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Abstract. Let Gbe a connected graph and ¢ a proper coloring of G. For
i=1,2,...k define the color class C; as the set of vertices receiving color i. The

color code c¢;(v) of a vertex v in G s the ordered k-tuple
(d(v,C),....,d(v,C,)) where d(v,C,) is the distance of v to C, . Ifall distinct

vertices of G have distinct color codes, then ¢ is called a locating-coloring of
G. The locating-chromatic number of graph G, denoted by y, (G) is the
smallest k such that G has a locating coloring with k colors. In this paper we
discuss the locating-chromatic number of amalgamation of stars S, . S, is

k,m

obtained from k copies of star K, by identifying a leaf from each star. We

also determine a sufficient condition for a connected subgraph H c S, |
satisfying )(L(H)SZL(Sk,m)-
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1 Introduction

Let G be a finite, simple, and connected graph. Let ¢ be a proper coloring of
a connected graph G using the colors 1,2,...,k for some positive integer k,
where c(u) = c(v) for adjacent vertices u and v in G. Thus, the coloring ¢ can
be considered as a partition [Iof V(G) into color classes (independent sets)
C,,C,,...,C,, where the vertices of C, are colored by i for 1<i<k. The color
code c;(v) of a vertex v in G is the ordered k -tuple (d(v,C,),...,d(v,C,))
where d(v,C,)=min{d(v,x)|xeC}for 1<i<k. If all distinct vertices of G
have distinct color codes, then c¢ is called a locating-coloring of G. A

minimum locating-coloring uses a minimum number of colors and this number
is called the locating-chromatic number of graph G, denoted by y, (G) .
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The following definition of an amalgamation of graphs is taken from [3]. For
i=12,....k, let G, be a graph with a fixed vertex v . The amalgamation
Amal(G,,v,;) is a graph formed by taking all the G,’s and identifying their
fixed vertices. In this paper, we consider the amalgamation of stars. More
precisely, for i=12,...k, let G, = Kl,ni ,n, >1 where v, be any leaf (a vertex of

degree 1) of K, . We denote the amalgamation of k stars K, by

Sk (.. K=2. We call the identified vertex as the center (denoted by x),
the vertices of distance 1 from the center as the intermediate vertices (denoted
by I ;i=12,.,k), and the j-th leaf of the intermediate vertex |. by
l; (J=12,...,m=1). In particular, when n,=m, m=>1 forall i, we denote the

amalgamation of k isomorphic stars K, by S, .

The locating-chromatic number was firstly studied by Chartrand et al. [1]. They
determined the locating-chromatic numbers of some well-known classes such as
paths, cycles, complete multipartit graphs and double stars. Apart of paths and
double stars, the locating-chromatic number of other trees are also considered
by Chartrand et al. [2]. They constructed a tree of order n=>5 with the
locating- chromatic number k , where k €{3,4,....,n—2,n}. They also showed

that no tree on n vertices with locating-chromatic number n—1.

Based on the previous results, locating-chromatic number of amalgamation of
stars have not been studied. Motivated by this, in this paper we determine the
locating-chromatic number of amalgamation of stars.

Beside that, we also discuss the monotonicity property of the locating-
chromatic number for the class of amalgamation of stars. Clearly, the locating-
chromatic number of a star K, is n+1, forany n (since all vertices must have

different color codes). Since any connected subgraph H of K, isalso a star

with small size, then we clearly have y (H)< y (K, ). However in general

for any connected subgraph H — G, the locating-chromatic number of H may
not be necessarily smaller or equal to the locating-chromatic number of G .

In this paper, we also investigate the monotonicity property of the locating-
chromatic number for amalgamation of stars, S, . We derive a sufficient

condition for a connected subgraph H = S, | satisfying x, (H)< x, (S, ) -
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The following results were proved by Chartrand et al. in [1] . The set of
neighbours of a vertex v in G is denoted by N(Vv).

Theorem 1.1. Let ¢ be a locating-coloring in a connected graph G . If u and
v are distinct vertices of G such that d(u,w)=d(v,w) for all

weV (G)—{u,v}, then c(u) #c(v). In particular, if u and v are non adjacent
vertices of G such that N(u) = N(v), then c(u) =c(v).

