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1 Introduction 

It is well known that the British mathematical physicist Lord Rayleigh
Nobel Prize laureate for Physics in 1904, introduced an equation of the form

 ))(()( +′+′′ axtxftx

to model the oscillations of 
[2].This equation was named after Lord Rayleigh, who studied equations of this 
type in relation to problems in acoustics. 

In 1977 and 1985 respectively, Gains and Mawhin
introduced some continuation theorems and applied them to discuss the 
existence of periodic solutions to ordinary differential equations. In particular, a 
specific example was given 
obtained using the established theorems for the differential equation of the form

 ))(()( +′+′′ txftx

In this direction, in recent years,
[7], Liu [8], Lu and Ge [9]
and Tang [13],Wang and Cheng
[2], etc., continued to discuss the existence of periodic solutions to
equations and modified Rayleigh equation
researchers obtained many new results 
solutions to the mentioned equations. It should be noted that throughout the
papers, the mentioned authors took into consideration the results 
prove their main results. 
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We give certain sufficient conditions for the existence of periodic 
type equation with state-dependent delay. With this work 

we extend and improve some known results in the literature. 

periodic solution; Rayleigh equation; second order; state

It is well known that the British mathematical physicist Lord Rayleigh [1], the 
Physics in 1904, introduced an equation of the form 

0)( =tax  

to model the oscillations of a clarinet reed; for details, see Wang and Zhang
].This equation was named after Lord Rayleigh, who studied equations of this 

to problems in acoustics.  

respectively, Gains and Mawhin [3] and Deimling [4]
continuation theorems and applied them to discuss the 

existence of periodic solutions to ordinary differential equations. In particular, a 
specific example was given in [3, p. 99] of how −T periodic solutions can be 

stablished theorems for the differential equation of the form

.0))(,( =txtg  

In this direction, in recent years, Alzabut and Tunç [5], Chen [6], Chen, et al
[9], Lu, et al. ([10], [11]), Tunç and Sirma [12], Zhou 
Cheng [14],Wang and Yan [15,16], Wang and Zhang 

continued to discuss the existence of periodic solutions to Rayleigh 
and modified Rayleigh equations with and without delay. These 

researchers obtained many new results concerning the existence of periodic 
the mentioned equations. It should be noted that throughout the

authors took into consideration the results from [3] to 
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nd order; state-

, the 

Zhang 
].This equation was named after Lord Rayleigh, who studied equations of this 

[4] 
continuation theorems and applied them to discuss the 

existence of periodic solutions to ordinary differential equations. In particular, a 
be 

stablished theorems for the differential equation of the form 

et al. 
Zhou 

Zhang 
Rayleigh 

with and without delay. These 
the existence of periodic 

the mentioned equations. It should be noted that throughout these 
] to 
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In this paper, we consider a Rayleigh-type equation with state-dependent delay 
of the form 

 ( ) ( ( )) ( ) ( , ( )) ( , ( ( , ( )))) ( )x t x t x t f t x t g t x t t x t p tψ σ τ′′ ′ ′+ + − + − =  (1) 

and its auxiliary equation 

 ( ) ( ( )) ( ) ( , ( )) ( , ( ( , ( )))) ( ),x t x t x t f t x t g t x t t x t p tλψ λ σ λ τ λ′′ ′ ′+ + − + − =  (2) 

where (0,1),λ ∈ 0,σ ≥ ,f 2( , ),g C∈ ℜ ℜ 2( , ),Cτ +∈ ℜ ℜ [0, ),+ℜ = ∞ f and 

g  are −π2  periodic in ,t ( ,0) ( ,0) 0f t g t= =  for ,t ∈ℜ ,ψ ( , ),p C∈ ℜ ℜ τ

and p  are 2π −  periodic in ,t and
2

0

( ) 0.p t dt
π

=∫  

We have established two new theorems on the existence of periodic solutions of 
Eq. (1). This paper was inspired by the results established in the aforementioned 
papers and in the literature. Our aim was to generalize and improve the results 
of Zhou and Tang [13] and Wang and Yan [15]. This paper is also a 
contribution to the subject in the literature and it may be useful for researchers 
who work on the qualitative behaviors of solutions. 

It should also be noted that, in 2012, Alzabut and Tunç [5] discussed the 
existence of periodic solutions for a type of Rayleigh equation with state-
dependent delay of the form 

 ))(,()( txtftx ′+′′ ).())))(,((,( tptxttxtg =−+ τ  

The authors of [5] utilized the continuation theorem of degree theory to obtain 
sufficient conditions for the existence of periodic solutions of the above 
equation. The main result in [5] has been proved by bypassing the boundedness 
of g and the integral condition on .p  When we compare Eq. (2) with the 
equation discussed in [5], it can been seen that Eq. (2) is different from that 
studied in [5]. Moreover, the authors of [5] utilized the continuation theorem of 
degree theory to obtain sufficient conditions for the existence of periodic 
solutions of the above equation; however, here we did not utilize the 
continuation theorem of degree theory. The conditions to be established and the 
method to be utilized in this study were different from those used in [5]. The 
cases show the difference between our results and those from [5]. 

