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ON THE NEAREST REAL SINGULARITIES OF A
SINGLE LOOP FEYNMAN DIAGRAM.

M. Barmawi.

Department of Physics.

Bandung Institute of T'echnology.

ICHTISAR,

Disini dibahas sarat-sarat untuk singularitas riel terdekat dari amplitudo proses?
jang dztund]ukkan oleh suatu diagram Peynman dengan satu lingkaran tertutup jang
umumn]a men]atakan produksi dart partzkel Telah ditundjukkan, bahwa sarat Landau
dan positipnja parameter Feynman jang bersangkutan tidak tjukup. Sarat selandjutnja
Jang masih harus dipenuhi ternjata merupakan perluasan dari sarat Karplus, Sommer-
field dan Wichmann jang diketemukan untuk ,,fungn ttga titik”’.

Selandjutnja akibat sarat tambahan ini dibah ditundjukkan pula hu-
bungannja dengan ,.dugaan” (conjecture) dan N ambu dan Blankenbeckler jang ternjata
umumnja tak benar. Pembahasan ini djuga dapat dipergunakan pada diagram Feynman
jang sembarang.

ABSTRACT.

The nearest real singularities of production amplitude corresponding to a smgle loap
Feynman diagram is discussed. It is shown that Landau condition and the positiveness
of the Feynman parameter is not sulfficient for the part of Landau curve to be the nearest
real singularity. The additional condition is the generalized Karplus, Sommerfield and
Wichmann condition, originally found in the 3-point function.

The consequences of this additional condition is discussed and related to Blanken-
beckler-Nambu conjecture. The discussion ts also applicable to an arbitrary Feynman
diagram.

1. INTRODUCTION

Singularities of Fevnman diagrams in general has been studied by
Landau?! and Polkinghorne and Screaton?, whose results are equivalent to
a certain extend.For simplicity we restrict our self to the case of singleloop
diagrams. In this case the amplitude is given by? (see also sec. 2)

P [ M (1= E) D (g p) 70
o
The condition for the singularities are:
(i) PLither «x,- 0
or 8 D;8 x; — 0 with the singularitics of the integrand pinching the
contour of integration over x,.

(it) x; > 0, which is called the positiveness condition.

These will determine the nearest singularities of a single-loop diagram.
In practice the difficult part is the verification of the pinching of the
singularities. This is due to the multiple integration over x, in the express-
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ion for T". Tor this reason in most of the study of the nearest singularities?
this has been neglected, hoping that it is satisfied automatically. In the
present paper we are concerned with this problem, i.e. the formulation of
the pinching condition and to answer the question, whether, the positiveness
condition is sufficient for the part of the Landau curve to be the nearest
singularity.

The present method is based on Plemelj formula® and the condition
for singularity is expressed geometrically. Later this condition is
~ formulated as a set of inequalities, which corresponds to a certain region
in the landau graph. It turns out that the result is nothing, but the
generalization of Karplus, Sommerfield and Wichmann condition®. Further
it is shown that this KSW condition is equivalent to the pinching one.

In sec. 2 the idea will be explained for the case of the vertex function.
An explicite example is presented which shows that the positiveness con-
dition s not sufficient for a point on the lLandau curve to be a singularity.
This is also evident from the discussion. In sec. 3 we generalize the result
to an arbitrary single-loop diagram with n vertices.

Our methed is also applicable to anv Feynman diagram, as one can
see trom the Chisholm expression®’.

2, THIE VERTEX FUNCTION.

Analytic propertics of the vertex function has been discussed by
several authors 383106 however tor later discussion it is necessary to
present this in such a form that the algebra of the quadratic forms is reduced
to that of corresponding matrices., Consider the vertex function associated
with the process shown in fig. 1. m; are the internal masses and p,; are the
four-momenta of the external particles. Using scalar fields for all the
particles involved and scalar trilinear interaction on each vertices one
obtaines finite expression for the vertex function. After performing
symetric integration one obtain:

g
1/ dypdyydxy (1 —x; —xy—xy). D7V (1
Lo
Where D 1s a homogeneous quadratic form in ; :

\° N Y Y . 2.\ oy 2
D (Z ) Xy mE = X pE)
.

