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ICHTISAR

Misalnja X, X,, - ... adalah barisan variabel random jang mempunjai distribusi t jang
nonsentral dengan parameter 6. Maksud dari karangan ini adalah menjelidiki sifat?® limit rasio
fungsi kepadatan dari X, tersebut. Hal ini merupakan tjontoh dari matiamnja famili distribusi
Jjang dibitiarakan dulam karangan [4). Djuga karangan ini merupakan pembitjaraan lebih lan-
djut dari [2], dimana David & Kruskal membukrikan bahwa sequential probability ratio test
dari distribusi t akan berhenti dengan kemungkinan satu. Sifat limit dari tjontoh famili distri-
busi disini lebih kuat dari di [4}, dan dapat diterangkan sbb.: Misalkan §, < 9, adalah dua
parameter dan Ry (8,.9,)adalah rasio kepadatan Xy dari0,danQ,. Maka terdapat O, sehingga
limit dari Ry, sama dengan O terhadap © < O, dan sama dengan . terhadap © > 6,. Sedang
terhadap ©, limit infimumnja sama dengan O dan limit supremuninia adalah <. Letak f), ini
diantara 0 dan 3(0, - Y,), sehingga hal jang terachir ini akan menghilangkan sangkaan orang
mengenai letak simetrinja O, diantara 0, dan 6.

ABSTRACT

Ler Xy, X,, .... be a sequence of noncentral t-distributed random variables with parameter
6. In this paper we investigate the limiting behavior of the density ratios of Xy. This is an example
of the family of distributions discussed in [4]. Here, we derive the results of David & Kruskall
{21 in a slightly more general form and a stronger result is obiained, namely:

If 6, < 6, are rwo parameters and Ry, (0,, 0,) is the density ratio of Xy . then there is 0,
such that the limit of Ry is 0 with respect to §} < O, and is o withrespect to § > 04 With respect

1o § =By, the limit infimum is 0 and the limii supremum is w . 1t is also shown that O, is between
O and L0, - 8,).

In this paper we shall examine the limiting behavior of the sequence of
density ratios if X, X,, .... is a sequence of noncentral t ratios. The results
obtained will be stronger than those obtained in [4] Chap. 3. Most, but not
all, of these results are also implicit in [2].

Let Z,, Z,, .... be independent and identically distributed random
variables, the common distribution being normal with mean 9 and variance

1. Define for n > 2;

| = /_ 1 n
U =—% 7,V, = ]/ X (Z,—U)? and X, =U, |V,
i ' n—1li-j i

There is no loss of generality in assuming that the Z’s have variance
1. 1f the variance were o2, we substitute Z;/; for Z, in the definitions of U, and
V,, which does not alter X, .
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In [3] the family of distributions of X was shown to be a monotone
likelihood ratio family. The sufficiency of X, on A, follcws from a facteri-
zation theorem of D.R. Cox {1}, if one takes in this theorem 0; = 6, 0, = 1,

n
T,=X,T,=2(Z,—U);, U, =X, ;,k=1,..,n—2, and S is the group
i=1
of transformations Z;—-aZ,, wheie a is any positive number,

The distribution of V' —1 V, is chi with n—1 degrees of freedom

1
and U, is normal (6, ;) . We recall that in 4], Chap. 2 and 3 the density

77

ratio pé" /Pef(" was denoted by r, (X,; 6, 0,). In this paper we shall sup-

press the dependence on 6, 0,, and write r,(X,), r (x) instead of r,(X,; 0, 0,),
r,(x; 0,, ;). As usual, 0, < 0,. We shall show (this result is also implicit in
[2] that there is a unique number 6, such that r (x)— 0 or «» according as
x < 0, or > 6,. This allows the following conclusions concerning r (X ):

(N lim, o (X)) =0 "~ ae Pyif 60,
) lim,, ., r(X)= ., ae. Py if 0> 6,

To show (1) and (2) we first remark that U, — 0 a.e. P, and V,— 1 in proba-
bility, so thet X, — 0 a.e. P_. Suppose & < 8, and © is not in an exceptional -
null set so that X (w)—- 0. Choose any x such that 6 < x < 0,, then there is
an integer N such that X (@) < xif n > N_. Since r,(x) is an increasing
function of x we have for all n = N _: r (X (©)) < r,(x), so that:

lim, y ., r(X (o)) <lim, ,, r(x) =0
This gives (1), and (2) is obtained analogously.
The density of X, can be found as follows:
P (X, <x} = 1p () dv [ py ) du
so that
P?r"(x) = ?PV"(V) PU"(VX) v dv

