measure of cam-
ber and thickness are comparable. The essential feature of lifting flow is the
presence of a discontinuity in the u velocity component across the x axis.
No singularity solution of (2 — 1) in the presence of such discontinuity has
been found.

Rubbert (1965} discussed the problem in which the angle of attack and
camber arc much smaller than the thickness. The change in velocity due to
thickness and camber can then be considered as a small perturbation on the
non-lifting flow. The boundary condition on the airfoil is given by:

o, =cE (X) -t F () atz=04
0, =6 EBE (x)—=F (x) atz==0— “4--1n

where © F(x) denotes thickness ratio and o E(x) gives the position of camber
line.

An approximate solution may be obtained following the method of
parametric ditferentiation. For the subsonic and supersonic cases, local
linearization is employed as well. Following the method of parametric
differentiation equation (2 — 1) can be differentiated with respect to g to give:

[1 - '\/1;0 —(y 1) Mzﬂ (PX] Poxx T PO — (Y + 1) 1\‘/1320 Oxx Pox == 0 (4 - 2)
Let 3

= 43
ET % ( )
hence equation (4 —— 2) can be rewritten as:
&
g\;( {I—Mio__‘(Y _l— I)Mio (.Dx}gx 7’" gzz - O (444)
The boundary conditions accompanying squation 4 — 4 are given by:
Ao,
So & (X0 L) =FEk) atz = +0 (4 —5)
06
(on the airfoil)
and g >0 s VETZ =

As an approximation, write

=M — (v + D Mg g =1 M= (4—06)
which will then be assumed to vary sufficiently slowly for the subsonic and
supersonic cases. This assumption is equivalent to approximating the solution
of equation (4 — 4) by expanding the coefficient about the point of interest
and retaining the lowest order terms only. Similar assumption was taken in
the method of local linearization (Spreiter, 1958). Hence equation (4 —4)
can be recast into
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(I*M12)gxx+ gzz:0 47

which bears similarity to the differential equation of linearized compressible
flow. Working this out for the thickness problem, Rubbert (1965) has shown
that such a procedure would lead to the result obtained by the local linear-
ization method. However, the arbitrariness of the Jocal linearization method
in the step involved in the substitution of original value of & (see Spreiter,
1959: Rubbert, 1965) is then removed.
Three cases can be distinguished, namely:
(a) 1 -— M;2>0, for which equation (4 -— 7) is elliptic, therefore analogous
to the subsonic compressible case,
() 1 — M2 <0, for which equation (4 —7) is hyperbolic, hence analo-
gous te the supersonic compressible case,
(¢) 1 — M, ?=0, equation (4 —7) then degenerates to one similar to the
inner cquation of the transonic small perturbation flow. A different
treatment should be given as will be shown below in point (c).

(a) Subsonic Flow:
The governing equation is given by:
B2gxx -+ gz = 0 (4 - 8)

G =] — M2 1—M,— M2 (y+ 1)g, >0 (4 —9)

where:

The selution satisfying the boundary condition is given by:
1

gx = Ug = ? Uco 4 --10)

Ucg = -+ Vlﬂ(f,f(x) V U dx 4 —11)
X—x, Vi—x !

Substitution of the original value of B and integration result in:

2 — 2 2 -l i 3/2.—< — 1"
W[l M%,—MZI(y-+-Du] =T, +C (4 —12)

where:

The lifting flow is here considered as a perturbation by a small parameter
measuring camber (and angle of attack) from a known nonlifting (thickness)
flow. To evaluate the constant C, then we note that v =u, if u, =0, i.e.:
if the camber and angle of attack is zero, the solution reduces to the non-
lifting case, where u, is given by

1

U, = ——— {1 —
CTME D

(1 = M) = 2 7 MZ (v + Dup} (4 — 13)
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where:
1
1 4 tF(x) ,
U= f— p— dx, 4--14)
0
Hence
c 2 /‘1 M2 NP (] /3/2 4—15
M) TN Ml G D =
so that
I /, (3 M (¢ + D)
i I L
R VR v E I A R 2 !
3233
[1 =M%, =M (v = D / (4 —16)
where

1
uc:LV“‘x /"E(X‘)V N ax @4 —17)
bd X ) X=X I —x
0

For ¢ =0, u, == 0 and equation (4 — 16) reduces to (4 — 13). We note here
that the camber and thickness are related in equation (4 — 16) in a nonlinear
fashion, unlike in the subsonic and supersonic linear {compressible) flow
cases, where thickness and lifting effects can be superimposed linearly.