We can write D as a matrix product x7 (D) a, where v == (xy, x4, )

and the matrix (1)) is:

N
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p12

p13

Fig. 1. The vertex function.
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If we carry out the integration over x, the vertex function becomes

‘1 "1—=x1
V= / dxy / dv, D}
Lo Lo

The matrix of D_ is most easily obtained from (D) by considering the
substitution a3 = 1 — &) — &, as a linear transformation from (xy, x,, 1).
For later discussion it is important to note that the determinant of this
transformation is unity. All these can be generalized to single-loop
diagrams with the number of external masscs greater than 3.

A dispersion relation is essentially a Cauchy integral representation®,
Originally it is known the case, where we have only the normal threshold,
which comes from the lower limit of the mass spectrum so that one usually
integrate over a part of the real axis. If we have a cut which goes off the real
axis we have to generalize the contour to the cut. 1f the condition for the
existence of the Cauchy integral representation is satistied then the
dispersion relation in nothing but the Plemelj formula:

A(po)
— . do

e e

1 —a
7 1 ’ N J—
A(p,o)= (" —V7)

where p; = (p%,, p*s) and -2 = p?,; 1s the momentum tranfer. Here ¢ is
not retricted do the regular points of V. The superscript + denotes the
limiting process from 2 opposite sides of the contour, when ¢ is on L.
Let us make 2 assumptions:

1) The existence of such an integral representation for 7

2) L isapart of the real axis. The second assumption. is the same as
assuming that the singularitics are real, however we do not assume that L
starts from any particular point of the real axis. Later on we will discuss
these assumptions. By these assumptions one can calculate the absorptive
part A using the identity: (¢ — i0) ™! —{a + i0)™! = 27 i§ (a),

which immediately gives:

‘1 '1—x]
A(p, o) = /0 dxl./o dyy (D)., (2)

v %

Let us associate a geometric picture to the computation of this integral.
'I'he boundary of integration of integral (2) is an equilateral triangle in
the x, &, plane. D = 0 is a conic. The non-zero contribution to the integral
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Fig. 2. The euqilateral triangle is the boundary of integration of (2) C is

the curve D = 0. Oand x, are the boundary of integration for the absorptive
part of the ventex function.

comes from the zeros of D, hence “.4 == 0 only if there is a part of the conic
which lies inside the triangle 77" — note that the shape and the position
of the conic depends upon (py, 6). It is obvious that at the threshold of I/
the conic start to enter 7. There are only two ways for D, = 0 to enter
into T, i.e. when it touches the boundary of 7' or suddenly appears as a
point-ellips inside 7.

Therefore:

(1) At the normal thresheld of V', the conic D = 0 is fangent to one of
the sides of 7.

(11) At the anomalous threshold, the conic D, = 0 suddenly appears in
T as point-ellips.
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Fig. 2 a. The equilateral triangle is the boundary of integration of (2). C is
the curve D = 0. x7 are the boundary of integration for the absorptive part of

1
the vertex function.

(i1) comes from the fact that as the ellips grows, it touches the side of
the triangle from inside at the normal threshold. These lead to the same

egs. of Polkinghorne — Screaton {PS) — condition (i) of sec. 1-——- that
is: (1) 1s equivalent to
3D 3D

xy == 0

’

