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Abstract. The Ensemble Kalman Filter (EnKF) can be used as a aodetb
estimate reservoir parameters, such as permealdlitg¢ porosity. These
parameters play an important role in characterizeggrvoir performance. The
EnKF is a sequential estimation method that usegpé#rameters at t — 1 (called
prior) to estimate the parameters at t adjustedobgervations at t (called
posterior). In this paper, the EnKF was used tionege the reservoir parameters
for the case of a linear flow of two interactingpguction-injection oil wells. The
Laplace transform was used to obtain an analySc#ltion of the diffusivity
equation. A state space representation was gedensag the analytical
solution. A simulation study showed that the praabsnethod can be used
successfully to estimate the reservoir parametessingu well-pressure
observations.

Keywords: ensemble Kalman filter; flow model; interacting well; Laplace transform;
sequential estimation.

1 I ntroduction

Several successful applications of the EnKF inrkese estimation have been
reported. Lorentzengt al. [1] applied the EnKF to a PUNQ-S3 reservoir
model. The parameters were permeability and pgroaitd the measurements
consisted of bottom-hole pressure, water cuts asdog ratios. Yu [2] used the
EnKF for the optimization of reservoir models. M#at et al. [3] used the
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EnKF for updating geologic models for water congantrol. Gu and Oliver
[4] reported the use of the EnKF for history matchi

The EnKF is a sequential estimation method that lbanused to estimate
reservoir parameters. It combines modeling and deasurement. Reservoir
parameters play an important role in characterizngeservoir for improving
its performance. The parameters discussed irsthdy were permeability and
porosity. The EnKF was applied to estimate botlapeters.

The purpose of this paper is to discuss the appliga of the EnKF
methodology for estimating reservoir parameters fibw in the reservoir was
modeled as two interacting wells through the diffilg equation for pressure.
The Laplace transform was used to obtain an awcalytsolution of the
diffusivity equation. A simulation study showed tthe proposed method can
be used successfully to estimate the reservoimnpatexrs using well-pressure
observations.

2 M ethodol ogy

Consider a linear flow between two interacting weleparated by distance
The reservoir is assumed homogeneous, i.e. thevois@as a single value of
permeability and porosity. The diffusivity equatioras used to describe the
fluid flow distribution in porous media. An analgdl solution was obtained
using the Laplace transform. Two cases were cersil (i) constant pressure
and (ii) constant rate. The diffusivity equation swaritten in the form of
pressure P(x, t) which depends on the distance fheninjection well and time

— === 0<x</l (1)

where n =.00264L is the hydraulic coefficient, k is the permeabilitp is
@uc

the porosity,u is the viscosity, c is the total compressibilityis the distance

from the injection well and’ is the distance between the injection well and the
production well. The initial and boundary conditonere:

(i) constant pressur@(x,0)= R ,K 0= P .f )& PP ,
(ii) constant ratep(x,0) = CX%( 0)=C, B )t= |-

The solutions for both cases are [5]
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. ) “ (2i+1)0-x  (2i+1)(+x

(i) P(x,)=R+ Vg{erfc 2@ erfe 2\/07 } @
and

(i) P(xf)=Cx+ Vg(_])n{erfC(ZI;%_ X _ erféZl ;})ﬂ_ﬂ: x} (3)

whereV =P((,t)-R.

Data assimilation refers to a method of informatiotegration provided by
feeding measurements into estimates of state. Talmah filter is one of the
most well-known data assimilation methods (Wikled aerliner [6]). The
model produces a forecast at the observation firhes forecast is used as a
prior in the Kalman filter process. By weightingetibias of observation and
forecast, the filter makes an adjustment to thenesé of state. Consider the
evolution of states<, and observationy¥, .

{x[ =FX,, +W, W,~N(0,Q) @)

Y, =HX +V, V,~N(,R)
where Q is model error covariance® is the observation error covariance, F is

the model operator, and H is the observation oper&toare noisy observations

of a subset of X. One cycle of data updating consists afegdst (prior) and an
update (posterior). The forecast relies on the state estahdtel to produce
an optimal forecast at. In updating, the measurement information frénis

used to refine the forecast to obtain a more accurate statee. Statistics of

the forecast are represented by forecast stateind forecast error covariance

P = E((X{ -X)(X —xt)T) and update statX! and update error covariance

pr = E((Xt“ - X )(x¢ —xt)T). As the most well-known estimation method, the

Kalman filter provides a recursive state estimataineach observation time.
Each cycle consists of a forecast and an updateinfial guess is known,