For the sake of convenience, let  

 },),()2(),,(:{2 ℜ∈∀=+ℜℜ∈= ttxtxCxxC ππ  
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,)( max

]2,0[0
txx

t π∈
=

 

 
.)( max

]2,0[0
txx

t
′=′

∈ π  

2 Statement of Main Results 

The following lemma plays a key role in proving the main results. 

Lemma. Let )(tx be a continuous differentiable −T periodic function ).0( >T

Then for any ) ,(* ∞−∞∈t  

 
* *

*
[ , ]

0

1
max  ( ) ( ) ( ) .

2

T

t t t T
x t x t x s ds

∈ +
′≤ + ∫  (3) 

Proof. Let ],[ **
* Tttt +∈ such that .)(max)( ],[ **

txtx Tttt +∈
∗ = Then 

 
∫ ′+≤∫ ′+=
*

*

*

*

)()()()()( **
*

t

t

t

t

dssxtxdssxtxtx
 

and 

 
.)()()()()()( **

*
∫∫
∗

∗

∗

∗ −−

∗ ′+≤′−=−=
t

Tt

t

Tt

dssxtxdssxtxTtxtx
 

Combining the last two estimates, we obtain 

 
∫ ′+=∫ ′+≤

−∗

Tt

Tt

dssxtxdssxtxtx
0

**
* .)(

2

1
)()(

2

1
)()( 

*

 

The proof is complete. 

Our first main result is the following theorem: 

Theorem 1. We assume that there exist constants ,01 >a ,0  , 21 ≥rr ,0>d 0>K

and 0>M  such that the following conditions hold: 

(H1) 1)( ax ≤ψ
 
for all ,ℜ∈x  

(H2) Kxrxtf +≤ 1),(
 
for all ,),( 2ℜ∈xt  

(H3) 0))),((,( >− xttxtxg τ  and Kxrxttxtg +>− 1))),((,( τ
 
for all

 ,ℜ∈t ,dx >  
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 (H4) Mxrxttxtg −>− 2))),((,( τ  for all ,ℜ∈t .dx −≤  

If  

 ,1})1(){(2 211 <+++ rra ππ  

then Eq. (1) has at least one −π2 periodic solution. 

Proof. We reconsider the auxiliary equation, Eq. (2). Let ( )x t  be any −π2
periodic solution of Eq. (2). Then, integrating both sides of Eq. (2) from 0 to

,2π  it follows that 

+′∫ dssxsx
π

ψ
2

0

))())(( 0))))}(,((,())(,({
2

0

=−+−′∫ dssxssxsgsxsf τσ
π

 

 

+⇒ ∫ duu
x

x

)2(

)0(

)(
π

ψ
2

0

{ ( , ( )) ( , ( ( , ( ))))} 0f s x s g s x s s x s ds
π

σ τ′ − + − =∫  

 
2

0

{ ( , ( )) ( , ( ( , ( ))))} 0.f s x s g s x s s x s ds
π

σ τ′⇒ − + − =∫  (4) 

Hence, it follows that there exists a ]2,0[1 π∈t  such that 

 1 1 1 1 1 1( , ( )) ( , ( ( , ( )))) 0.f t x t g t x t t x tσ τ′ − + − =
 

(5) 

We claim that there exists a ]2,0[* π∈t  such that 

 
.)(

0

* dxtx +′≤
 

Case 1. Let .01 =r Then 

 
.),(),( 1 KxtfKxrxtf ≤⇒+≤
 

From the last estimate and (5), we have  

 
.))))(,((,( 1111 Ktxttxtg ≤−τ
 

The last estimate together with the assumption  

 
,))),((,( 1 Kxrxttxtg +>−τ ,dx >

 

implies that  
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.)))(,(( 111 dtxttx ≤−τ
 

Case 2. Let .01 >r If ,)))(,(( 111 dtxttx >−τ then it follows from the estimate 

(5) and the assumptions of (H2) and (H3) that 

 
<+− Ktxttxr )))(,(( 1111 τ ≤− ))),((,( 1111 xttxtg τ .)( 11 Ktxr +−′ σ

 

From the first and last terms of the last estimate it follows that  

 
≤− )))(,(( 111 txttx τ .)(

001 dxxtx +′≤′≤−′ σ
 

We note that )(tx  is periodic and there exists a * [0,2 ]t π∈  such that 

 
dxtx +′≤

0

* )(
 

holds. 