— == ((/ = 2,3) and (i) with —— 0 (==1273). and
98y ’ R

constitute a homogeneous linear eqs. for x;, whose solution with
xp 4 &, 4+ x5 =: 1 gives the coordinates of the point of tangency and of the

point-elips respectively. The cquation of singularities comes from the

requirement that these eqs. has a non-trivial solutions, that is the 2 by 2
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main-minor of det. (1)) in the normal case, and the determinant of (D)
itself in the aromalcus case, 1s equal to zero. The requirement that the
tangent point or the point-ellips to belong to the closed region 7' is
essentially the positiveness condition (i1) of sec. 1. We have reproduced the
equation of the singularitics and tiie positiveness condition in our picture.
However (ii) is more than that, it requires that D = 0 is a point-ellips. 'I'his
does not follow {rom det. (/J) = 0. The last equation says only that D = 0
is degenerate. Since we have one centre of symmetry the posibility of being
a pair of intersecting lires 1s not excluded. The point-ellips condition will
be formulated by saying that D = 0 will not intersect x; =0 (7 = 1,2).
This leads to the 2 by 2 main-miror of det. (D) must be positive. T'his is
essentially the same as Karplus-Sommerfield-Wichmann condition®, which
is obtained and expressed m a different way. To illustrate the situation we
take as an example the fcrm factors, where p%, = p2, == z. We restrict
ourself to real internal masses. In this case* det. (D)= —1¢ {m*% — 3
(4m -—— 5)} = 0 all internal masses being equal to m. The curve of
singularities, the Landau curve, in the real. (g, f) plane is shown in fig. 3.
z =t = 4m* arc the normal thresholds. In the interior of the square
0 < 4m?, 0 << t < 4m?, the main-minors are positive. Shaded region is the
region of positive Feynman parameters x;. We conclude from the above
discussion that only the part of det. (D) = 0 which lies in the intersection
of the two regions will give the anomalous singularity in the physical sheet.
This is wellkown. However what happens if 2 > 4 m?? If this inequality
is satisfied then D = 0 always cut xy = 1 -—x; — x5 = 0 and x, = 0 at
two points on each. However now the vahdity of (2) is doubtful,
since I” is no longer single-valued, because we are on the cut inz
complex plane. (Ct. Plemelj formula for ¢ on the cut). Therefore nothing
can be said at this point. Oehne has shown®, by analytic continuation of
the differentiated form of V, that the singularity diseppears from the
physical sheet. 'This shows that the positiveness condition is not sujficient.
The singularity is the nearest since we approach it from the physical
region, which is regular®.

Let us go back to the calculation of the absorptive part .\ in (2). The
result of x, integration is 2.8, (D), where R,(D,) is the discriminant of D),
with respect to the paramcter v,. 'Then

N

1
Az, 6) == / dyy . 2R, ()Y, for 6, <l o <L 4m?

]

.v*—
1

5 - anomalous threshold.

a

INSTITUT TEKNOLGGI BANDUNG



136 M. BarmawI

~—'

////
/,

/i
¢
N

At

0,

Fig. 3. K is the curve det (D) = 0. Shaded region is the region of positive
Fevnman puarameters.

Ny
1
V1 N R 5
1(s,6) = / Ny dyg 2Ry (DgE, for o o wm®
o

and

v

if 2m? < s < 4m2 ‘Lhe boundaries of the first integral is between the
two vertical tangents to the conic D), - 0, while the second is between the
x, axis and the vertical tangent inside 7. Note that in the first case the
ellips is inside 7. 1f s > 4m* then the integral is oniy equal to the second
one. We see that the effect of the normal threshold in the ancmalous case
disappears, as first observed by Blankanbeckler and Nambu 1% This is
clear in our picture since in the anomalous case the conic touches the x,
axis from inside, while in the normal case it is from outside of 7.

o
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This section will be closed with some remarks. Firstly, the procedure
leads to the correct physical sheet is clear, since we have used the vertex
function defined by the definite real integral (1) over the Feynman
parameters®®, in contrast to PS treatment where it is extended to the
complex one. Consequently instead of the pinching we have the point-ellips
condition. Second, the assumption that the singularities are real is not
serious, since we know the Landau curve. By restricting some parameters
to a certain range this can be satisfied. Thirdly, the assumption about the
existence of the Cauchy integral representation is reasonable. The condition
for this is that the absorptive part satisfies the Holder condition®. Estimates
of the behaviour of ¥ near the singularities »*'* shows, that indeed the
H condition is satisfied.

