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Abstract. For a simple, connected, undirected graG(V, E), an open
neighbor-hood coloringf the grapr G is a mappingf :V(G) - Z', such that
for each wOV and Ou,vON(W), f(u)# f(v). The maximum value of
f(w), OWOV(G) is called the span of the open neighbort coloring f.
The minimum span off over all the open neighborhood colorindsis called

the open neighborhood chromatic number G, denoted by Y, .(G). In this

paper,we determine the open neighborhood chromatic nurobgrisn graph
which is a generalized Petersen gr GP(n, k) for n 23and k =1.
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1 I ntroduction

All the graphs considered here are undirected, ected and simple. We u
the standard terminologies and the terms noined here may be found [t-
3]. A proper coloringof a graph is an assignment of colors to the vestguct
that adjacent vertices receive different colors. Theiminm number of color
required for such a coloring is called the chromatimber othe graph denote
by x(G). In other words, a coloring is an assignment of negative integers 1

the vertices ofG such that adjace vertices receive different labels.

A L(hK)labeling [4 is an assignment of non negative integers toverdces
of Gsuch that adjacent vertices are labelled usingrsab leas' h apart, anc
vertices having a common neighbour are labelledgusblors at leask apart.
Most of the work in literature deals with the défion of L(h k) labeling with

h >k [5-11]. The L(hk)labeling problem is studied mainly to avoid hidc
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terminal interference in multihop radio networks [@2] and for code
assignment in computer networks in [13].

The concept of open neighbourhood coloring waoihtced by Geetha. K.N.,
et al [14] and is akin to the definition ok(h, k) labeling withh =0 and k =1

[15]. It is defined as a coloringf :V — Z",such that for eachwV and
Ou,vON(W), f(u)# f(v). The maximum value off (W), OwOV(G) is called
the span of the open neighborhood colorihgThe minimum span off over
all the open neighbourhood colouringsis called open neighbourhood chro-
matic number ofG, denoted byx,,.(G). The example shown in the Figures 1,
2 and 3 below clearly indicate the difference bemwproper coloringL (0,1)
labeling and open neighborhood coloring of a gr&ph

1 2

1

Figure1l Proper coloring of a grafh .

1 1
0 0
0
Figure2 L (0,) labeling of a graptG .
1 1
2 3
4

Figure3 Open neighborhood coloring of a grafph
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The open neighborhood chromatic number of certi@ndard graphs like path,
cycle, trees, complete bipartite graph and thenguidar lattice, which is an
infinite graph has been computed in [14]. In thEpgr we find the open
neighborhood chromatic number of prism graph, &iqdar case of generalized
Petersen grapBP(n, k).

The generalized Petersen graph dend&(n, k) where n =3 is a graph with
vertex set{u, U, ....4 ,\,\%,....y} and edge sefU Y., YV, V¥, :

i =1,....n} where subscripts are under modualand k<§. The vertices
{ul,uz, ..... un} are called the inner polygon vertices and the oesti
{vl,vz, ..... ,vn} are called the outer polygon vertices. In paréicuif k=1, the

generalized Petersen graph beconm@®(nl) which is isomorphic to the

Cartesian product oE,, with P, called as the prism graph as shown in Figure
4.

Figure4 The prismGP(n,1).

2 Some Preliminary Results
In this section we state some of the preliminagults on open neighborhood
coloring from [14].

Theorem 2.1. Let f be open neighborhood coloring &(V, E) with span

(f) = Xonc(G). If U,V are the end vertices of a path of length ZGrthen
f(u)z f(v).

Theorem 2.2. For any graphG(V, E), X...(G)2A(G).
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Theorem 2.3.If H is a connected subgraph &f, then Xonc(H) < Xonc(G).

Theorem 2.4. The open neighborhood chromatic number of a cordegtaph
G is one if and only ifG C Ky or K.