(xe.Py), Py = |5((foJ - xo)(xg—xo)T), and X; =X, is uncorrelated taV, and
V,. For each cycle t, the algorithm consists of: dast X =FX!,,
E((xe,-X)W)=0, B =FR,F+C update: X:=X+K (Y, -HX),
K =P HT(HF{ H + R[)_l, P'=(I-KH)P . The Ensemble Kalman filter was
proposed in order to solve a problem related toithplementation of the
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Kalman filter in nonlinear systems. The EnKF is arite Carlo simulation of
state and observation. The distribution of stadegpresented by a collection of
states called an ensemble. The estimates for tite given by the EnKF
converges (in probability) to the results given the Kalman filter. The
distribution of states estimation is representethieyrealizations of state known

as the forecast ensemble{xf i:1,2,...,r‘} and update ensemble

ti?
{Xt“‘i,i=1,2,...,n}. The forecast error covarianc® and update error

covariance P’ are approximated by sample covariance

n

.1 _ - _ n . n _ _
Pl:,n :EZ(( xft,i - xft )(xft,i _xft )I)’ XL :%;xft,i ! Plf,n :%2(( XLll‘i _Xtu)(xti _qu)T)’

= i=1

)?fz%ZXt‘{i. The initial sample is represented b&xgyi:xg+woyi,
=

ti?

W, ~ N(O, PO‘) =1, r} . The forecast sample has the fotthh=FX;_,, +W

W, ~N(0,Q) ,i=1,..,n, Xi:%ixf&i. The Kalman gain is computed as
i=1

K =P/ HT (HF H+ R)_l. The update is given byx} =X{ +K (v, -HX ),

Y, =Y, +V,;,V,;~N(0,R). A basis for the validity of the EnKF is the

asymptotic convergence (Tan [7], Li and Xiu [S]X{nzlzn“xfti -, X
et

B=23 e, L, e foral =12 Ry, =25k L xs B =2 R
i=1

t,i ti p
i=1 i=1

{x{vi,izl,z,_,,,r} is the forecast ensembls%xt”,i,i :1,2,...,n} is the update

ensemble,P' is the forecast error covariance matrR; is the update error
. s 1 — = \T - 13 pu —

covariance matrix, =;2(X§,i—xﬂ)(xﬂ,i-Xft) ;X! =ﬁéxf“ and R =

ti t i t

1& — —\T  _ 1 . .
= u _yu U XY, Xu== uare sample covariance matrices.
nZ(x X)X =X!) s x n;x“ p

The autoregressive of order 1, AR(1), is the basimdel in time series
modeling. Consider a state space representatioAR¢t) with ensemble size n

= 1 X, =X +W,W,~N(0,Q=10),Y, =X, +V,V,~ N (0,R =10") with
initial estimate: X, =0, R = 100¢, measurementy, =.9. Calculations for the
first iteration yield: forecastx!=x"=0, P =P + Q= 1000.00C, update
K, =1000.000{ 1000.0004 )1= .99, X!=X}+K(Y,-X!)=0 +.9999(.9-0)
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=.8999, P'=(1-K,)B =(1-.999) 1000.0061 . The update step has
brought the initial value O to the true value 1.eT&econd iteration yields:
forecastX), =X! =.8999, P, = P' + Q= .3 .000% .10(, update:K, =.1001

(.1001+ .37 = 500, X4 =.8999+ .500% .8 .899%= .84 P} =(1-.500)

.1001= .0t. A summary of the iterations is shown in TableS¥nthetic data
were used to see if the filter behaved as it shotheé filter converged to what it
thinks is the true value X = 1.

Tablel Data assimilation for static model, ensemble size f, state and
observation error varian@e=10*,R= 10*. The estimate stabilized after th& 4

iteration, even though the measurements were batweand 1.2.

For ecast Update
X P Y, K, X{ R’
0 1000
0 1000.0001 .9 .9999 .8999 A
.899¢ .1001 .8 .500z .849¢ .05

.849¢ .0501 11 .333¢ 933/ .033¢
.9334 .0335 1.0 .2509 .9501 .0251
.9501 .0252 .95 .2012 .9501 .0201
.9501 .020z 1.08 .168z .966¢ .016¢
.966¢ .016¢ 1.2 .1447 1.000¢ .014:

~NO O WNREP O |~

In standard data assimilation methodology, a limadel between the state and
the observations is assumed. For interacting weiis, assumption does not
hold. To be able to use the EnKF in this situattbe,state has to be extended to
include the observations. This construction alldavsonsider cases in which
the observations are a nonlinear function of theupaters. This approach is
known as extended state. In this study, the extended state becomes

