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Abstract. The Ensemble Kalman Filter (EnKF) can be used as a method to 
estimate reservoir parameters, such as permeability and porosity. These 
parameters play an important role in characterizing reservoir performance. The 
EnKF is a sequential estimation method that uses the parameters at t – 1 (called 
prior) to estimate the parameters at t adjusted by observations at t (called 
posterior).  In this paper, the EnKF was used to estimate the reservoir parameters 
for the case of a linear flow of two interacting production-injection oil wells. The 
Laplace transform was used to obtain an analytical solution of the diffusivity 
equation. A state space representation was generated using the analytical 
solution. A simulation study showed that the proposed method can be used 
successfully to estimate the reservoir parameters using well-pressure 
observations. 

Keywords: ensemble Kalman filter; flow model; interacting well; Laplace transform; 
sequential estimation. 

1 Introduction 

Several successful applications of the EnKF in reservoir estimation have been 
reported.  Lorentzen, et al. [1] applied the EnKF to a PUNQ-S3 reservoir 
model. The parameters were permeability and porosity, and the measurements 
consisted of bottom-hole pressure, water cuts and gas-oil ratios. Yu [2] used the 
EnKF for the optimization of reservoir models. Mantilla, et al. [3] used the 
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EnKF for updating geologic models for water coning control.  Gu and Oliver 
[4] reported the use of the EnKF for history matching.  

The EnKF is a sequential estimation method that can be used to estimate 
reservoir parameters.  It combines modeling and data measurement. Reservoir 
parameters play an important role in characterizing a reservoir for improving   
its performance.  The parameters discussed in this study were permeability and 
porosity. The EnKF was applied to estimate both parameters.  

The purpose of this paper is to discuss the applicability of the EnKF 
methodology for estimating reservoir parameters. The flow in the reservoir was 
modeled as two interacting wells through the diffusivity equation for pressure.  
The Laplace transform was used to obtain an analytical solution of the 
diffusivity equation. A simulation study showed that the proposed method can 
be used successfully to estimate the reservoir parameters using well-pressure 
observations. 

2   Methodology 

Consider a linear flow between two interacting wells separated by distance ℓ .  
The reservoir is assumed homogeneous, i.e. the reservoir has a single value of 
permeability and porosity. The diffusivity equation was used to describe the 
fluid flow distribution in porous media. An analytical solution was obtained 
using the Laplace transform.  Two cases were considered: (i) constant pressure 
and (ii) constant rate. The diffusivity equation was written in the form of 
pressure P(x, t) which depends on the distance from the injection well and time 
t. 
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 is the hydraulic coefficient, k is the permeability, φ  is 

the porosity, µ  is the viscosity,  c is the total compressibility, x is the distance 
from the injection well and ℓ  is the distance between the injection well and the 
production well. The initial and boundary conditions were: 
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The solutions for both cases are [5]  
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where ( ) 0V P , t P= −ℓ .  

 
Data assimilation refers to a method of information integration provided by 
feeding measurements into estimates of state. The Kalman filter is one of the 
most well-known data assimilation methods (Wikle and Berliner [6]). The 
model produces a forecast at the observation time. This forecast is used as a 
prior in the Kalman filter process. By weighting the bias of observation and 
forecast, the filter makes an adjustment to the estimate of state. Consider the 
evolution of states tX  and observations tY .  

 
( )
( )

t t 1 t t

t t t t

X FX W W ~ N 0,Q
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where Q  is model error covariance, R is the observation error covariance, F is 

the model operator, and H is the observation operator. tY  are noisy observations 
of a subset of X. One cycle of data updating consists of a forecast (prior) and an 
update (posterior). The forecast relies on the state estimate at t 1−  to produce 
an optimal forecast at t . In updating, the measurement information from t  is 
used to refine the forecast to obtain a more accurate state estimate. Statistics of 
the forecast are represented by forecast state f

tX  and forecast error covariance 

( )( )( )Tf f f
t t t t tP E X X X X= − −  and update state utX  and update error covariance 

( )( )( )Tu u u
t t t t tP E X X X X= − − . As the most well-known estimation method, the 

Kalman filter provides a recursive state estimation at each observation time. 
Each cycle consists of a forecast and an update. An initial guess is known, 

