INVESTIGATION OF THE LIMITING BEHAVIOR OF THE SEQUENCE OF DENSITY RATIOS IN A FAMILY OF NONCENTRAL t-DISTRIBUTIONS

Sunardi Wirjosudirdjo

Department of Mathematics (Received January 15, 1963)

ICHTISAR

Misalnja X_1, X_2, \ldots adalah barisan variabel random jang mempunjai distribusi t jang nonsentral dengan parameter θ . Maksud dari karangan ini adalah menjelidiki sifat² limit rasio fungsi kepadatan dari X_n tersebut. Hal ini merupakan tjontoh dari matjamnja famili distribusi jang dibitjarakan dalam karangan [4]. Djuga karangan ini merupakan pembitjaraan lebih landjut dari [2], dimana David & Kruskal membuktikan bahwa sequential probability ratio test dari distribusi t akan berhenti dengan kemungkinan satu. Sifat limit dari tjontoh famili distribusi disini lebih kuat dari di [4], dan dapat diterangkan sbb.: Misalkan $\theta_1 < \theta_2$ adalah dua parameter dan R_n (θ_1, θ_2) adalah rasio kepadatan X_n dari θ_2 dan θ_1 . Maka terdapat θ_0 sehingga limit dari R_n sama dengan 0 terhadap $\theta < \theta_0$ dan sama dengan ∞ terhadap $\theta > \theta_0$. Sedang terhadap θ_0 limit infimumnja sama dengan 0 dan limit supremumnja adalah ∞ . Letak θ_0 ini dantara θ_1 dan θ_2 . Sehingga hal jang terachir ini akan menghilangkan sangkaan orang mengenai letak simetrinja θ_0 diantara θ_1 dan θ_2 .

ABSTRACT

Let X_1, X_2, \ldots be a sequence of noncentral t-distributed random variables with parameter θ . In this paper we investigate the limiting behavior of the density ratios of X_v . This is an example of the family of distributions discussed in [4]. Here, we derive the results of David & Kruskall [2] in a slightly more general form and a stronger result is obtained, namely:

If $\theta_1 \le \theta_2$ are two parameters and R_n (θ_1, θ_2) is the density ratio of X_n , then there is θ_0 such that the limit of R_n is 0 with respect to $\theta \le \theta_0$ and is ∞ with respect to $\theta \ge \theta_0$. With respect to $\theta = \theta_0$, the limit infimum is 0 and the limit supremum is ∞ . It is also shown that θ_0 is between θ and $\frac{1}{2}(\theta_1 \ge \theta_2)$.

In this paper we shall examine the limiting behavior of the sequence of density ratios if X_1, X_2, \ldots is a sequence of noncentral t ratios. The results obtained will be stronger than those obtained in [4] Chap. 3. Most, but not all, of these results are also implicit in [2].

Let Z_1 , Z_2 , be independent and identically distributed random variables, the common distribution being normal with mean θ and variance

1. Define for $n \ge 2$:

$$U_{n} = \frac{1}{n} \sum_{i=1}^{n} Z_{i}, V_{n} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (Z_{i} - U_{n})^{2}} \text{ and } X_{n} = U_{n} / V_{n}$$

There is no loss of generality in assuming that the Z's have variance 1. If the variance were σ^2 , we substitute Z_i/σ for Z_i in the definitions of U_n and V_n , which does not alter X_n .

In [3] the family of distributions of X_n was shown to be a monotone likelihood ratio family. The sufficiency of X_n on A_n follows from a factorization theorem of D.R. Cox [1], if one takes in this theorem $\theta_1 = \theta$, $\theta_2 = 1$, $T_1 = X_n$, $T_2 = \sum_{i=1}^{n} (Z_i - U_n)^2$, $U_k = X_{k-1}$, k = 1, ..., n-2, and S is the group of transformations $Z_i \rightarrow aZ_i$, where a is any positive number.