After substituting the deusities of V, and U, we have

n—1

5 v2idv

v n
3 pz("(x) =K, [vilexp [—? (vx —~ 0)2 —
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where n—1n

5 (n— l) 2
2 —— e
K o l/ !

n N n —- ]
or - )

loe
p?"(x) =K, exp [— 1_21_ 0? ] Jvilexp [—— _151- (1 - x2——l_) v - nﬁxvl dv

1o 2 n

o
L.

. . / 1
and after making the transformation l/ n (I +x2——) v-—> v we have

n
B,
, 5
p?”(x) =K exp|— I g \n(h x2— 1_ / “/ vi—lexp
’ ! n/JYy '

Substituting 6, and O, for 0, respectively, and taking the ratio, we obtain

) . n_. .,
) rx) =exp {*5(02' - 612)1
m —— ) ——
/ . ' Vi f,x — g
vViTrexp -5 T —em——————1\'nv dv
o F ‘ 2 / 2 ] ¢
o l (1 —- X\* —_) .
_ n !
S T i
" \ ve bx —
/ v lexpl — 5 e VvV dv
; Yl
L n B
Consider the following integrals:
o Tyt —_
(3) Iiw)—= v exp — 5 Vaw,vody
and
: ” A —1 7
(©) g = T (- 1) ew =20 e
v \B [ v,
in which
7 VR, | A
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In [2], section 2, replacing in [2] w by w, it is shown that:

e n-l ;
(8) T(w) = (ﬂ) n exp g;( ) n Y1 J(w)
¢ IVn - \4n
If
(9) W, >
then
0 8= RE
(10) lim, o J(w,) =" m— | = J(w), say
N

I 4 - (V W2 o wp?
The proof is essentially contained in (2), section 2. More precisely, the paper
cited proves J (w)—-J(w), but the proof necds only a very slight modification
to obtzin (10). Note that if we have (9), then

v, 1 ,
(In 7 iimn——>w V//n = ’2‘(W oA WE - 4) = o(w), say.
We shall give now a useful extension of the lemma in [2], section 2:
Lemma 1. If

(12) W s S
where
(13) s >z
then
— . -
(14 1 {w,) ~ Vi ) ' 1 I p | az(w) |
¢ a(w) 5 i

Proof: Substituting (12) into (7), we compute

v, ( 1 1 J i
(15 — = o(w) 1 -- —~—(1 — ) - o(u)
Vn f nwE -4 ACIVA n

and substituting of (10}, (11) and (15) into (8) yields (14).
The integral in the mimerator on the right hand side of (4) is of the form

0,x
(5) with w,, - ——7#;——“__—:::1 so that w is clearly of the form (12). Similarly

| - ;\2 —
- n
the integral in the denominator. Thus we can apply Lemma 1 to study the
limiting behavior of r_ (x). If we put

f,x

16 o —
(16} Z; \/l' N

VOL 3, NO. 2, PROCFFDINGS 1963




LINMITING BEHAVIOR Ol THE SLQUENCE Ol DENSITY RATIOS 101

then for the limiting behavior of r,(x) we can replace the integral in the
numerator (denominator) in (14) with w replaced by z, (z,).
We get ’

ny |
Inr,(x) ~3 : — 02402 = 21n w (2y) - (2(2,)" — 2 Ina(z)) — (u(z)))? :

multiplied by a factor that does not involve n. Thus,

1
(17 lim,_, Ijln r, (x) = —1(62 — 03) - Ino(z) — Ina(z) 4 He(zy))?

l - - -

- ;1;(7'(21))2
If we put
(19) ]
1 §— o=
V1w
then from (16) we have z; = £ 6,. Furthermore, we defize
(19) h(0,x) = — 1 0 — Ina(20) - 1 («(20))
Then we can write (17) as
1

(20) lim,_, - In 1, (x) == h(0,,x) — h(0,,x)

The right hand side of (20) depends on x through %. Since by (18) £ and x
have the same sign, we see immediately from (19) thet
(2D h(— 0, — x) = h(0 %)
Since r (x) is a strictly increasing function of x, the same is true for the right
hand side of (20) (this can also be checked directly, and this has been done
in {2]). Continuity in x is obvious. We shall show that h(f,,x) — h(6,,x) is
positive if x = 0, and negative if x = 0,. Thus, there is a unique value of
x, say 0, with 0, > 0, < 0,, such that h{0,x) — h(0,,x) is positive, 0 or
negative according as x > 0, = 0, or < 0,. By (20) this implies that In r (x)
~»» or — o according as x > 0, or < 6 .