( )u u
0 0X ,P , ( )( )( )Tu u u

0 0 0 0 0P E X X X X= − − , and u
0 0X X−  is uncorrelated to tW  and 

tV . For each cycle t, the algorithm consists of: forecast f u
t t 1X FX −= , 

( )( )u T
t 1 t 1 tE X X .W 0− −− = , f u T

t t 1P FP F Q−= + , update: ( )u f f
t t t tX X K Y HX= + − , 

( ) 1f T f T
t t tK P H HP H R

−
= + , ( )u f

t tP I KH P= − . The Ensemble Kalman filter was 

proposed in order to solve a problem related to the implementation of the 
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Kalman filter in nonlinear systems. The EnKF is a Monte Carlo simulation of 
state and observation. The distribution of states is represented by a collection of 
states called an ensemble. The estimates for the state given by the EnKF 
converges (in probability) to the results given by the Kalman filter. The 
distribution of states estimation is represented by the realizations of state known 

as the forecast ensemble { }f
t ,iX ,i 1,2, ,n= …  and update ensemble 

{ }u
t ,iX ,i 1,2, ,n= … . The forecast error covariance ftP  and update error 

covariance u
tP  are approximated by sample covariance 
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asymptotic convergence (Tan [7], Li and Xiu [8]), 
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ensemble, f
tP  is the forecast error covariance matrix, u
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= ∑  are sample covariance matrices. 

The autoregressive of order 1, AR(1), is the basic model in time series 
modeling. Consider a state space representation for AR(1) with ensemble size n 
= 1: ( )4

t t 1 t tX X W ,W ~ N 0,Q 10−
−= + = , ( )1

t t t tY X V ,V ~ N 0,R 10−= + =  with 

initial estimate: u u
0 0X 0,P 1000= = , measurement 1Y .9= . Calculations for the 

first iteration yield: forecast f u
1 0X X 0= = , f u

1 0P P Q 1000.0001= + = , update 

( ) 1

1K 1000.0001 1000.0001 .1 .9999
−= + = , ( ) ( )u f f

1 1 1 1X X K Y X 0 .9999 .9 0= + − = + −  



148     Sutawanir, et al. 

.8999= , ( ) ( )u f
1 1 1P 1 K P 1 .9999 1000.0001 .1= − = − = . The update step has 

brought the initial value 0 to the true value 1. The second iteration yields: 
forecast f u

2 1X X .8999= = , f u
2 1P P Q .1 .0001 .1001= + = + = , update: 2K .1001=  

( ) 1
.1001 .1 .5002

−+ = , ( )u
2X .8999 .5002 .8 .8999 .8499= + − = , ( )f

2P 1 .5002= −  
.1001 .05= . A summary of the iterations is shown in Table 1. Synthetic data 
were used to see if the filter behaved as it should. The filter converged to what it 
thinks is the true value X = 1.  

Table 1 Data assimilation for static model, ensemble size n = 1, state and 
observation error variance 4 1Q 10 ,R 10− −= = . The estimate stabilized after the 4th 

iteration, even though the measurements were between .9 and 1.2. 

t Forecast Update 
t f

tX  f
tP  

tY  
tK  u

tX  u
tP  

0     0 1000 
1 0 1000.0001 .9 .9999 .8999 .1 
2 .8999 .1001 .8 .5002 .8499 .05 
3 .8499 .0501 1.1 .3339 .9334 .0334 
4 .9334 .0335 1.0 .2509 .9501 .0251 
5 .9501 .0252 .95 .2012 .9501 .0201 
6 .9501 .0202 1.05 .1682 .9669 .0168 
7 .9669 .0169 1.2 .1447 1.0006 .0145 

In standard data assimilation methodology, a linear model between the state and 
the observations is assumed. For interacting wells, this assumption does not 
hold. To be able to use the EnKF in this situation, the state has to be extended to 
include the observations. This construction allows to consider cases in which 
the observations are a nonlinear function of the parameters. This approach is 
known as extended state. In this study, the extended state becomes 

( )( )T

t t tX k P k ,x, t= . A state space representation for a nonlinear model f is 

given by ( ) m obs
t t 1 t t t tX f X    ,  Y =HX +−= + ε ε . For the case of permeability, the 

state space representation is given by 

( ) ( )t 1t obs
t t t tm

tt t

kk 0
X ,   Y =HX + ,   H= 0 1

P x, t,kP
−    

= = + ε    ε    
.  

Before any observations (well pressure) are history matched, a sample of size n 
is generated at t = 0 from prior distributions. Only the model parameters in the 
state are generated. Using prior information, the model is advanced to the first 
observation. This is called the forecast step, where the pressure and 
permeability are predicted. Once the forecast step is completed, the samples of 
permeability and pressure are updated, based on the observed pressure. The 
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updating process is performed on the entire state; permeability and pressure are 
updated at the same time. If the relationship between parameter and observation 
is linear, the results are exact; if it is nonlinear they are approximate. Once the 
state is updated, the forecast is repeated and another update is performed. The 
process is repeated until all observations are history matched. The initial 
parameter distribution represents the expert estimate of the parameters. The 
EnKF requires the specification of variance for errors in the model and for 
errors in the observations. In case of a small error variance for the observations, 
one assumes that the observations are fairly accurate.  