From Lemma, for all ), ,( ∞−∞∈∗t  we have 

 
dssxtxx ∫ ′+≤ ∗

π2

0
0

)(
2

1
)(

 

 
dx +′+≤

0
)1(π

 
 

.)1(
00

dxx +′+≤⇒ π
 

Hence, for all ), ,(* ∞−∞∈t  we can write  

 
.)(

2

1
)(

0
*0

dssxtxx
T

∫ ′′+′≤′
 

Since ),2()0( πxx =  then it follows from Rolle’s Theorem that there exists a 

)2,0( π∈∃c  such that .0)( =′ cx  Let .* ct =  Hence, we get  

 
.)(

2

1 2

0
0

dssxx ∫ ′′≤′
π

 (6) 

Let 

 },)))(,((],2,0[:{1 dtxttxttE >−∈= τπ
 

 })))(,((],2,0[:{2 dtxttxttE −<−∈= τπ  

and 
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}.)))(,((],2,0[:{3 dtxttxttE ≤−∈= τπ

 

From (4) it follows that  

1 2 3

2

0

( , ( ( , ( )))) ( , ( ) ( ) ( , ( ( , ( )))) .
E E E

g s x s s x s ds f s x s ds g s x s s x s ds
π

τ σ τ′− ≤ − + + −∫ ∫ ∫ ∫  

Hence, we can get  

     
dssxx ∫ ′′≤′

π2
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)(
2

1

 
∫ −′≤
π
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))(,(
2

1
dssxsf ∫ ′+

π
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2

0

)())((
2

1
dssxsx

   

dssxssxsg∫ −+
π

τ
2

0

))))(,((,(
2

1
dssp∫+
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0
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2

1

 
∫ −′≤
π

σ
2

0

))(,(
2

1
dssxsf

∫ ′+
π

ψ
2

0

)( ))((
2

1
dssxsx

   
0

))))(,((,()(
2

1

321

pdssxssxsg
EEE

πτ +−+++ ∫∫∫

 
+−′≤ ∫

π

σ
2

0

))(,( dssxsf 01 xa ′π
      

    0
))))(,((,()(

32

pdssxssxsg
EE

πτ +−++ ∫∫

 
002011 )(2}){(2 pgMKxrxra d πππ +++++′+≤

 
}})1(){(2

0211 xrra ′+++≤ ππ
      

   02 )(2 pdrgMK d ππ +++++
 ≤′⇒

0
x

0211 })1(){(2 xrra ′+++ ππ
02 )(2 pdrgMK d ππ +++++
 

,
})1(){(21

)(2
1

211

02

0
M

rra

pdrgMK
x

d =
+++−
++++

≤′⇔
ππ

ππ
 

where 

 
.),(max  ],2,0[ xtgg dxtd ≤∈= π  

It also follows from the estimate  

 
dxx +′+≤

00
)1(π

 

that 

 
dMx ++≤ 10

)1(π
. 

This completes the proof of Theorem 1. 
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Our second main result is the following theorem: 

Theorem 2. We assume that there exist constants ,01 >a  ,0 , 21 ≥rr  ,0>d

0>K  and 0>M such that the following conditions hold: 

(H1) 1)( ax ≤ψ
 
for all ,ℜ∈x  

(H2) Kxrxtf +≤ 1),(
 
for all ,),( 2ℜ∈xt  

(H3) 0))),((,( >− xttxtxg τ  and Kxrxttxtg +>− 1))),((,( τ
 
for all 

 ,ℜ∈t ,dx >  

 (H4) Mxrxttxtg +≤− 2))),((,( τ  for all ,ℜ∈t .dx ≥  

If  

 ,1})1(){(2 211 <+++ rra ππ  

then Eq. (1) has at least one −π2 periodic solution. 

Proof. Since the proof of Theorem 2 is similar to the proof of Theorem 1 it is 
omitted. 

Remark 1. When 0)( ≡xψ  and ττ ≡))(,( txt  (constant) and ,021 == rr  then 
the conditions of Theorem 1 and Theorem 2 reduce to those of Wang and Yan 
[15], Theorem 2.1 and Theorem 2.2], respectively. Therefore, our results 
generalize and improve the corresponding results in [15]. 

Remark 2. When 0)( ≡xψ  and ),())(,( ttxt ττ ≡  then the conditions of 
Theorem 1 and Theorem 2 reduce to those of Zhou and Tang [13, Theorem 2.1 
and Theorem 2.2], respectively. Therefore, our results generalize and improve 
the results in [13]. 

3  Conclusions 

A Rayleigh-type equation with state-dependent delay was considered. The 
existence of periodic solutions to this equation was investigated. Without using 
the continuation theorem of degree theory, we obtained sufficient conditions for 
the existence of periodic solutions. With this paper, we have extended and 
improved some results in the literature. 
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