The distribution of $\sqrt{n-1}$ V_n is chi with n-1 degrees of freedom and U_n is normal $\left(\theta, \frac{1}{n}\right)$. We recall that in [4], Chap. 2 and 3 the density ratio $p_{\theta_2}^{X_n}/p_{\theta_1}^{X_n}$ was denoted by $r_n(X_n; \theta_1, \theta_2)$. In this paper we shall suppress the dependence on θ_1 , θ_2 , and write $r_n(X_n)$, $r_n(x)$ instead of $r_n(X_n; \theta_1, \theta_2)$, $r_n(x; \theta_2, \theta_2)$. As usual, $\theta_1 < \theta_2$. We shall show (this result is also implicit in [2] that there is a unique number θ_0 such that $r_n(x) \to 0$ or ∞ according as $x < \theta_0$ or $> \theta_2$. This allows the following conclusions concerning $r_n(X_n)$:

(1)
$$\lim_{n \to \infty} r_n(X_n) = 0 \qquad \text{a.e. } P_n \text{ if } \theta < \theta_n$$

(2)
$$\lim_{n\to\infty} r_n(X_n) = \infty \qquad \text{a.e. } P_{\theta} \text{ if } 0 > \theta_{\theta}$$

To show (1) and (2) we first remark that $U_n \to \theta$ a.e. P_n and $V_n \to 1$ in probability, so that $X_n \to \theta$ a.e. P_n . Suppose $\theta < \theta_o$ and ω is not in an exceptional null set so that $X_n(\omega) \to \theta$. Choose any x such that $\theta < x < \theta_o$, then there is an integer N_{\bullet} such that $X_n(\omega) \le x$ if $n \ge N_{\bullet}$. Since $r_n(x)$ is an increasing function of x we have for all $n \ge N_{\bullet}$: $r_n(X_n(\omega)) \le r_n(x)$, so that:

$$\lim_{n \to \infty} r_n(X(\omega)) \leqslant \lim_{n \to \infty} r_n(x) = 0$$

This gives (1), and (2) is obtained analogously.

The density of X_n can be found as follows:

$$P_{\theta}\left\{X_{n} \leqslant x\right\} = \int_{\theta}^{\infty} P^{V_{n}}(v) dv \int_{-\infty}^{ux} P^{U_{n}}(u) du$$

so that

$$p_{\vartheta}^{X_n}(x) = \int_{\mathfrak{g}}^{\infty} p^{V_n}(y) p^{U_n}(yx) v dy$$

After substituting the densities of V_n and U_n we have

(3)
$$p_{\theta}^{X_n}(x) = K_n \int_{0}^{\infty} v^{n-1} \exp \left[-\frac{n}{2} (vx - 0)^2 - \frac{n-1}{2} v^2 \right] dv$$

where

$$K_n = \frac{2\left(\frac{n-1}{2}\right)^{\frac{n-1}{2}}}{\pi\left(\frac{n-1}{2}\right)}\sqrt{\frac{n}{2\pi}}$$

or

$$p_{\theta}^{X_{n}}(x) = K_{n} \exp\left[-\frac{n}{2} \ 0^{2} \right] \int_{0}^{\infty} v^{n-1} \exp\left[-\frac{n}{2} \left(1 + x^{2} - \frac{1}{n}\right) v^{2} + n\theta xv\right] dv$$

and after making the transformation $\sqrt{n\left(1+x^2-\frac{1}{n}\right)}$ $v \to v$ we have

$$p_{\theta}^{\mathbf{X}_{n}}(\mathbf{x}) = \mathbf{K}_{n} \exp\left[-\frac{\mathbf{n}}{2} \theta^{2}\right] \left(\mathbf{n} \left(1 - \mathbf{x}^{2} - \frac{1}{\mathbf{n}}\right)\right)^{-\frac{\mathbf{n}}{2}} \int_{\delta}^{\infty} \mathbf{v}^{n-1} \exp\left[-\frac{\mathbf{v}^{2}}{2} - \frac{\theta \mathbf{x}}{\sqrt{\left(1 + \mathbf{x}^{2} - \frac{1}{\mathbf{n}}\right)}} \sqrt{\mathbf{n}} \mathbf{v}\right] d\mathbf{v}$$