3. THE SINGLE-LLOOP IFEYNMAN DIAGRAM.

The amplitude of a single-loop diagram with n external particles,
which corresponds to praduction process, is

Vo= | CMody, 31— %) D= 3)
o

where the index 1 runs from 1 to n. D is the same as in the vertex function
except that now the range of the index is extended up to n. The trouble
in generalizing the previous result is, that now the power of D is — (n — 2)
s~ — 1, so that we cannot use the method of sec. 2. For this reason we
construct a new function: ¥ defined in the same way as I/ with a change in
the power of D; instead of —(n — 2) we take — 1. }7 is then related to F
by the following differential operation with respect to the internal masses:

Vo= (233 my 2 F.

The analytic properties of I and 7 will be the same, although the types of
singularities might be different®. The corresponding integral to (2) for the
absorptive part of F is now over an #— 1 dimensional equilateral
“Tetrahydron” 1',_, in#n dimensional Lucledian space bounded by the
hyperplanes x;, =0 (1= 1,2, ........ n), where x, = 1— (x, + x,) +
........ +x, )

Using the classification of Tarski'! we can formulate the condition for
the nearest real singularities of a single-loop diagram as:

“At the C* singularity of a single-loop Feynman diagram with n

external masses:
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(1) for & << n — 1 the hypersurfase D — 0 is tangent to a k dimensional
plane x; = 0 (for some # — k Feynman parameters) as a boundary
of T, at one-point.

(i) for k= n-—1D = 0 is a point-hyperellipscid inside 7',_,”.

Note that for a higher dimensional quardratic surface it is possible that a

hyperplane is tangent to it with a lower dimensional plane in conmon—

We will discuss only (ii) since (1) is essentially the same problem in a lower

dimensional space.

As before the conditions lead to the PS equation of singularities and
the positiveness condition. Lct us find the point-hyperellipsoid condition
more explicity. Here we also try to find the intersection with some a; == 0.
The interscction is given by the equation D (xj# vy =0) == 0,

For this to have no real pcints, this D must be cither negative or
positive definite. 1f the internal masses are real, the first possibility is exclu-
ded. A thecrem on quadratic forms?? states that a nccessary and sufficient
condition fcr a hermitian quadratic for to be positive definits is, that the
determinant of its matrix and all its main-minore are positive. Since the
determinant of (D) and all its main-mincers 1s the same as that of (D) (cf.
remark in the begining ot sec. 2.) it follows that: ““I'he condition for the
nearest real singularities of type C* whese equation is det. (D), = 0 is that
all its main-mincrs are positive.” in addition to the positiveness condition,
(Dy) is the “main-minors” of the matrix (D) which is & by k. An immi-
diate consequence of this is that the nearest real singularity of a single-
loop diagram is located in a finite region.

Since the tangency of the quadratic surface to a & — 1 dimensional
plane on the boundary of 7, ; can only occur after it touches ak
dimensional plane, it follows that: “I'he nearest real singularity of type
(¥ is farther than that of type C* with respect to the origin.” In the
C* singularity, the C7 one (I < k) does net “affect” the absorptive part of
presence of I, "Lhis can be easily visualized in the case of the four-point
function. Hence I will certainly satisty the conjecture of Blankenbeckler
and Nambu?!‘, however it is not necessary true for I7. This is clearly
shown inan example given by Ochme in the case of vertex function?®.

Finally we would like to relate the pinching with the point-hyperel-
lipsoid conditicn. 1f we are oft the Landau curve in the physical region
then D is positive definite. Since the matrix (D) is the roots ot hermitian D
(¥;) in cach Feynman parameter are complex conjugate one to another, they
lic ent the opposite sides of the real axis in the w; complex plane. As we let
the point approach the Landau curve these singularities pinch tie real axis.
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