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 Abstract. (ZrO2)0.66(HfO2)0.34 dielectric films on p-Si (100) were grown by 

atomic layer deposition method, for which the conduction band offsets, valence 

band offsets and band gaps were obtained by using X-ray photoelectron 

spectroscopy and reflection electron energy loss spectroscopy. The band gap, 

valence and conduction band offset values for (ZrO2)0.66(HfO2)0.34 dielectric thin 

film, grown on Si substrate were about 5.34, 2.35 and 1.87 eV respectively. This 

band alignment was similar to that of ZrO2. In addition, the dielectric function 

(k, ω), index of refraction n and the extinction coefficient k for the 

(ZrO2)0.66(HfO2)0.34 thin films were obtained from a quantitative analysis of 

REELS data by comparison to detailed dielectric response model calculations 

using the QUEELS-ε (k,ω)-REELS software package. These optical properties 

are similar with ZrO2 dielectric thin films. 
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1 Introduction 

High-k dielectric materials have been intensively investigated as alternative gate 

dielectric to SiO2 for application in advanced semiconductor devices in recent 

years [1]. Among prominent candidates in high-k materials, amorphous Zr and 

Hf based complex oxides have been largely studied due to their composition-

tunable structure and electrical properties [2,3]. In contrast to the transition 

metal (TM) and rare-earth (RE) silicates and aluminates, the single binary alloy 

and the compound binary alloy between TM and RE oxide, or two different TM 

or RE oxides had also been investigated to improve electrical properties. Both 

terminated oxides have high-k and suitable wide band gap [4-6]. The 

(ZrO2)x(HfO2)1-x dielectrics also attracted attention and were frequently 

explored [7]. It has been reported that HfO2 addition into ZrO2 exhibited 

improved electrical properties. There are some benefits of Hf addition into 

ZrO2, e.g., HfO2 has a chemical structure similar to ZrO2 and completely 

miscible in ZrO2 [8]. The primary goal of using high-k dielectrics as alternatives 
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to SiO2 is to reduce tunneling currents through the gate oxide. Thus band 

alignment is one of the most fundamental physical properties in characterizing 

the gate dielectrics. An adequate large band gap and sufficient barrier height are 

necessary for any alternative high-k material [9]. An asymmetry barrier height 

in holes and electrons is a potentially significant limitation in the operation of 

CMOS devices and their reliability. We need to identify the band gap and band 

offsets for the dielectrics on a nanometer scale special resolution. How the 

energy band structure of Zr compounds aligns with Si is of fundamental 

importance because it affects the performance of transistors, e.g., electrical 

properties. In addition, quantitative optical properties are playing an 

increasingly important role in electronic structure studies of materials. The 

study of optical properties for the nano scale dielectrics is also necessary. 

In this paper, we shall present results of the electronic and optical properties of 

Zr based dielectrics with the thickness in nanometer range. We compared the 

band gap and band alignment of (ZrO2)0.66(HfO2)0.34 with ZrO2 by combining 

reflection electron energy loss spectroscopy (REELS) and X-ray photoelectron 

spectroscopy (XPS) measurement to gain more insight into the band alignments 

for these dielectrics. Furthermore, we obtained the dielectric function and 

optical properties of (ZrO2)0.66(HfO2)0.34 and ZrO2 thin film for comparison by 

quantitative analysis of REELS spectra. 

2 Experiment 

(ZrO2)0.66(HfO2)0.34 were grown on p-Si (100) substrate by atomic layer 

deposition (ALD) method. Prior to growing the mixed oxide film, a p-type Si 

substrate was cleaned using the Radio Corporation of America (RCA) method. 