Substituting θ_1 and θ_2 for θ , respectively, and taking the ratio, we obtain

(4)
$$r_{n}(x) = \exp\left[-\frac{n}{2}(\theta_{2}^{2} - \theta_{1}^{2})\right]$$

$$\int_{0}^{\infty} v^{n-1} \exp\left[-\frac{v^{2}}{2} - \frac{\theta_{2}x}{\sqrt{\left(1 - x^{2} - \frac{1}{n}\right)}}\sqrt{n}v\right] dv$$

$$\int_{0}^{\infty} v^{n-1} \exp\left[-\frac{v^{2}}{2} - \frac{\theta_{1}x}{\sqrt{\left(1 - x^{2} - \frac{1}{n}\right)}}\sqrt{n}v\right] dv$$

Consider the following integrals:

(5)
$$I_{n}(w_{n}) = \int_{0}^{\infty} v^{n-1} \exp\left[-\frac{v^{2}}{2} - \sqrt{n} w_{n} v\right] dv$$

and

(6)
$$J_{n}(w_{n}) = \int_{-V_{n}}^{\infty} \left(1 - \frac{y}{V_{n}}\right)^{n-1} \exp\left[-\frac{y^{2}}{2} - \frac{n-1}{V_{n}}y\right] dy$$

in which

(7)
$$v_n = \frac{1}{2} \sqrt{n} \left\{ w_n + \sqrt{w_n^2 - 4 - \frac{4}{n}} \right\}$$

In [2], section 2, replacing in [2] w by w, it is shown that:

(8)
$$I_n(w_n) = \left(\frac{\sqrt{n}}{e}\right)^{n-1} \left(\frac{v_n}{\sqrt{n}} \exp \left[\frac{1}{2} \left(\frac{v_n}{\sqrt{n}}\right)^2\right] / n \frac{\sqrt{n}}{v_n} J_n(w_n)$$

If

$$(9) W_n \rightarrow W$$

then

(10)
$$\lim_{n \to \infty} J_n(w_n) = \left[\frac{8\pi}{4 - (\sqrt{w^2 - 4} - w)^2} \right]^{\frac{1}{2}} = J(w), \text{ say}$$

The proof is essentially contained in (2), section 2. More precisely, the paper cited proves $J_n(w) \rightarrow J(w)$, but the proof needs only a very slight modification to obtain (10). Note that if we have (9), then

(11)
$$\lim_{n\to\infty} \frac{v_n}{\sqrt{n}} = \frac{1}{2} \left(w + \sqrt{w^2 + 4} \right) = \alpha(w), \text{ say.}$$

We shall give now a useful extension of the lemma in [2], section 2:

Lemma 1. If

$$(12) w_n = w + \frac{a_n}{p}$$

where

$$(13) a_n \to a$$

then

(14)
$$I_n(w_n) \sim \left(\frac{\sqrt{n}}{c}\right)^{n-1} e^{-1} \frac{J(w)}{\alpha(w)} \exp \left[2\alpha(w)\right]$$

$$\frac{1}{2} (\alpha(w))^2 \cdot \left[\frac{1}{2} (\alpha(w))^2 \cdot \frac{1}{2} (\alpha(w)$$

Proof: Substituting (12) into (7), we compute

(15)
$$\frac{\mathbf{v}_n}{\sqrt{\mathbf{n}}} = \alpha(\mathbf{w}) \left(1 + \frac{1}{\mathbf{n}\sqrt{\mathbf{w}^2 + 4}} \left(\mathbf{a} - \frac{1}{\alpha(\mathbf{w})} \right) \right) + o\left(\frac{1}{\mathbf{n}}\right)$$

and substituting of (10), (11) and (15) into (8) yields (14).

The integral in the numerator on the right hand side of (4) is of the form

(5) with
$$w_n = \frac{\theta_2 x}{1 - x^2 - \frac{1}{n}}$$
, so that w_n is clearly of the form (12). Similarly

the integral in the denominator. Thus we can apply Lemma 1 to study the limiting behavior of $r_n(x)$. If we put

(16)
$$z_i = \frac{\theta_i x}{\sqrt{1 - x^2}}$$
 $i = 1, 2.$

then for the limiting behavior of $r_n(x)$ we can replace the integral in the numerator (denominator) in (14) with w replaced by z_2 (z_1).