3 Open Neighbor hood Coloring of Prisms

Observation 3.1. In the prism graph, it is obvious that, the vedi¢bat are
connected to any vertey;, 1<i<n, by a path of length two arél,,,V,
where the suffix is under modulo. Similarly, the vertices that are connected
to any vertexv;, 1<i<n, by a path of length two ar€,,, U,, where the suffix

is under modulan.

We now define aP; - independent set as follows:

Definition 3.2. A subset S of V (G) such that no two vertices of are end
vertices of a path of a length twoGn is called aP; - independent set db.

Lemma 3.3. Let GP(n,1), where n 23 be any prism. For eadh, O<k<2
define the setSy :{ui,vi /i=k(mod 3)}. Then each setS,,is a P;-
independent set if and onlyif= O(mod 3).

Proof. Let n=0(mod3). Now, S,={u;,v,/i=0(mod3)}. Also
i=0(mod3) implies i+2,i-1=2(mod3) and i+1i-2 =1(mod3)
Therefore, Ui+, Vi1, Vi+2, Uiz 1Sy. Hence by observation 3.1S,is a P;-

independent set. Similarly it can be proved tBatand S, are P; -independent
sets.

We prove the converse in two cases.

Case (1). Supposen El(mod 3).Then us,Vy,U,,v,0S,. But u,and v, are
end vertices of a path of length two and hefgéails to be aP; - independent
set, a contradiction.

Case (2). SupposenEZ(mod 3). Then u,,v,,u,,v,0S,. But u,and u,
are the end vertices of a path of length two amcheS, fails to be aP;-
independent set, a contradiction.
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Hence the result

Lemma 3.4. Let SOGP (n,1) be anyP;—independent set &P (n,1), where
n >3. For eachk, 0sk<2, if u;0Swhere i=k(mod 3) then for every
uj v; S, we must havel =k (mod 3).

Proof. We now prove the case &f=0.

Let uy; S, where i=0(mod3). Now, asS is a P;- independent set, by
observation 3.1,U;.,,V;+10S. Also i=0(mod3)=i+2,i-1=2(mod3) and
i+1,i-2=1(mod3). Therefore, u; v;US if j=1,2(mod3). Hence S

contains only vertices of the form ,v; where j =0(mod3).

The cases ok =1 and k =2 follow similarly.

Theorem 3.5. For the prism graplGP (n,1), with n =3,

3, if n=0(mod3)
Xone(G) ={

4, otherwise

Proof. We prove the theorem in three cases.
Case(1). n=0(mod 3)

By Theorem 2.2 .x,,.(G)= 3. We now show thajy,,.(G)=3. In this case, the
vertex set of GP(n,1), can be partitioned into thre®;- independent sets
namely &,S, and S, as defined in Lemma 3.3. A single color can bégassl
to all vertices in each of the sets and heygg.(G) =3for n=0(mod 3).

We now show that three colors are not sufficienthia next two cases and
hence at least four colors are necessary for an apghborhood coloring of
the prism.

Case (2). n=1(mod3).

For eachk, 0sk< 2, letS, ={u;,v; /i =k (mod 3)} wherel<i < n-1 be
three P;- independent sets oBP(n,1), constructed as mentioned in Lemma
3.4. Then, by Lemma 3.3, for eack, 0sk<2, u,v,0S. For each

k,0sk<2, we may assign a single color to all the verticesSpf Now
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verticesu, andV, are not assigned any color and hence at leasthone color
is required.

We now show that four colors are sufficient foragen neighborhood coloring
of the prism forn=1 (mod 3).

Define the labelingf :V(G) — z* as

1, if i =1(mod?3),

) _|2/if i=2(mod3),

f(v)= f(u)= 3, if i =0(mod3),
4, if i=n.

We first consider the vertices of the inner polygon

Foralli,2<i<n-2, N (ui)={ui_1,ui+1,vi}, where the suffix is under
modulon.