HfCl4 and ZrCl4 were used as precursors, and H2O vapor served as oxygen 

source. The films were grown in N2 ambient, which was supplied as the purge 

and carrier gas. The substrate temperature was below 300
 o

C during the thin 

film deposition. The physical thickness of deposition was 7nm. XPS and 

REELS spectra were obtained by using the VG ESCALAB 210 spectroscopy 

with LaB6 electron gun. XPS spectra were measured using Mg K  source and 

with the pass energy of 20 eV. XPS binding energies were referenced to C 1s 

peak of hydrocarbon contamination at 285 eV. The incident and take-off angles 

of electrons for both REELS and XPS were 55
o
 and 0

o
 from the surface normal, 

respectively. The composition of compounds was determined via XPS analysis 

using sensitivity factors. REELS were measured with the primary electron 

energy of 1500 eV for excitation and with the constant analyzer pass energy of 

20 eV. The full width at half maximum (FWHM) of the elastic peak was 0.8 

eV. 
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3 Results and Discussion 

 

Figure 1 X-ray photoelectron spectroscopy spectra for (ZrO2)0.66(HfO2)0.34, 

HfO2, and ZrO2 dielectrics (a) Zr 3d core level photoelectron spectra, (b) Hf 4f 

core level photoelectron spectra, and (c) valence band spectra.  

Figure 1 shows XPS spectra, (a) the Zr 3d photoelectron spectra, (b) the Hf 4f 

photoelectron spectra, and (c) the valence band spectra for (ZrO2)0.66(HfO2)0.34, 

HfO2 and ZrO2 thin films was included for comparison. One of Zr 3d spectra 

was characteristic of fully oxidized state of Zr
4+ 

for ZrO2.  It had the binding 

energies of Zr 3d5/2 and Zr 3d3/2 peaks measured at 182.4 and 184.8 eV, 

respectively. Two peaks have the spin-orbital splitting of 2.4 eV [10]. For 

(ZrO2)0.66(HfO2)0.34 thin film the Zr 3d peak, located at 182.1 eV, was at lower 

side relative to that of ZrO2. Since the electronegativity difference between Hf 

(1.30eV) and O (3.44eV) is larger than that between Zr (1.33eV) and O(3.44) 

[11], the formation of Hf-O bond would be preferred rather than the formation 

of Zr-O bond for (ZrO2)0.66(HfO2)0.34. This resulted in a shift of Zr 3d core level 

in (ZrO2)0.66(HfO2)0.34 to a lower binding energy relative to ZrO2 (see Figure 

1(a)) and there is no shift for Hf 4f (see Figure 1 (b)).  

To obtain the valence band offset at the dielectric and Si interface, the valence 

band spectra were measured to determine the valence band maximum (VBM). 

The valence band spectra are shown in Figure 1 (b). The VBM was determined 

using the same method in some of previous work [10,12-15]. From the energy 

difference between the VBM of gate dielectric and Si, the valence band offset 

was obtained. Valence band maximum of p-Si bulk is positioned at 0.24 eV. 

Here we do not take into account any possible band bending in the silicon with 

the oxide grown on top of the Si. The valence band offset of (ZrO2)0.66(HfO2)0.34 

shows same valence band offset as that of ZrO2 with an accuracy of 0.05 eV.  
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Figure 2 Reflection electron energy loss spectra for (ZrO2)0.66(HfO2)0.34, ZrO2, 

and HfO2 dielectrics at the primary beam energy of 1500 eV. 

REELS is a useful technique in the surface and interface analysis of 

nanostructure with primary energies less than several keV. We make use of the 

REELS measurement to find the electronic structure near the band gap. Figure 2 

shows REELS spectra for (ZrO2)0.66(HfO2)0.34 dielectric thin films. The band 

gap values were determined from the onset of energy loss spectrum. The 

method was already described in some of the previous papers [10,12-15].The 

obtained band gap values for these high-k gate dielectric films are around 5.30 

eV. Even if we added Hf elements in ZrO2 within certain ranges, 

(ZrO2)0.66(HfO2)0.34 band gap value was almost not changed. For comparison, 

we add the REELS spectrum of ZrO2 and HfO2 given in our previous works 

[10,12,16]. For the loss spectra of (ZrO2)0.66(HfO2)0.34 dielectric, it appeared to 

be a superposition of the loss spectra of ZrO2 and HfO2 thin film. 