We get

$$\ln r_n(x) \sim \frac{n}{2} \left(-\theta_1^2 + \theta_2^2 + 2 \ln \alpha (z_2) + (\alpha(z_2))^2 - 2 \ln \alpha(z_1) - (\alpha(z_1))^2 \right)$$

multiplied by a factor that does not involve n. Thus,

(17)
$$\lim_{n\to\infty} \frac{1}{n} \ln r_n (x) = -\frac{1}{2} (\theta_2^2 - \theta_1^2) + \ln \alpha(z_2) - \ln \alpha(z_1) + \frac{1}{2} (\alpha(z_2))^2 - \frac{1}{2} (\alpha(z_1))^2$$

If we put

(18)
$$\xi = \frac{x}{\sqrt{1 + x^2}}$$

then from (16) we have $z_i = \xi \theta_i$. Furthermore, we define

(19)
$$h(\theta,x) = -\frac{1}{2} \theta^2 + \ln \alpha(\xi\theta) + \frac{1}{2} (\alpha(\xi\theta))^2$$

Then we can write (17) as

(20)
$$\lim_{n \to \infty} \frac{1}{n} \ln r_n(x) = h(\theta_2, x) - h(\theta_1, x)$$

The right hand side of (20) depends on x through ξ . Since by (18) ξ and x have the same sign, we see immediately from (19) that

(21)
$$h(-\theta, -x) = h(\theta, x)$$

Since r (x) is a strictly increasing function of x, the same is true for the right hand side of (20) (this can also be checked directly, and this has been done in [2]). Continuity in x is obvious. We shall show that $h(\theta_2,x) - h(\theta_1,x)$ is positive if $x = \theta_2$ and negative if $x = \theta_1$. Thus, there is a unique value of x, say θ_o , with $\theta_1 > \theta_o < \theta_2$, such that $h(\theta_2,x) - h(\theta_1,x)$ is positive, 0 or negative according as $x > \theta_o$, = θ_o or $< \theta_o$. By (20) this implies that $\ln r_n(x) \rightarrow \infty$ or $-\infty$ according as $x > \theta_o$ or $< \theta_o$.

We shall show first that h(0,x) is concave as a function of θ , for fixed x, and that it has a maximum. First we differentiate the function $\ln \alpha(z) + \frac{1}{2}(\alpha(z))^2$ with respect to z, using the definition (11) of $\alpha(z)$.

We get

$$\left(\frac{1}{\alpha(z)} + \alpha(z)\right) / \alpha'(z) = \sqrt{z^2 + 4} \alpha'(z) = \alpha(z)$$

We use this in differentiating h(0,x) twice with respect to θ :

(22)
$$\frac{\delta h}{\delta \theta} = -0 + \xi \alpha(\xi \theta)$$

(23)
$$\frac{\delta^2 h}{\delta \theta^2} = -1 + \xi^2 \alpha'(\xi \theta)$$

Now $\xi^2 < 1$ and $|\alpha'| < 1$, from which it follows that $\frac{\delta^2 h}{\delta \theta^2} < 0$ for all 0. Therefore, h is strictly concave in 0. Setting the right hand side of (22) equal to 0 gives the solution $0 = \frac{\xi}{\sqrt{1-\xi^2}} = x$, so that this is the unique maximum Hence

(24)
$$h(0, 0) < h(0', 0)$$
 if $0 \neq 0'$

In particular, if we take $x = \theta_2$ on the right hand side of (20) we get $h(\theta_2, \theta_2) - h(\theta_1, \theta_2)$ which is > 0 by (24) and if we take $x = \theta_1$ we get $h(\theta_2, \theta_1) - h(\theta_1, \theta_1)$ which is < 0, as was to be shown. As was remarked before, this implies the existence of a unique θ_1 such that