{b) Supersonic Flow:
Linearized equation gives similar solution for thickness and lifting
problems. Hence, applying similar procedure, we obtain:

—B? Exx + 8z = 0 (4 —= 17)
where
B = M5 — 14 My (v +1) ox (4 —18)
3¢
S 4—19
g=5, ( )
subject to the boundary condition:
39, '
g, = -2 = E'(x) atz =40 (4 —120)
oo
Its solution is given by:
E'(
£ (x0) = ug = — = 4-—21)

Substitution of original value of B and integration yields

2
—  [ME — 2 (L 3y == — E'(x)5 4+ C 4 —
TG [MZ — 1 4 M2 (y + Dul¥ E'(x)s - C (4 —22)
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Now, when 5 =0, v =u,, hence

2 e
Cor o I M2 — 1 - M2 (v | 423
e 3M(2D(Y A}l)[Moo ] T"]\‘/loo(./ i )Ut] ( )
where
. ‘ M:! ]) - I\,12 1)3/" é [\,12 (. i— 1)1-[:'(‘()]2/3/ (47‘74)
MM G Me D (Me = s M G DEE]y (G 2
Hence
[ s b MRy DeE(Y)
L 1) e o J-
R Y ER O l)[ Mo =Dt 2
3//2?‘."/:l
[M2,— 1+ My 2 Dug] | (4 -~ 25)

which again reduces to (4 ——24) if 6 == 0. Equation (4 — 25) also exhibits the
nonlinecar relationship between camber and thickness effects.
It is interesting to note the difference between the above formuia and
the one, in which camber and thickness is combined in one parameter, i.e.
by lctting
2(x.0) = 5 R(x) == = F(x) - 6E(x) (4 —-26)

which then would give

3 2
u :m :——~ (M2, 1)+ [— (M2, —1)he TM?’O (- l)pR’(x)]"";(4~—27)
In equation (4 -~ 25), the flow is perturbed by adding small increment of cam-
ber or angle of attack, and impiicitly this assumes that s ¢ <. In equation
(4 —27), o and 7 are comparable and combined is one parameter p. This result
is also based on linearized thin airfoil theory in supersonic flow. For ¢ ~-~ 1,
(4 -—2%)and (4 — 27) would give difference of small order.

(¢} Transonic Flows at M, =1

For the transonic case

(L= M7) == (1 — M2 — M (v + Doyl =0
so that equation (4 — 2) reduces (o

== ML (Y A 1) 9 8y 8y = 0 (4 —-28)
which is of the parabolic type, and seems plausible as a transition from eliip-
tic to hyperbolic type. This equation appears in many approximate methods
suggested by various investigators. As was commonly done, if ©xx Varies suf-
ficiently slowly, the coefTicient of g, can be regarded as a constant, at least
as a first approximation in the early part of the analysis.

Equation (4 — 28) was considered by Spreiter (1958, 1964), and Hosokawa

(1961), employing the Green’s function technique. The solution is given by

S, —— s

P g
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o(x.2) = / (o) + agny o) SR REL O] gy (429
7\/7d ot ) Vx —
where
A g( :) = Lupper (:) - Zlower (:) (4 —3 1)

Fxact inversion formula can be found, and is given by

X

N X I AP S
E/(x) == lim — \ —}:—/Ag(’ ) S exp [ KALK=O] ol (430
20 bz( 2VzK, 0z Vx—-1 )
0
and for 0 <Ix<1

E'(x) =4 l/K / "(L) /HE_TVQ tor 0< x< 1 4 —33)
X — \.}'

Taking into account the contiruity of ¢, and hence g, at the leading edge

Ag(0)y=0 (+—34)
so that equation (4 - 33) reduces to
— = V7
E(x) == | ‘/E/ (Agn) )y — St (4 — 35)
T Vx—C
0

This equation has the form of Abel’s integral cquation. Therefore, the Kutta
condition is not needed here, while it is needed for the singular integral equa-
tion for Ag at M _ {1, \\h.(.h is difficult 1o solve, except for K == 0.

Inverse transform can be madc as

X

—
VTK

A g/(x) = — % chx [i_/—n— E'(0)dZ (4 —- 36)
T 'X,__\

so that, as g'(x) = u and A 27X} = &'upper (X) = 8 lower (X) = 2U
then
X , .
] d E'(x;)

u_ o= — , A4 .3
e TEK dx \/x—-xld'{1 ( R

Now K = {y + )M U,, and we arc faced with a differentizl cquation,
in which u appears twice as derivatives (firstly with respect to x and secondly
with respect to 5}, where u is the desired sotution. Superficially it seems that
not much of a progress has been made. However, in princip'e, equation (4 —37)
can be solved by an iicrative scheme, in which K is assumed to be constant
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(i.e. initially equal to its value corresponding to the non-lifting solution, which
is used as a starting point). Subsequent value of K is then substituted after
™

G . .
each step. If8— (Uy) varies slowly, this process can be expected to converge
ag

rapidly.
V. CONCLUDING REMARKS

Bused upon the method of parametric differentiation and local lincar-
ization technique, the lifting transonic flow was analyzed, in which the change
in velocitly due to camber was considered as a small perturbation on the non-
lifting flow. In the subsonic and supersonic cases, closed form solutions were
obtained, which properly reduced to the nonlifting solution. if 5== 0. In the
case of M, =~ 1, the methods yields an integral equation, which can be
solved by an iterative scheme which departs from the nonlifting solution.
The accuracA of the analysis remains te be verified by comparing numer-
ical results und experimental daia.

The analysis demonstrates the significance of recently introduced
approximate methods, specifically the method of parametric differentiation,
in solving nonlinear differential equations, in particular, the governing
differential equation of transonic flow.
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