Using the band gap and valence band offset we can determine the conduction 

band offset (ΔEc) [10,12]. For (ZrO2)0.66(HfO2)0.34, the conduction band offset 

was 1.87 eV, which is similar to that of ZrO2 thin films and higher than that of 

HfO2 at 1.54 eV. A sufficiently large barrier height for the electrons was 

obtained in (ZrO2)0.66(HfO2)0.34. The band alignments for these dielectrics are 

shown in Figure 3. We also gave the band alignment of ZrO2 and HfO2, which 

were published previously [10,12]. Through the identification of band 

alignment for these gate dielectrics, we noticed that the barrier heights for 

electrons and holes were more symmetric for (ZrO2)0.66(HfO2)0.34 and ZrO2. 
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Adequate large barrier heights for (ZrO2)0.66(HfO2)0.34 suggests it could be a 

better alternatives to SiO2. The band alignment of (ZrO2)0.66(HfO2)0.34 and ZrO2 

dielectrics were similar. A roughly symmetrical offsets at the valence and 

conduction bands were found for (ZrO2)0.66(HfO2)0.34 dielectric, which is 

desirable for an idea gate dielectric. 

 

Figure 3 Band alignment for HfO2, (ZrO2)0.66(HfO2)0.34, and ZrO2 dielectrics 

gate oxide films. 

We have also studied the optical properties of the (ZrO2)0.66(HfO2)0.34 dielectric 

thin films by quantitative analysis of the REELS spectrum by using the 

Tougaard-Yubero QUEELS-ε (k,ω)-REELS software package [17]. The 

experimental inelastic scattering cross section from the measured REELS 

spectra was obtained from the QUASES-XS-REELS software. Comparison of 

the theoretical inelastic cross section to the experimental one allows us to 

determine the dielectric function of the (ZrO2)0.66(HfO2)0.34 thin films. The 

theoretical inelastic-scattering cross section was calculated from the dielectric 

response theory [18]. In this model, the response of the material to a moving 

electron is described by the dielectric function ε, which is conveniently 

described by the energy loss function (ELF) Im (-1/ε). To evaluate the ELF, we 

parameterized it as a sum of Drude-Lindhard type oscillators [18,19],which is
 

given by: 
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Here, Ai, γi, ћωi and αi are the oscillator strength, damping coefficient, excitation 

energy and momentum dispersion coefficient of the ith oscillator, respectively. 

The step function θ(ћω-Eg) is included to  simulate a possible energy gap, Eg, 

which was estimated from the onset of energy loss in the REELS data (Figure 

2). The parameters in the ELF were determined via a trial-and-error procedure, 

until a satisfactory quantitative agreement between the experimental and 

theoretical inelastic scattering cross section was reached. The parameters were 

determined from the REELS spectra for primary energies of 1.0, 1.5 and 1.8 

keV.  

 

Figure 4 Experimental inelastic cross section λKexp (line) obtained from REELS 

data of (ZrO2)0.66(HfO2)0.34 thin films compared to theoretical inelastic cross 

section λKsc (symbol) evaluated using the simulated energy loss function. 

Figure 4 shows the experimental λKexp (line) from REELS spectra, which is 

compared with the theoretical λKsc (symbol) by using the QUEELS-ε(k,ω)-

REELS software. The parameters in the ELF were determined via a trial-and-

error procedure, until a satisfactory quantitative agreement is reached. Note that 

in all the calculations, the same ELF was used for all energies and only the ELF 

(not the SELF) is used as an input parameter to calculate the λKSC value for 

(ZrO2)0.66(HfO2)0.34 on Si substrate in Figure 3, because the algorithm ([18,20]) 

in the software calculates the quantitative influence of surface excitation and its 

interference with the bulk excitation. The dielectric loss functions for 

(ZrO2)0.66(HfO2)0.34 dielectric thin films were obtained from REELS spectra for 

the primary electron energies of 1.0, 1.5 and 1.8 keV.  
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Table 1 Parameters in the model energy loss functions of (ZrO2)0.66(HfO2)0.34 

thin films on p-Si (100) substrate that give the best fit overall to the experimental 

cross sections at 1.0, 1.5, and 1.8 keV.  

 i 
ћ0i Ai  

(eV) (eV
2
) (eV) 

(ZrO2)0.66(HfO2)0.34 1 10.5 6.0 5.0 

 (Eg=5.35) 2 15.3 35.2 3.3 

 (ai=0.02) 3 18.0 21.1 5.0 

 4 21.5 46.4 7.0 

 5 26.7 162.9 9.5 

 6 34.5 6.7 2.5 

 7 41.0 173.8 8.5 

 8 46.5 83.4 7.0 

 9 57.0 12.0 10.0 

The resulting oscillator parameter of ELF for the (ZrO2)0.66(HfO2)0.34 dielectrics 

thin film are listed in Table I. The corresponding ELF is plotted in Figure 4(a) 

for a wide energy range (0 to 80 eV). We see from Table I that the ELF for 

(ZrO2)0.66(HfO2)0.34 dielectric has 9 oscillators in the vicinity of 10.5, 15.3, 18.0, 