(25)
$$h(\theta_2, \theta_a) - h(\theta_1, \theta_a) = 0$$

We shall sometimes denote the solution of (25) by $\theta_o(\theta_1, \theta_2)$. From (21) we see that if the triple $(\theta_1, \theta_2, \theta_o)$ satisfies (25), then so does the triple $(-\theta_2, -\theta_1, -\theta_o)$. We can express this by

(26)
$$\theta_{o}(-\theta_{o}, -\theta_{1}) = -\theta_{o}(\theta_{1}, \theta_{2})$$

Since $\alpha(0) = 1$ we have from (19): $h(\theta_2,0) - h(\theta_1,0) = -\frac{1}{2} (\theta_2^2 - \theta_1^2) = -\frac{1}{2} (\theta_2 - \theta_1) (\theta_2 + \theta_1)$, so that $\theta_1 + \theta_2$ and $h(\theta_2,0) - h(\theta_1,0)$ have opposite sign. This, together with the fact that $h(\theta_2,x) - h(\theta_1,x)$ is increasing in x implies

(27)
$$\theta_o > 0 \qquad \text{if } \theta_1 + \theta_2 > 0$$

$$0_o = 0 \qquad \text{if } 0_1 + 0_2 = 0$$

$$\theta_{0} < 0 \qquad \text{if } \theta_{1} + \theta_{2} < 0$$

as shown also in (2). Ofcourse, (28) and (29) are also a consequence of (27) and (26).

Now we are going to show more about the position of θ_o than is given by (27), (28) and (29), namely

(30)
$$0 < \theta_o < \frac{1}{2} (\theta_1 + \theta_2)$$
 if $\theta_1 + \theta_2 > 0$

(31)
$$0 > \theta_o > \frac{1}{2} (\theta_1 + \theta_2)$$
 if $\theta_1 + \theta_2 < 0$

This can be expressed in words by saying that θ_o lies between 0 and $(\theta_1 + \theta_2)/2$ which also covers the case $\theta_o = 0$ if $\theta_1 + \theta_2 = 0$. We need only show (30) since (31) follows from (30) and (26). Moreover, the left inequality in (30) is the same as (27), so that we only have to show $\theta_o < (\theta_1 + \theta_2)/2$. Define

(32)
$$g(\gamma_i) = h(x + \gamma_i; x) - h(x - \gamma_i; x)$$

Actually, g also depends on x, but this is suppressed in the notation. We need to consider g only for x < 0 and $\tau \ge 0$. Using (23) we compute

(33)
$$g''(\gamma) = \xi^2 \alpha'(\xi(x+\gamma)) - \alpha'(\xi(x-\gamma))$$

By (18) ξ and x have the same sign, so $\xi < 0$. Since $\alpha'(w)$ is an increasing function of w the right hand side of (33) is > 0. Moreover, if follows immediately from (32) that g(0) = g'(0) = 0. Thus, $g(\gamma) > 0$ for all $\gamma > 0$, or

(34)
$$h(x + \alpha; x) > h(x - \eta; x)$$
 if $x > 0, \eta > 0$

Now let θ_o satisfy (25), and substitute in (34) $x = \theta_o$, $\eta = \theta_o - \theta_1$; so that x > 0, $\eta > 0$. On the left in (34) we have $h(2\theta_o - \theta_1; \theta_o)$. On the right we have $h(\theta_1; \theta_o)$, which equals $h(\theta_2; \theta_o)$ by (25). Thus, (34) reduces to

$$h(2\theta_o - \theta_1; \theta_o) > h(\theta_2; \theta_0)$$

Now $h(\theta; \theta_o)$ as a function of θ has its maximum at $\theta = \theta_o$. Since $\theta_2 < \theta_o$, $h(\theta; \theta_o)$ is a decreasing function of θ for $\theta > \theta_o$. It follows then from (35) that $2\theta_o = \theta_1 < \theta_2$; or $\theta_o < (\theta_1 + \theta_0)/2$, as was to be shown.