3  Results and Discussion 

A twin experiment is an experiment in which the data are simulated using a 
model. In this study, a twin experiment was used to show the applicability of 
the method. Using a twin experiment, one can show the convergence of the 
proposed method. Figure 1 shows the results for permeability of Case i 
(constant pressure). The simulation was set up for experiment time T = 100, x = 
50, n = 30, m = 100, k P8, .8σ = σ = , truek 22= . The initial sample was 

generated from ( )2k ~ N 17,8 , ( )2P ~ N 1,.8 . The observed pressure successfully 

updated the permeability estimate. A pressure history match was attained after a 
number of updating steps. The permeability estimate converged to the true 
permeability value after updating 14 times. Figure 2 presents the results of the 
porosity estimation from the constant-pressure model (Case i). The simulation 
was set up for experiment time T = 100, x = 50, n = 30, m = 100, true 30%φ = , 

P.5, .5φσ = σ = . The pressure successfully updated the porosity estimate. A 

pressure history match was attained after a number of updating steps. The 
porosity update converged to the true porosity after updating 4 times. The 
porosity of the reservoir rocks may vary from 5% to 30%. Porosity is of primary 
importance in reservoir engineering because it is a measure of the space 
available for the storage of oil fluids within a reservoir rock.  
 
Figures 3 and 4 show the results of the reservoir simulation. The oil production 
and water production are shown in Figure 3. The oil reservoir bottom-hole 
pressure showed a declining pattern, as shown in Figure 3. Figure 4 shows the 
results of the permeability estimation using the EnKF procedure. There was a 
good match between the observed pressure and its prediction. The sequential 
permeability estimation showed a convergence to the true value of the reservoir 
permeability (200 mD). The results show that the proposed method can be used 
successfully to estimate the reservoir parameters using reservoir simulation 
data.  
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Figure 1 Forecast and update of permeability and history match of pressure for 
Case i (constant pressure). True permeability was 25 mD.  

 
Figure 2 Forecast and update of porosity and history match of pressure for Case 
i (constant pressure). True porosity was 30%. 
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Figure 3 Oil production (STB/d), water production (STB/d), and bottom-hole 
pressure (BHP, psia) of production well from reservoir simulator ECLIPSE in a 
two injection-production system. Reservoir parameters were: porosity 40%,  
permeability 200 mD, total production 1100 STB/d, water injection rate 500 
STB/d, well distance 1697 ft. The well pressure showed a declining pattern. 
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Figure 4 Permeability estimation using reservoir simulator data. The figure 
shows a good match with the well-production data. The sequential permeability 
estimate showed convergence to the real permeability value of 200 mD. 

4 Conclusions 

The EnKF is a promising method for optimizing reservoir models, updating 
reservoir simulation models, updating geologic models, etc.  However, a lot of 
work has to be done in this area. This paper investigated the applicability of this 
method for estimating the permeability and porosity in two interacting wells. A 
diffusivity equation was used to describe the fluid flow in the system. Using the 
Laplace transform, an analytical solution was established. A state space model 
was constructed and an EnKF algorithm was established. A simulation study for 
cases of constant pressure and constant rate showed that the method can be used 
successfully to estimate the reservoir properties (permeability and porosity).  
 
Nomenclature 
c  =  compressibility, 1psi−  
C  =  constant for constant-rate initial condition 
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erfc   =  complementary error function 
k =  permeability, mD 
K   =  Kalman gain 

K̂   =  sample Kalman gain 
ℓ  =  distance between injection well and production well, m 
m  =  number of observations 
n  =  ensemble size 

( )2N ,µ σ  = normal distribution with mean µ  and variance 2σ   

P(x, t) =  pressure at distance x from the injector at time t, psi 
f
tP  =  forecast error covariance at time t 

f
t ,nP̂  =  sample forecast error covariance at time t 
u
tP  =  update error covariance at time t 
u
t,nP̂

 
=  sample update error covariance at time t 

Q  =  model error covariance, 2mD  
R  =  observation error covariance 
t  =  time, hours 
T  =  experiment time, hours 
x  =  distance from injection well, m 

tX  =  state (unobservable) at time t, mD 
f
tX   =  forecast state at time t, mD 
f
t ,iX

 
=  forecast ensemble at time t, mD 

u
tX  =  update state at time t 
u
t,iX

  
=  update ensemble at time t 

tY   =  observations at time t, psi 

( ) ( )V P , t P 0, t= −ℓ  = pressure difference between injection and production 

well at time t, psi 
η  =  hydraulic coefficient 

φ   =  porosity, % 

µ
  

=  viscosity, cp 

Pσ  =  standard deviation for pressure, psi 

kσ   =  standard deviation for permeability, mD 
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