21.5, 26.7, 34.5, 41.0, 46.5 and 57 eV. For the ELF of (ZrO2)0.66(HfO2)0.34 

dielectric, it appeared similar to that of ZrO2 thin film (see Table 1 in [21]). The 

main different are peaks at energy loss between 40 eV to 50 eV, which is 

contributed from HfO2 loss function at 46.5 eV [16]. For energy lower than 40 

eV the ELF of ZrO2 and HfO2 are similar (see Figure 5 (a)) [16,21]. There is a 

shift for (ZrO2)0.66(HfO2)0.34 dielectric at energy lower than 40 eV compared to 

that of, indicated these peak overlapping with ELF of HfO2 thin films. From this 

analysis, we conclude that the electronic structure of (ZrO2)0.66(HfO2)0.34 

dielectric is contributed from that of ZrO2 and HfO2 as shown by previous 

works [16,21]. The loss function Im{ 1 } allows us to perform a Kramers-

Kronig transformation to obtain the real part Re{1 }  of the reciprocal of 

complex dielectric functions. Then, we can obtain the real part 1 and imaginary 

part 2 by using Im{ 1 }  and Re{1 } [18].
 
The real and imaginary parts of the 

dielectric function are as follows; 
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Figure 5 Dielectric function and optical properties of (ZrO2)0.66(HfO2)0.34 

dielectrics. (a) Energy loss function (ELF) and surface energy loss function 

(SELF), we included HfO2 ([16]) and ZrO2 ([21]) dielectrics for comparison, (b) 

Real part (1) and imaginary part (2) of dielectric functions (ZrO2 dielectrics for 

comparison), and (c) Refractive index (n) and extinction coefficient (k) (ZrO2 

dielectrics for comparison). 

Figure 5(b) shows the values of the real part 1 and imaginary part 2 

(corresponding to the absorption spectrum) of dielectric functions. As can be 

seen in the insert figure in Figure 5(b), the main peak position of dielectric 

function of (ZrO2)0.66(HfO2)0.34 dielectric are same to that of ZrO2. In the 

absorption spectrum 2, the strong absorption below 9 eV was associated with a 

transition of the valence band electrons into the unoccupied d states in the 

conduction bands [20-22].  

We also determined the optical properties (see Figure 5 (c)) such as the index of 

refraction n, and the extinction coefficient k from the ELF. The index of 

refraction n and the extinction coefficient k are given in terms of the dielectric 

function as follows [19];  

  1
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2
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 n                                                                      (5) 
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1
2

1
 k                                                                      (6)

  

As can be seen in Figure 5 (b) and (c) there are no different in energy loss of the 

peaks in 1, 2, n, and k for (ZrO2)0.66(HfO2)0.34 dielectric compared with that of 

ZrO2 thin films. These results lead to the conclusion that ZrO2 have a strong 

effect on the dielectric function and optical properties of (ZrO2)0.66(HfO2)0.34 

dielectric thin films.  
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4 Conclusions 

We investigated the band alignments and optical properties for ZrO2 and 

(ZrO2)0.66(HfO2)0.34 dielectrics. The band alignments were investigated by using 

REELS and XPS analysis. The results showed that the (ZrO2)0.66(HfO2)0.34 has 

same barrier heights as those of ZrO2. (ZrO2)0.66(HfO2)0.34 dielectric should 

exhibit good electronic properties with this sufficient barrier heights. Through a 

quantitative analysis of REELS spectra of (ZrO2)0.66(HfO2)0.34 dielectric thin 

films, we found that the optical properties of (ZrO2)0.66(HfO2)0.34 dielectric thin 

films obtained by analyzing the ELF with Kramer-Kronig relations are similar 

to that of ZrO2 dielectric thin films. Hence, a quantitative analysis of REELS 

provides us with a straightforward way to determine the electronic and optical 

properties of high-k dielectrics materials. 
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