If i=1(mod3) then f(u;_;)=3 f(u4)=2 and f(v,)=1
If i=2(mod3) then f(u4)=1 f(u4)=3and f(v;)=2
If i=0(mod3) then f(u;1)=2, f(uj,,)=1and f(v;)=3.
Hence foralli,2 <i<sn-2, f(u,_1)# f(uj, )z f(v).

We now consider the vertices of the outer polygon.

Foralli,2<i<n-2, N (vi):{vi_l,vi+l,ui}, where the suffix is under
modulon.

If i=1(mod3) then f(v;1)=3 f(viy1)=2 and f(u;)=1.
If i=2(mod3) then f(vi4)=1 f(Vi,1)=3 and f(u;)=2
If i=0(mod3) then f(v,_;)=2 f(v,;y)=1 and f(u;)=3.
Henceforalli,2 <i<sn-2, f(vi.1)Z f(viy)Z F(U;).

For i =1,n,n -1, we make the following observations:

1. Wheni=1, N(ul):{uz,un,vl}, suffix is under modulon and from
the definition of f, we observe thatf (u,)=2, f(u,)=4, f(v;)=1. Thus
fuy)# fuy)# f(vq).
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2. Wheni=1, N (vl):{vz,vn,ul}, suffix is under modulo and it can be
observed that f(uy)=1, f(v,)=2, f(v,)=4. Thus f(v,)z f(v,)#
f(v,).

3. Wheni=n-1, N(u,_q) :{vn_l,un,un_z}, suffix is under modulon
and we have f(v_)=3,f(u )=4,f(u_,)=2. Thus f(v, ,)#
f(u_)#f(u).

4. Wheni=n-1, N (vn_1)={un_2,vn,vn_2}, suffix is under modulon
and it can be observed that(u,4)=3 f(v,)=4, f(v,.»)=2. Thus
fu )z f(v,)z f(v._,).

5. Wheni=n, N (un):{ul,un_l,vn}, suffix is under modulan and it can
be observed thaf (u;) =1, f(u,1)=3, f(v,)=4. Thus f(u)# f(u_ )
z f(v).

6. Wheni=n, N (vn):{vn_l,vl,un}, suffix is under modulon and also
observe thatf(v,_1)=3 f(\)=1 f(u,)=4. Thus f(v,_,)# f(v)#
f(u,).

This proves that f is indeed an open neighborhood coloring and hence
Xonc(G):4 for n=1 (mod3).

Case (3). n=2 (mod3).

For eachk, 0<k<2, letS, ={u;,v, /i =k (mod 3)} where 1< i < n-2 be
threeP; - independent sets oGP (n,1), constructed as mentioned in Lemma
3.4. Then, by lemma 3.3, for eadh, 0<k<2, u,_; v,;,u,,v,0S,. For
eachk, 0sk <2, we may assign a single color to all the verticesSpf Now

verticesU,1,V,1,U, vV, are not assigned any color and hence at leastnone
color is required.

We now show that four colors are sufficient foraggen neighborhood coloring
of the prism in this case by considering three asbs.

Subcase (i). N=0,2(mod4)
Define the labelingf :V(G) - Z* as:
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n
Foralli, 1si<—-1,
2

1, if i =1(mod 3),
f(v)= f(u)=+2,if i=2(mod3)
3,if i =0(mod3)

for all i,%+1sisn—1

1, if i =2(mod3)
f(v)= f(u)=+<2,if i=0(mod3).
3,if i =1(mod 3).
and
f(u)=1f(v)=f(u,) = f(v,)=4.
We first consider the vertices in the inner polygon
Foralli,2 < Sg— 2, N (ui)={ui_1,ui+1,vi}, where the suffix is under
modulon.

If i=1(mod3) then f(u;_4)=3 f(u1)=2 and f(v;)=1.
If i=2(mod3) then f(u;_;)=1 f(uj,;)=3 and f(v;)=2
If i=0(mod3) then f(u;;)=2, f(u;,;)=1and f(v;)=3.

