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A SIMPLE INTERMOLECULAR MODEL USED TO STUDY
INTERFACES
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ABSTRACT

Fluchsbart and Anliker (1) wsed a simple molecidar model to study the
effeet of gravity on the cortace angle and the inter face shape, FHere, the prob-
lew ds extended by considering the solid body retation of « constant volume
liguid i a pan. The effect of the centrifupal body force i iicluded in an
attempl to stdy dynamic effects on the contact waigle.

11 aras fornd, that the contaet ansle is not dependent upoin the included body
Jorees as fur as the order «f apbroscimation of the analviis is concerned,
The microscopie structre of the pas-liguid interface, which is inrolved in
e prolileams coinsidered, the structure of  the surfuace teusion and the contict
anoles are preseidfed.

1. Introduction

The eflect of body forces, i.e. not surface forces, on the contact angle
formed by a solid, a liquid and a gas is of interest lately. In problems leading
to burn out, which are important in nuclear reactors and the cooling of
rocket nozzles, one deals a lot with the so-called ”dynamic™ contact angle
associated with the formation of dry-spots.

A more detailed insight into the question of the contact angle variation
with body forces, can be obtained, although for a more simple problem, using
a microscopic approach. This approach uses a simiple intermolecular potential
along the method proposed by Flachsbart and Anliker (1). The problem trea-
ted here is an extension of their work by including the effect of the centrifugal
force, besides the gravity force, to affect the contact angle. It will be shown,
that the contact angle is not affected by the accounted body forces on a
zeroth order basis.

2. The problem and assumptions

The configuration considered here is shown in Figure 1, where r, 0 and z
are variables of a cvlindrical coordinate system that is applied. A circular pan
containing liquid is rotated, such that a dry-spot occurs in the center, while
the liquid is thrown to the peripheral wall of the pan as shown in the constant
8§ cross-sectional view of Figure 1. The volume of the liquid is constant
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Figure 1 ‘The configuration considered: solid body rotation of a liquid in a
rotating pan.

and the liquid is assumed to be in a solid body rotation at a constant angular
velocity . The liquid is assumed to be distributed symmetrically around the
axis of rotation, i.e. the z-axis and furthermore, assume b < <C a.

The following assumptions are made for the intermolecular model:

1. The intermolecular attraction potential is assumed to take the same form,
both for an inter-species and a differing species interaction of molecules,
except for the constant Ky :

Kru
P, =— — (1)
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where Ky is a constant applicable for the interaction between mele-
cules of species 1 and TI (for an inter-species interaction it becomes Ky ), r
the intermolecular distance between two molecules, and Py defines the
three dimensional attraction potential between two molecules.

2. The force defined by the potential as in Equation (1) decreases rapidly
as the intermolecular distance, r, increases. To simplify the calculation
of the potential of a molecule due to the interaction of other neighboring
molecules, it is assumed, that beyond a certain distance, called the cut of
distance, A, the force of interaction is neglected. This assumption is
reasonable, because the interaction potential is a function of the inverse
of the sixth power of the intermolecular distance. Furthermore, in
evaluating the potential of a molecule, the surrounding molecules may
be assumed to be continuously distributed.

Consider the molecule located at the center of the spheres drawn in Figure
2. If 81 is taken to be half of the average distance between two molecules
of type I, then all the molecules outside this distance may be treated as



Figure 2 ‘The volume of integration for the potential
of a specics molecule due to surrounding molecules.
continuously distributed. Let n; denote the molecular density of species

1. Then the potential of a molecule can be estimated by

([ K
Piotal == — N1 // B dv ()
where the integration is carried out over the volume, V, which is between

the spheres of radius 8; and A.

By assumptions 1 and 2, the total potential of all the molecules of the
constant volume rotating liquid given in the configuration of Figure !, can
be estimated. The calculation procedure is as follows. A cross-sectional view
(6 = constant) of the configuration considered here is divided into four rings,
as shown in Figure 3, according to the type of interaction. The cross-scctional
v
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Figure 3 Division into rings.
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view of these rings is denoted by 1, 2, 3 and 4 respectively. It can be directly
seen, that a liquid molecule in 1 interacts solely with liquid molecules. Further-
more, it is obvious that a fiquid molecule of ring 2 interacts with hoth gas and
liquid molecules.