Finally we are going to investigate the limiting behavior of $r_n(X_n)$ if $0 = 0_0$. Consider the following sequence

$$x_n = 0_o + c/n$$

by a⁽²⁾ We compute w,:

where c is some constant. If in (4), x is replaced by x_n , then the integral in the denominator of (4) is of the form (5) with $w_n = \frac{\theta_1 x_n}{\sqrt{1 + x_n^2 - 1/n}}$, where x_n is given by (36). This w_n is of the form (12); denote the limit on the right hand side of (13) by $a^{(1)}$. For the integral in the numerator of (4) we have a similar expression for w_n , with θ_1 replaced by θ_2 , and limit in (13) given

$$\begin{split} \mathbf{w}_{n} &= \theta_{i} \left(\theta_{o} + \mathbf{c}/\mathbf{n} \right) \left\{ 1 + \left(\theta_{o} + \mathbf{c}/\mathbf{n} \right)^{2} - 1/\mathbf{n} \right\}^{-\frac{1}{2}} \\ &= \theta_{i} \left(\theta_{o} + \mathbf{c}/\mathbf{n} \right) \left(1 + \theta_{o}^{2} \right)^{-\frac{1}{2}} \left(1 - \frac{1}{2n} \frac{2c\theta_{o} - 1}{1 + \theta_{o}^{2}} + o(1/\mathbf{n}) \right) \\ &= \frac{\theta_{i} \theta_{o}}{\sqrt{1 + \theta_{o}^{2}}} + \frac{1}{n} \left(\frac{\theta_{i} \mathbf{c}}{\sqrt{1 + \theta_{o}^{2}}} - \frac{1}{2} \frac{\theta_{i} \theta_{o} \left(2c\theta_{o} - 1 \right)}{\left(1 + \theta_{o}^{2} \right)^{3/2}} + o(1) \right) \\ &= \frac{\theta_{i} \theta_{o}}{\sqrt{1 + \theta_{o}^{2}}} + \frac{1}{n} \left(\frac{\theta_{i} \theta_{o}}{2 \left(1 + \theta_{o}^{2} \right)^{3/2}} - \frac{\theta_{i} \mathbf{c}}{\left(1 + \theta_{o}^{2} \right)^{3/2}} + o(1) \right) \end{split}$$

so that

(37)
$$\mathbf{a}^{(i)} = \frac{\theta_i \theta_o}{2 (1 + \theta_o^2)^{3/2}} + \frac{\theta_i \mathbf{c}}{(1 + \theta_o^2)^{3/2}}$$

Since $x_n \to 0_o$, the values of z_i to be substituted for w in the asymptotic formula (14) are given by (16) $x = \theta_o$. Using (14) in (4) the factor that depends exponentially on n is then

exp
$$[n (h(\theta_2, \theta_a) - h(\theta_1, \theta_a))]$$

which is equal to 1 for all n by (25). From the remaining factors in (14) we obtain

$$r_n(X_n) \sim \exp \left[a^{(2)} \alpha \left(\frac{\theta_2 \theta_o}{\sqrt{1 + \theta_o^2}} \right) - a^{(1)} \alpha \left(\frac{\theta_1 \theta_o}{\sqrt{1 + \theta_o^2}} \right) \right]$$

multiplied by a positive factor that does not involve c. Using (37) we have then (38) $\lim_{n\to\infty} r_n(x_n) = A \exp [Bc]$

where A is a positive constant and

(39)
$$B = \frac{\theta_2}{(1 + \theta_o^2)^{3/2}} \alpha \left(\frac{\theta_2 \theta_o}{\sqrt{1 + \theta_o^2}} \right) - \frac{\theta_1}{(1 + \theta_o^2)^{3/2}} \alpha \left(\frac{\theta_1 \theta_o}{\sqrt{1 + \theta_o^2}} \right)$$

We claim that B>0. If $\theta_1\leqslant 0\leqslant \theta_2$ this follows immediately from the positiveness of the function α . If $0<\theta_1<\theta_2$, so that also $\theta_o>0$, we make use of the fact that α is an increasing function of its argument. The case $\theta_1<\theta_2\leqslant 0$ is reduced to the case $0\leqslant \theta_1<\theta_2$ by making the transformation $\theta_1\to\theta_2$, $\theta_2\to\theta_1$, $\theta_0\to\theta_2$ (using (26)), which leaves B invariant.