. N
Hence for alli, 2 < i SE_ 2, f(uj_)# T(upg)# T(v)).

.n .
For all i, E+ 2<isn-2, N (ui)={ui_1,ui+1,vi}, where the suffix is
under modula.

If i=1(mod3) then f(u;_;)=3 f(u4)=2and f(v;)=1
If i=2(mod3) then f(u;) =1 f(uj1)=3 and f(v;)=2.
If i=0(mod3) then f(u;1)=2, f(u;,,)=1and f(v;)=3.

n .
Hence for alli, E+ 2<isn=-2, f(uj1)# f(uj)Z F(v).

We next consider the vertices in the outer polygon.
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Foralli,2<i<—-2, N(v;) ={vi_l,vi+1,ui}, where the suffix is under

n
2
modulon.
If i=1(mod3) then f(v;1)=3 f(viy1)=2 and f(u;)=1.
If i=2(mod3) then f(v,;)=1 f(v;y)=3 and f(u;)=2.
If i=0(mod3) then f(v,_;1)=2 f(v;;1)=1 and f(u;)=3.

. n
Hence for alli, 2 < i SE_ 2, f(vis)# fvig)# f(up).

N .
Also, for all i, E+ 2<i<sn-2, N (Vi)={Vi_1,Vi+1,ui}, where the suffix
is under modulo.

If i=1(mod3) then f(v;1)=3 f(viy1)=2 and f(u;)=1.

If i=2(mod3) then f(v;_;)=1 f(v;y)=3 and f(u;)=2.

If i=0(mod3) then f(v,_1)=2 f(v;;1)=1 and f(u;)=3.

. n .
Hence for alli, -+ 2<sisn=2, f(viq)# f(vig)z f(u)).
. nn n . .

Further fori=1,n,n -1, E’E+1'E_l' we make the following observations:

1. Wheni=1, N(ul):{uz,un,vl}, suffix is under modulon and from the
definition of f, we observe thatf(u,)=2, f(u,)=4, f(v;)=1. Thus
f(uy)# f(u,)# f(vy).

2. Wheni=1, N(vq) :{v2 ,vn,ul}, suffix is under modulon and it can be
observed that f(u)=1 f(v,)=2 f(v,)=4 Thus f(v,)# f(v,)
zf(v,).

3. Wheni=n-1, N(u,)={v,1,U,,u,_,}, suffix is under modulon
and we have f(v,1)=3 f(u,)=4,f(u,,)=2 Thus f(v, ,)#
f(u_)Zf(u,).

4, When i=n-1, N(vn_l):{un_z,vn,vn_z}, suffix is under modulon
and it can be observed that(u,;)=3 f(v,)=4 f(v,.,)=2. Thus
f(up—) # F(vp)# F (Vo).
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10.

11.

Wheni=n, N(u,) :{ul,un_l,vn}, suffix is under modulon and it can
be observed that f(u;)=1 f(u,4)=3 f(v,)=4 Thus f(u)#
f(u_)zf(v,).

Wheni=n, N(v,) :{vn_l,vl,un}, suffix is under modulon and also
observe that f(v,4)=3 f(v)=1 f(u,)=4. Thus f(v _,)# f(v,)
zf(u,).

..n _ ..
When |:E -1, N(u%_l)—{u%_z,u%,v%_l}, suffix is under
modulo n and from the definition off, we observe thatf (uy_z):2,

f(u )=4,f(v =3. Th # f(v

(uy,) (V1) us f(u,, )% f(u,)# Fv).