Therefore, the potential of a liquid molecule located inside the ring,
which cross-sectional area is 1, becomes:

A i 2n
w| [ [-

r=85, 0=0 =0

4 1 [
=3 R (A—3—~ x—)

where the subscript L is used to indicate the liquid.
Throughout the analysis, it is further assumed that 5 << << A, such that

K.
r

4

ny r¥(sin 0) d@dodr 3)

terms of orderKl3 can be neglected compared to gl—s
consistent in the accuracy of the analysis as illustrated by the overlapping
regions of cross-sectional areas 2 & 3,2 & 4 and 3 & 4.

Consider a liqutd molecule, which may be located in the rings: with cross-
sectional area 2, 3or4, and located at a distance y from the interface involved.
In Figure 3 one can see, that area 2 invelves a liquid-gas interface, while areas
3 and 4 both involve liquid-solid interfaces. Now, for a molecule of this type,
i.e. located at a distunce y from any of the mentioned interfaces associated
with areas 2, 3 or 4, the potential due to intermolecular interaction is calcu-
lated by (see figure 4)

This assumption s

Figure 4 Treatment of a liquid molecule near an interface.
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Here the subscript j is used for any of the species involved in the interface
interaction of areas 2, 3 or 4, except to indicate the liquid molecule.

Consider a volume element with the sides rdp,A and a unit length along

the 0-direction located in any of the rings 2, 3 or 4. For this volume element
the potential is approximated by

A

lJ_'Lj == ( /nLUL,- dV )I'dq'),
YI.SL

which upon using (4) becomes

— I 28, 3,2 1
Vs = [’”‘L o (o 3+ 35 i)

32 28 10
o Koy (_ L I 17

4
Bt A — P 5
aat T3 T A T s 330)]“19 (5)

Defining

1 23 1.2 1
Utj = TNy, 0j KLj (—— L I )
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we can write (5) as
13 T
Upj = Uf; rdy
gl 3 . . . .
and observe, that Uyp; is a function of the microscopic constants A, 8, ny,
n;, KLj, KLL only.

3. The total intermolecular attraction potential

Let the liquid-gas interface be represented by z = f(r), which in paramet-
ric form can be written as z = f(r[t]), where t is a curve parameter, such
that (see figure 3),

atr=(R-—a), fl[r(t)] =0 and t=1,
and at r =R, flr(t)) = b and t = t,.

Using the previously given parametric representation of the interface
and (3), the total potential of the intermolecular attraction of all the mole-
cules in the ring with cross-sectional area 1 is calculated. The result is

ty t
U(:{)L = 2mnpL UrL [ / frr dt -—A ( f r(r2 4 21 dt
t1 t1
to ty '
+ /r}-dt+ /R'fdl)J (6)
4 4

where the superscript (1) denotes the ring having cross-sectional area 1. For
the rings with cross-sectional areas 2, 3 and 4, the total intermolecular poten-
tials are calculated from (5) and are, respectively,

[
@ — o
Upg = 2r Uig /r (r2 4 ) dt %)
t
ty
3) — Co.
I,JLS == 27‘C Uig / Rfdt (8)
4
to
)] — .
ULS = 27‘C UES ﬁ‘r dt ((,))
t

1

Here, the superscripts (2), (3) and (4) denote respectively, rings with cross-
sectional areas (2), (3) and (4). Hence, the total potential due to the intermo-
lecular attraction is

) @ ®) )
Ura = U + Urg 4 Urs 4+ Upg (10)



4. The potentials due to the accounted body forces

As was mentioned previously, two types of body forces are accounted
here, namely gravity and centrifugal forces.
The conservative potential due to gravity for the configuration considered
here is given by
to
27 pg -
ULge = 5 /f‘rr dt (an
ty

while the potential associated with the centrifugal force can be expressed as

to
2row? | 34
Upe = —3 rifrdt (12)

ty

5. The stationary condition

For an equilibrium liquid-gas interface to prevail then the total poten-
tial of the system considered here must reach some kind of a stationary con-
dition, which with less rigour can be associated with a minimum potential.
It is to be recalled that the problem posseses one constraint, i.e. the constancy
of the volume of the liquid. Thus the problem is essentially a variational
problem, with one constraint. Let the Lagrange multiplier be denoted by a.
The volume of the liquid is calculated to be

tl’l
t,
Hence, the variaiional problem consists of minimizing the functional
T = Unria + ULgr + ULw — AV (14)
which upon substituting (6), (7), (8), (9), (11}, (12) and (13) becomes
l:0
T == / F ([', f, f, i., l) dt (]5)
4

where
F(r, 7,1, f,t) = (Ufc — A Upp np)r (i + f2)3
+ (Ufs — A Upp, n)Rf 4- (Uts —A U ny) ri