We shall use (38) now to study the limiting behavior of $r_n(X_n)$ if $\theta = \theta_o$. We know that with respect to P_{θ_o} , \sqrt{n} $(X_n - \theta_o)$ has a limiting distribution which is normal with mean 0 and variance 1, so that if c is a positive number (40) P_{θ_o} $(\theta_o - c/n \le X_n \le \theta_o + c/n) = P_{\theta_o} (-c/\sqrt{n} \le \sqrt{n}) (X_n - \theta_o) \le c/\sqrt{n} \to 0$ as $n \to \infty$. Let b and d be any numbers with $0 < b < d < \infty$, there is a positive number c such that

(41) A
$$\exp[-Bc] < b < d < A \exp[Bc]$$

From (38) there is then an integer N such that for $n \ge N$ we have

(42)
$$r_n(\theta_o - c/n) < b \text{ and } r_n(\theta_o + c/n) > d$$

So we have

$$\begin{split} P_{\theta_o}(\mathbf{b} \leq \mathbf{r}_n(\mathbf{X}_n) \leq \mathbf{d}) \leq P_{\theta_o}(\mathbf{r}_n(\theta_o - \mathbf{c}/\mathbf{n}) < \mathbf{r}_n(\mathbf{X}_n) < \mathbf{r}_n(\theta_o + \mathbf{c}/\mathbf{n})) \\ \leq P_{\theta_o}(\theta_o - \mathbf{c}/\mathbf{n} \leq \mathbf{X}_n \leq \theta_o + \mathbf{c})\mathbf{n}) \\ \to 0 \text{ as } \mathbf{n} \to \infty \qquad \text{by (40)} \end{split}$$

and using (40) we get

(43)
$$P_{\theta_0}\{b \le r_n(X_n) \le d\} \to 0 \text{ as } n \to \infty$$

Finally we are going to show that

(44)
$$\lim \inf_{n \to \infty} r_n(X_n) = 0 \text{ a.e. } P_{\theta}$$

(45)
$$\lim \sup_{n \to \infty} r_n(X_n) = \infty \text{ a.e. } P_0$$

It is sufficient to show that for every positive and finite number b:

(46)
$$\lim_{n \to \infty} P_{\theta_n} \left\{ r_n(X_n) \geqslant b \right\} = \frac{1}{2}.$$

for this implies (45), and (44) is implied by $\lim_{n\to\infty} P_{\theta} \{r_n(X_n) \leqslant b = \}$ which

follows immediately from (46). To show (46), let c be a positive number satisfying

$$(47) A exp [-Bc] < b < A exp [Bc]$$

Similar to the proof that led to (43), we have

(48)
$$P_{\theta_o}(\theta_o + c/n \leqslant X_n) \le (P_{\theta_o}(b \leqslant r_n(X_n)) \leqslant P_{\theta_o}(\theta_o - c/n \leqslant X_n)$$
 for $n \ge N$. Since $\sqrt{n}(X_n - \theta_n)$ has a limiting distribution which is normal with mean θ and variance I_{\bullet} we have

(49) $P_{\theta_o}(\theta_n + c/n \leqslant X_n) = P_{\theta_o}(+c/\sqrt{n} \leqslant \sqrt{n} (X_n - \theta_o)) \rightarrow \frac{1}{2} \text{ as } n \rightarrow \infty$ It is easy to see that (48) and (49) imply (46).

BIBLIOGRAPHY

- COX D.R.: Sequential tests for composite hypotheses, Proc. Cambridge Phil. Soc. vol. 48 (1952) pp. 290 299.
- 2. DAVID H.T. and KRUSKAL W.H.: The WAGR sequential t-test reaches a decision with probability one, Ann. Math. Stat., vol 27 (1956), pp. 797 804.
- 3. KRUSKAL W.H.: The monotonicity of the ratio of two noncentral t density functions, Ann. Math. Stat., vol 26 (1955), pp. 150 151.
- 4. WIRJOSUDIRDJO S.: Limiting behavior of a sequence of density ratios, Proc., Madjalah ITB, vol. 2 no. 4 (1964), pp. 153 173.