.. n _ . .
When |:E -1, N(v%_l)—{v%_z,v%,u%_l}, suffix is under
modulo n and from the definition off, we observe thatf (vy_z):z,
2

f =4, f =3. Thus f z f z f :

(V%) (U%*l) u (V%_z) (V%) (U%)
Wheni:%, N(u%):{u%_l,u%+1,v%}, suffix is under modulon
and from the definition of f, we observe thatf(uy_l):?n

2
f =], f =4. Thus f (u #z f(u zf(v ).
(U/ 1) (VP/z) us f( %—1) ( %+1) (9/2)
._n _ o
When i :E , N (v%) —{v%_l,v%ﬂ,u%}, suffix is under modulon
and from the definiton of f, we observe that f(vy_l):S,
f(v =1,f(u,)=4.Thus f (v z f(v z f(u

(v, ) =L F (U, )= 4. Thus £ (v, )# T(v,, ) % f(u,).
When i:g+1, N(u%+l) {/+2, ng /+1} suffix is under
modulo n and from the definition off, we observe thatf (uy+2)=2,

2

f(u%)=4, f(v%ﬂ):l.Thus f (u%+2)¢ f(u%) F3 f(vn2+l).



Open Neighborhood Coloring of Prisms 255

12. When i:2+1, N(v%+1):{v%+2,v%,un2+l}, suffix is under

modulo n and from the definition off, we observe thatf (v,, )=2,
2

f(v.,)=4,f(u =1. Thus f (v zf(v. ) # f(u .
(nz) ( 2+1) us f( %+2) ( %) ( %+1)

This proves that isf indeed an open neighborhood coloring and hence
Xonc(G)=4 for n=2 (mod3) and n=0,2(mod4).

Subcase (ii). n=1(mod4)
Define the labelingf :V(G) - Z" as:

. . n
Foralli, 1<i S[E—‘ as

1, if i=1(mod3),
f(v;)= f(u)=42if i=2(mod3),
3 if i=0(mod3).

foralli,[%-‘+2sisn—l

1 if i=2(mod3),
f(v;)= f(u;)=+42if i =0(mod3),
3 if i=1(mod3).

and

f(u[ﬂﬂ): f(VB}rl): f(uy)="f(v,)=4

We first consider the vertices in the inner polygon

. . n
Foralli,2 < S{E—‘— 2, N (ui)={ui_1.ui+1.vi}. where the suffix is
under modulan.

If i=1(mod3) then f(u;_;)=3 f(u)=2 and f(v;)=1.
If i=2(mod3) then f(u;_;)=1, f(uj,;)=3 and f(v;)=2
If i=0(mod3) then f(u;1)=2, f(u;,y)=1and f(v;)=3.



256 Geetha K.N. Swamy, ef al.

Henceforalli, 2<i<—-2, f(u_1)# f(uj)# f(v).

n
2
Forall i, {2-‘+2 <i<sn-2, N (ui)={ui_1,ui+1,vi}. where the suffix is
under modula.

If i=1(mod3) then f(u;_1)=2, f(ujy)=1and f(v;)=3.

If i=2(mod3) then f(u,;)=3 f(u;,1)=2 and f(v;)=1.

If i=0(mod3) then f(u;1)=1 f(u;,y)=3and f(v;)=2

. n .

Hence for alli, E+ 1<isn-2, f(uj_)# f(uj,)# f(v).
We next consider the vertices in the outer polygon.

. . n
Foralli, 2 < i S[Ew -2, N (vi):{vi_l,vi+1,ui}, where the suffix is
under modulan.

If i=1(mod3) then f(v;1)=3 f(vi,1)=2 and f(u;)=1.
If i=2(mod3) then f(v,;)=1 f(v;y)=3 and f(u;)=2.
If i=0(mod3) then f(v;1)=2, f(v;;1)=1and f(u;)=3.

. ~ [n
Hence for alli, 2 < i S{E-‘— 2, f(vi))# f(vis) 2 T (U).

. |n .
Also, for all i, [E—‘+ 2<isn-2, N (Vi)={vi_1,vi+l,ui}. where the
suffix is under modulo.

If i=1(mod3) then f(vi_1)=2, f(viy;)=1and f(y)=3.
If i=2(mod3) then f(v,_;)=1, f(v;,;)=3 and f(u;)=2.
If i=0(mod3) then f(vi_;)=1, f(v;,1)=3 and f(y;)=2.

n .
Hence for alli, E+1S isn=2, f(viig)# f(vie)# f(u;).