We shall show first that h(0,x) is concave as a fucntion of 0, for fixed
X, and that it has a maximum. First we differentiate the function In «(z) + &
(2(2))? with respect to z, using the definition (11) of «(z).

We get
:\ " 12) Lo (2 ; 2 (2) = V& -4 4 (2) = 2(z)
We use this in differentiating h(0,x) twice with respect to 0:
(22) oh == — 0 == Z(Z0)
30 T
(23) o =1 222 0)
3% CT ’
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\n

Now 221 and ) o’ } <1, from which it follows that —= << 0 for all 0.

\O) ~
Therefore, h is strictly concave in 0. Setting the right hand side of (22) equal

‘ Fas

to 0 gives the solution 0 = —=———=x, so that this is the unique

\/ 1— 2
maximum Hence

(24) RO, Oy <RV, 0) if 0 =£ 0

In particular, if we take x == 0, on the right hand side of (20) we get h(0,,0,)
—h(0.,0,) which is > 0 by (24) and if we take x = 0, we get h(0,,0)) —
L(0y,0,) which is <2 0, as was to bc shown. As was remarked before, this
implies the existence of a unique 0, such that

(25) h(9,.0,) —"(0,,0,) =0

We shall sometimes denote the solution of (25) by ( ),(05,05). From (21) we see
that if the triple (0,,0,,0) satisfies (25), then so does the triple (— 0y, — 0,,
— 0,). We can express this by

(20) Oo(“o‘_)’—ol) = — 0,(04,0,)

Since (0) =1 we have from (19): h(0,,0) — h(0,,0) = — 1 ((J;::~()';’) =
— 30, — 0 (8, - 0)), so that 0, - 0, and h(0,,0)—h(0,,0) have opposite
sign. This, together with the fact that h(f,x) — h(0,,x) is increasing in x
implies

@7 0,>0 it 0, - 0,>0
(28) 0, == P00, 0, =0
(29) o, <0 if 0, =0, <0

as shown also in (2). Ofcourse, (28) and (29) are also a consequence of (27)
and (26).

Now we are going to show more about the position of 0, than is given
by (27), (28) and (29), namely
(30) 00, <30, +0, if H, -0,>0
31 0= 0, = 1(0, = 0, if 0, = 0,<0
This can be expressed in words by saying that 9, lies between 0 and (0, -+ 0,)/2
which also covers the case 0, =0 if 0, -~ 6, = 0. We need only show (30)
since (31) follows from (30) and (26). Moreover, the left ir'cqba ity in (30)
is the same as (27), so that we only have to show 0, < (0, -~ 0,)/2. Define
(32) gn) = h(x - 45 x) — h(x — ;)
Actually, g also depends on x, but this is suppressed in the notation. We
need to consider g only for x << 0 and , > 0. Using (23) we compute

(33) g"(r) = 2 2/(2x + 1) — #'(Xx — 1)

VOL 3, NO. 2, PROCEEDINGS 1963



LIMITING BEHAVIOR OF THE SEQUENCE OF DENSITY RATIOS 103

By (18) # and x have the same sign, so £ << 0. Since «'(w) is an increasing
function of w the right hand side of (33) is > 0. Moreover, 1f follows imme-
diately from (32) that g(0) = g'(0) = 0. Thus, g(+) > 0 for all 7, > 0, or

(34) h(x 4+ o ;X) > h(x — 7 :X) ifx>0,v>0

Now let 0, satisfy (25), and substitute in (34) x = 0, 7, = 0, — 0,; so that
x>0, 7 > 0. On the left in (34) we have R(20, — 0;;0)). On the right we
have h(0,:0,), which equals h(0,;0 ) by (25). Thus, (34) reduces to

(35) h(20, — 0530,) > h(B,:0,)

Now h(0;0,) as a function of 0 has its maximum at 0 .~ 0 Since 0, <0,
1(0:9 ) is a decreasing function of 0 for 6 = 0. 1t follows then from (35) that
20, — 0y << 0y 5 0r 0, < (0y -+ 0,)/2, as was to be shown,