2
4 Upy ng fir + 9_25 fri + P-‘g— 2 fi — ) fri (16)
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For a stationary condition to prevail then

dr
dt
or
fo fo fo
. dF: : dF; . .
J— - _— - RS i p -=
/ £ (Fr 0 ) dt 4 ‘/f (Ff a dt {—lF,r | Fff] 0
4 4 4
which leads to
dF.,
dFy)
(Ff——(F == () (18)

with the following transversality conditions

(F; 4 Fif) =0 (19)
t=1ty
(Fit -+ Fif) ‘ =0 (20)
t=t,
Here, F, = a_}_:’ F; = i ete.
or

ar

The assumption, that the liquid is distributed symmetrically around the
axis of the solid body rotation allows the discussion of the surfaces along which
the triple interaction cuives {i.e. curves, along which the solid, the liquid and
the gas interact) move in the process of reaching the stationary condition, in
terms of curves. Denote the curves upon which the triple points t = t, and
t =ty (of the cross-sectional view) move by the functions, see refercnce (2),

n=g¢ () )

=9 ()
and

o= () |

fo="J ()}
This is the problemt of Bolza, sce references (1) and (2). The movements of
the edge points are then regulated by

r, = arbitrary @1
R =0

and
R =0

ITO' = arbitrary (22)
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because of physical reasons, i.e. points t = t; and t == t, move along the solid
surface if no breakdowns occur. Note that the primes in equations (20) and
(21) denote differentiation with respect to time, 1.

The stationary conditions (17) and (18) are not independent, see for example
reference (1) for a detailed discussion. For the purpose of this paper station-
ary condition (17) will be used, because both (17) and (18) would give the
same final result. Calculation of the required derivatives from (16) and sub-
stituting then in (17) would result in the following equation
( fr—rf 1 )

U —AU —
(lJL(; Al‘LL nL) ( (I‘Z 4 t;z);jl2 r [i + (;‘/’f):"]l’z’

sz 0 f - o)
+ Upn np -+ 5T pef —n =0 (23)
t
which esentially is the surface tension equation in the microscopic form. For
a comparison the classical surface tension equation is written here

| 1
R T —_ L = 24
Y (g - Rz)+(p py) + pgl = 0 &)

. . 1 1 . .
where v is the surface tension, (R— -l I_{) the principal curvature of the
1 2

interface, (p — p,) the interface pressure difference and f the shape of the
interface.

Upon comparing (23) with (24), the following correspondence is found

11 fr—rf 1 (f/r)
R, " Ry, (¢4 2o ro[1 -5 (§/0)3]ue
el == pgf
Therefore,
Y= (Ul —A Ui, n ) (25)
e | f
P—Po= ULy ni -+ 5o —3 6)

The transversality condition (19} combined with (21} gives the stationary
condition at the triple point 1 (see figure 3),

il [(ijc —A Uy, n.)
r

EENSIE + (Ufs —A Uy nL)

Fe
AU 0 - e —‘;— 12— ) ~0 7

2
t =t

Note that at the triple point 1,
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f( =0 and-.g—
t -t

X

= tan 0, (28).
to=t,

Combining (26) and (27) and working out the algebra result in the expression
for the contact angle at the triple point 1,

—1 ((A Uil np, — L—JI*G )
B, = sec =
ULS — A ULL n;,

Using a similar way, the transversality condition (20) when combined

(29)

with (22) and furthermore noting, that %' =0

t==t,

f = .
and —— = tan { 5- — 0y ) one gets the expression for the con-

X t = t, =
tact angle at the triple point 0,

.= (U — AU
Up ~= 7 —sin (Urs L. _ n;,) &]0)]
AULL np —Ufg

6. Conclusions

The following conclusions are found for the simple problem corsidered
here:

L. The surface tension between the liquid and the gas is neither affected
by the accounted body forces nor by the shape of the interface. The
surface tension is a function of the interacting species at the interface.
This result can easily be deduced from (25).

to

The interface pressure difference, besides dependent on the liquid mo-
lecular properties, is found to depend on the interface shape, see equa-
tion (26). The interaction between the pressure and the interface is
demonstrated. For example, the higher the angular velocity w, the
higher the interface pressure would be.

3. The contact angles 0, and 0y, see respectively equations (29) and (30),
depend only on the microscopic molecular properties of the species
involved in forming the angles and for the order of approximations
made here, they are neither dependent on the accounted body forces
nor the interface shape.

4. The problem considered here clearly demonstrated the capabilities
and limitations of mathematical problem specification and selution
and is intended as a promction of mathematical modeling of physical
problems at the Institut Teknologi Bandung.
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