: n|[n n
Further for i=1,n,n-1, [E—‘ {E-‘ +2, {E—‘ +1,we make the following

observations:
1. Wheni=1, N(u;) ={u2,un,vl}, suffix is under modulon and from the

definition of f, we observe thatf(u,)=2, f(u,)=4, f(v;)=1. Thus
fluz)# f(uy)# f(vy).
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. Wheni=1, N(vq) :{vz,vn ,ul}, suffix is under modulo and it can be
observed that f(u;)=1 f(v,)=2 f(v,)=4 Thus f(v,)# f(v,)#
f(v,).

. Wheni=n-1, N (un_l):{vn_l,un,un_z}, suffix is under modulon
and we have f(v,41)=3 f(u,)=4,f(u,,)=2. Thus f(v _,)#
f(u,)# f(u,).

. When i=n-1, N(vn_l):{un_l,vn,vn_z}, suffix is under modulon
and it can be observed that(u,,)=3 f(v,)=4, f(v,.,)=2. Thus
fun_)# f(vy)# F(voZo).

. Wheni=n, N(u,) :{ul,un_l,vn}, suffix is under modulan and it can
be observed thatf(u)=1 f(u,4)=3 f(v,)=4. Thus f(u,)#
fu, )7 £(v).

. Wheni=n, N(v,) :{vn_l,vl,un}, suffix is under modulon and also
observe thatf(v,)=3 f(v)=1 f(u,)=4. Thus f (v _)# f(Vv)
#zf(u,).

. When i:Pl, N (ur, ):{U " ’LTH ,\Tn } suffix is under
2 H HEEENE
modulo n and from the definiton of f, we observe that

f(u[ﬂ—l)zz’ f(u[;}l):‘l’ f(V[ﬂ )=3. Thus f(u{ﬂ_l)i f(u{ﬂ_l)
¢f(vE

i
. When i:[g-‘, N(VBV:{VHW1V[21+1,U[ﬂ}- suffix is under

modulo n and from the definiton of f, we observe that

f(vm_l):z, f(vm+l):4, f(um_l):& Thus f (VH_l) * f(vH_l)

2 2

zf(u - ).
Ha

2 2
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9. When i:Hu, N(Ur,7 )=3Ur,q.Uray Vg, ., suffix s
2 S R I
under modulo n and from the definition of f, we observe that

f(u[ﬂ )=3, f(uB}z):l f(VB“ﬂ):‘L Thus f (UP—‘ )% f(u[ﬂ“ﬂ)
# f(vE

H

10.Wheni:[ﬂ+1, N(V[g}'l):{v{ﬂ ,VBLZ,UB}&}, suffix is under

modulo n and from the definiton of f, we observe that

f(VBw )=3, f(VB%Z):l f(u[ﬂﬂ)ﬂk Thus f(VPW)¢ f(VPLZ)
1"

zf(u
. In
11. When I{——‘*'Z, N(Ur,q7 )=<3Ur,7 Urp1 »Vr, , suffix is
2 b R
under modulo n and from the definition of f, we observe that

f(u[;}B):Z, f(u[ﬂ*‘l):‘k f(v[;}z):l' Thus f (UPLS) z f (UPWM)

2

2 2

2 2

2

7 (v,

)
u+z
12. When i:[g}z, N(VDLZ):{VD}?"VBW l-UD}rz}. suffix is

under modulo n and from the definition of f, we observe that
f(vq )=2,f(w; )=4fWU,, )=1.  Thus F(v,q )Z
bE 1 Hz EE
f(v; )2z (U )
o) ™ o)

This proves that isf indeed an open neighborhood coloring and hence
Xonc(G)=4 for n=2 (mod3) and n=1(mod4).
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Subcase (iii): n=3(mod 4).
Define the labelingf :V(G) - Z" as

1, if i =1(mod4),
) _|2,if i =2(mod4),
f(v)=f(u)= 3,if i =3(mod4),
4, if i=0(mod4)

We first consider the vertices of the inner polygon

Foralli,2<i<n-2, N (ui):{ui_l,ui,,l,vi}, where the suffix is under
modulon.