Finally we are going to investigate the limiting behavior of r, (X)) if
0 = 0,. Consider the following sequence
(36) x, = 0, 4-¢/n
then the integral in the

0, x,

denominator of (4) is of the form (5) with w, = — Lo
R X2 —1/n
x, 1s given by (36). This w, is of the form (12); denote the limit on the right
hand side of (13) by a'D. For the integral in the numerator of (4) we have a

similar expression for w,, with 0, replaced by 0,, and limit in (13) given
by a'® We compute w,:

w, =0, (0, == ¢/n) {1 = (0, +c/n>— 1/'n}—4

, 1 Lcl ,— 1 ,
= 0,0, = cmy(l — (=2 {1 —— 1L -- ofl/n)

where ¢ is some constant. If in (4), x is replaced by x

n

, where

0,0, Oc _ N —
e (7——t-1 U0,2¢0, — 1), ou))
V=02 on \WVI #6207 (1= g2
b,y ( 0.9, . e (1))
VIS 02 n \2(1 - U9 (1 4 0y)
so that
X 0,0, fic
(37) al = — !

201 -- 0P (1 gy

Since x,-—0,, the values of z; to be substituted for w in the asymptotic
formula (14) are given by (16) x = 0. Using (14) in (4) the factor that
depends exponentially on n is then

exp [ne (h(ly,H,) — h(0,0))]
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which is equal to 1 for all n by (25). From the remaining factors in (14) we

obtain
- o 0‘,00 ) o 0,0, )
a’ o —a [s.4 ——
V1o (x/ 1 - b2

multiplied by a posmve factor that does not involve c. Using (37) we have then
(38) lim . r(x,)= A exp [Bc]
where A is a positive constant and

rll(Xﬂ) ~ exp

0, 0,0 0, 9,0

(39 B= (- 03 )3/2 o \/:—Tg) - 1+ 63)3/2 o '\/—1_—{:—6%—)
We cleim that B > 0. If 0, < 0 <C 0, this follows immediately from the posi-
tiveness of the function «. If 0 <C 0, < €),, so that also 0, > 0, we make use
of the fact that « is an increasing function of its argument. The case 0; <C 0,
< 0 is reduced to the case 0 < 8; < 0, by making the transformation 6,—
— 8, 6,b——10;, 8,—>— 0, (using (26)), which leaves B invariant.

We shall use (38) now to study the limiting behavior of r (X,) if 0 = 0,
We know that with respect to Py , 4/n (X, - 6,) has a limiting distribution
which is normal with mean 0 and variance 1, so that if ¢ is a positive number
(40) Py (0, —c/n <X, <0, +c/n) =Py (—c/y/n < 4/n(X,—0) <
¢/v/n)—>0 as n—> . Let b and d be any numbers with 0 <b < d << o,
there is a positive number ¢ such that

“n A exp [—Bc] << b < d <A exp [Bc]
From (38) there is then an integer N such that for n >> N we have
(42) r (0, —c/ny<b and r, 0, c/n) >d

So we have
Py, (b <r(X,) <d) < P (r,(0, — ¢/n) < r(X,) <r(0, + c/n))
=Py (0, —cn <X, <0,+ cn)

—0 as n— w»n by (40)
and using (40) we get
(43) Py {b=<r X)) < dj—>0as n—> o
Finally we are going to show that
44) Iim inf,, (X)) =0 ae. POO
(45) lim sup,, . 1,(X,) = v ae. POO
It is sufficient to show that for every positive and finite number b:
(46) lim, ,.o, Py {r(X,) > b} =1

for this implies (45),and (44) is implied by lim,, ,. 6 {r,(X,) < b=1}which
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follows immediately from (46). To show (46), let ¢ be a positive number satis-
fying

47) A exp [—Bel-2b-7 A exp [B]

Similar to the proof that led to (43), we have

(@8 Py (0, +ch<X)=(P (b<rX)<P (), —¢n<X,) for

0

o
n > N. Since 4/n (X, — 0,) hes a limitirg distribution which is normal with
mean 0 and variance I, we huve

(49) P() (0, ~cn< X)) = P(l (—cyn<4yn(X,—0,)—>1a n—>e
It is easy to see that (48) and (49) imply (46).
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