X, =(k, P(kt,x,t))T. A state space representation for a nonlinear miode
given by X, =f (X ) +€ , Y,=HX +&’. For the case of permeability, the
state space representation is given by

xo=[ )= K 1 00y chx e, H=(0
LMo H(E) v 1

Before any observations (well pressure) are histeayched, a sample of size n
is generated at t = O from prior distributions. Ptile model parameters in the
state are generated. Using prior information, tleelehis advanced to the first
observation. This is called the forecast step, whéne pressure and
permeability are predicted. Once the forecast epmpleted, the samples of
permeability and pressure are updated, based omhberved pressure. The
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updating process is performed on the entire spgemeability and pressure are
updated at the same time. If the relationship betwsarameter and observation
is linear, the results are exact; if it is nonlindaey are approximate. Once the
state is updated, the forecast is repeated andhe@mopdate is performed. The
process is repeated until all observations areotyistnatched. The initial
parameter distribution represents the expert estioé the parameters. The
EnKF requires the specification of variance foroesrin the model and for
errors in the observations. In case of a smallramoance for the observations,
one assumes that the observations are fairly aecura

3 Results and Discussion

A twin experiment is an experiment in which theadate simulated using a
model. In this study, a twin experiment was usegtow the applicability of
the method. Using a twin experiment, one can shwsvdonvergence of the
proposed method. Figure 1 shows the results fomeability of Case i
(constant pressure). The simulation was set upXperiment time T = 100, x =
50, n = 30, m = 100,0, =8,0, =.8, K,,.=22. The initial sample was

generated fromk ~ N(17,87), P~ N( 1,.8). The observed pressure successfully

true

updated the permeability estimate. A pressure fyist@atch was attained after a
number of updating steps. The permeabilistimate converged to the true
permeability value after updating 14 times. FigArpresents the results of the
porosity estimatiorfrom the constant-pressure model (Case i). The simulation
was set up for experiment time T = 100, x = 50, 80=m = 100,¢,,,, =30%,
0,=.5,0,=.5. The pressure successfully updated the porostiyna®. A

pressure history match was attained after a nurobarpdating steps. The
porosity update converged to the true porosityrafiedating 4 times. The
porosity of the reservoir rocks may vary from 5%3@%. Porosity is of primary
importance in reservoir engineering because it imeasure of the space
available for the storage of oil fluids within aeevoir rock.

Figures 3 and 4 show the results of the reserimiulation. The oil production
and water production are shown in Figure 3. Theredervoir bottom-hole
pressure showed a declining pattern, as shownguar&i3. Figure 4 shows the
results of the permeability estimation using th&KErmprocedure. There was a
good match between the observed pressure andeitiicbon. The sequential
permeability estimation showed a convergence tdrtieevalue of the reservoir
permeability (200 mD). The results show that theppsed method can be used
successfully to estimate the reservoir parametsiggureservoir simulation
data.
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Figure1l Forecast and update of permeability and historycimat pressure for
Casé (constant pressure). True permeability was 25 mD.
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Figure2 Forecast and update of porosity and history matghessure for Case
i (constant pressure). True porosity was 30%.
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Figure3 Oil production (STB/d), water production (STB/dpdabottom-hole
pressure (BHP, psia) of production well from res@argimulator ECLIPSE in a
two injection-production system. Reservoir paramseteere: porosity 40%,
permeability 200 mD, total production 1100 STB/dater injection rate 500
STB/d, well distance 1697 ft. The well pressurevebb a declining pattern.
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Figure4 Permeability estimation using reservoir simulatatad The figure
shows a good match with the well-production datae Fequential permeability
estimate showed convergence to the real permsabditie of 200 mD.

4 Conclusions

The EnKF is a promising method for optimizing resér models, updating
reservoir simulation models, updating geologic niedsc. However, a lot of
work has to be done in this area. This paper inya&std the applicability of this
method for estimating the permeability and porositywo interacting wells. A
diffusivity equation was used to describe the flilidv in the system. Using the
Laplace transform, an analytical solution was dislabd. A state space model
was constructed and an EnKF algorithm was estadalish simulation study for
cases of constant pressure and constant rate shbuateitie method can be used
successfully to estimate the reservoir properpesrnieability and porosity).

Nomenclature
¢ = compressibilitypsi™
C = constant for constant-rate initial condition
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rfc = complementary error function

permeability, mD

Kalman gain

sample Kalman gain

distance between injection well and production wall
number of observations

ensemble size

N(H,O'Z) = normal distribution with meap and varianceo”

53 S AXD
I n

P(x, t)= pressure at distance x from the injeatdime t, psi

f
R = forecast error covariance at time t
F’J’n = sample forecast error covariance at time t
P’ = update error covariance at time t
At"‘n = sample update error covariance at time t
Q = model error covariance3D?
R = observation error covariance
t = time, hours
T = experiment time, hours
X = distance from injection well, m
X, = state (unobservable) at time t, mD
X| = forecast state at time t, mD
X}, = forecast ensemble at time t, mD
X{ = update state at time t
X{; = update ensemble at time t
Y, = observations at time t, psi

vV =P(¢,t)-P(0,) = pressure difference between injection and prookic
well at time t, psi

n = hydraulic coefficient

¢® = porosity, %

VI = viscosity, cp

O, = standard deviation for pressure, psi

Qa
1

standard deviation for permeability, mD
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