If i=1(mod4) then f(u;_;)=4, f(U;,1)=2 and f(v;)=1.
If i=2(mod4) then f(u,1)=1, f(ui;;)=3 and f(v;)=2
If i=3(mod4) then f(u;_;)=2 f(uj,y)=4and f(v;)=3.
If i=0(mod4) then f(u;;)=3 f(u;)=1and f(v;)=4
Hence foralli,2 < i sn-1, f(ui_)# f(uq)Z f(v).

We now consider the vertices of the outer polygon.

Foralli,2<i<n-2, N (vi):{vi_l,vi+l,ui}, where the suffix is under
modulon.

If i=1(mod4) then f(v;1)=4, f(vi1)=2 and f(u;)=1.
If i=2(mod4) then f(v;1)=1 f(vi,;)=3 and f(uy;)=2
If i=3(mod4) then f(v,_;)=2 f(v,y)=4and f(y;)=3.
If i=0(mod4) then f(vi_;)=3 f(v,,1)=1and f(u;)=4.
Henceforalli,2 <isn-2, f(v,1)# f(viyq)Z f(up).

Furtheri=1,n,n -1, we make the following observations:

1. Wheni=1, N(ul):{uz,un,vl}, suffix is under modulan and from the
definition of f, we observe thatf (u,) =2, f(u,)=3, (sincen=3(mod 4)),
f(vy)=1 Thus f(uy,)# f(u,)# f(vy).
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2. Wheni=1, N(v;) :{vz,vn ,ul}, suffix is under modulan and it can be
observed that f(u;)=1, f(v,)=2 f(v,)=3. Thus f(v,)# f(v,)#
f(v,).

3. Wheni=n-1, N (un_l):{vn_l,un,un_z}, suffix is under modulon
and we have f(v,4)=2 f(u,)=3 f(u,,)=1 Thus f(v ,)#
f(u,)# f(u,).

4. Wheni=n-1, N(vn_l):{un_l,vn,vn_z}, suffix is under modulo and
it can be observed thatf(u,,)=2 f(v,)=3 f(v,_,)=1 Thus
f(u,_)z f(v,)# f(v,_,).

5. Wheni=n, N(u,) :{ul,un_l,vn}, suffix is under modulon and it can
be observed thatf(u)=1 f(u,,)=2 f(v,)=3. Thus f(u,)#
(U, F(,).

6. Wheni=n, N(v,) ={vn_1,v1,un}, suffix is under modulon and also
observe that f(v,1)=2 f()=1 f(u,)=3. Thus f (v _)# f(v)
#zf(u,).

This proves that f is indeed an open neighborhood coloring and hence
Xonc(G) =4 for n=2(mod3) and n=3(mod4). Hence the theorem.

4 Conclusions

The open neighborhood coloring of some standarghgrdike paths, cycles,
trees, complete bipartite graph, triangular latties been determined in [4]. In
this paper we have determined the open neighborleotating of the prism

graph which is a particular case of the generaliPetersen’s graph. The
problem of determining the open neighborhood cotprof the generalized
Petersen’s graph is an open problem and we arengoirdwards it. We are also
working towards finding an upper bound for the opeighborhood chromatic
number of any graph in terms of its maximum degree.

5 Open Problems

1. Determine the open neighborhood chromatic numberGeheralized
Petersen grap@P (n,l).
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Determine the open neighborhood chromatic numbethef Cartesian

product of two graphs, and G,.

Determine the open neighborhood chromatic numbéhefStrong product

of two graphsG, and G,.

Determine the open neighborhood chromatic numbethefPower of a

graph G*, wherek is a positive integer.
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