Corollary 1.1. If Gis a connected graph containing a vertex adjacent to k
leaves of G, then y, (G)>k+1.

2 Main Results

We first prove some lemmas regarding the properties of locating-chromatic
number of amalgamation of stars. From now on S, .~ denotes the amalgamation
of k isomorphic stars K, .

Lemma 2.1. For k>2,m>2, let cbe a proper coloring of S, , using at
least m colors. The coloring cis a locating-coloring if and only if
c(l)=c(,),i=n implies {c(l;)|j=12,..,m-1} and {c(l;)|j=12,..,m-1}
are distinct.

Proof. Let P={c(l;)| j=12,...m-1} and Q={c(l;)|j=12,...m-1}. Let ¢
be a locating-coloring of S, =, k>2,m>2 using at least mcolors and
c(l,)=c(l,), for some i=n. Suppose that P=Q . Because d(l,,u)=d(l,,u) for
every ueV\{l;|j=12...m-T{l;|j=12,..,m-1}then the color codes

of I and I will be the same. So c is not a locating-coloring, a contradiction.
Therefore P=Q.

Let [T be a partition of V(G) into color classes with |[1|>m. Consider
c(l,)=c(,),i=n. Since P=Q, there are color x and color y such that
(xeP,x¢Q) and (yeP,yeQ). We will show that color codes for every
veV(S,,) isunique.

e Clearly, cy(l;)=cy(l,) because their color codes differ in the xth-
ordinate and y th-ordinate.
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e If c(ly)=c(l,), for some I =l , we will show that c(l;)=cy(l,)-
We divide into two cases.

Case 1. If c(l)=c(l,) then by the premise of this theorem, P=Q. So
C[‘[(Iij) * CH (Ins) '

Case 2. Let c(l))=r, and c(l))=r,, with r, #r,. Then c(l;) = c ()
because their color codes are different at least in the r, th-ordinate and
r, th-ordinate.

e Ifc(l)=cd,), l; =1, then c(l,) contains at least two components of
value 1, whereas cy(l,;) contains exactly one component of value 1.
Thus cp (1) =cy(l,) -

e If c(x)=c(l;), then color code of c;(x) contains at least two
components of value 1, whereas c;(l;) contains exactly one component
of value 1. Thus c;(x) = c(l;) -

From all above cases, we see that the color code for each vertex in S, is
unique, thus c is a locating-coloring. [

Lemma 2.2. Let ¢ be a locating coloring of S, using m+a colors and

m+a-1
" . ] a>0. Then k<H(a).

H(a)=(m+a—1)[
Proof. Let c be a locating-coloring of S, using m+a colors. For fixed i,
letc(l;) be a color of intermediate vertex I, then the number color combina-
m+a-1

tions can be used by {l; | j=12,...,.m-1} is ( j Because one color is

used for coloring the center x, there are (m+a-1) colors for I, for every
i=12..,k. By Lemma 21, the maximum number of k is

m+a
(m+a—D(

;1J:H(a). Sok<H(a). O
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The main result of this paper concerns about locating-chromatic number of
S

k,m *

-1
Theorem 2.1. For a>0,k>2, m>2, let H(a):(m+a—1)(m+a1 J Then,
m_

m  for 2<k<H(0), m>3,
m+a for H@-1)<k<H(a),a>1.

;(L(Sk,m) :{

Proof. First, we determine the trivial lower bound. By Corollary 1.1, each
vertex |, is adjacentto (m-1) leaves, for i=1,2,....k. Thus, x (S, ,)=m.

Next, we determine the upper bound of #, (S, ) for 2<k<H(0)=m-1. Let
c be a coloring of V (S, ,,) using m colors. Without loss of generality, we can
assign c(x)=1 and c(l.)=i+1 for i=12,..,k. To make sure that the leaves
will have distinct color code, we assign {l;|j=12..,m-1} by
{L,2,...mI\{i+1} for any i. Then, by Lemma 2.1, we have that ¢ is a
locating-coloring. Thus y, (S, ,)<m.

Next, we shall improve the lower bound for the case of ksuch that
H(@-1)<k<H(a),a=1. Since k>H(a-1) then by Lemma 2.2,

2.(Sn)=m+a. On the other hand if k>H(a) then by Lemma 2.2,
X (Sn)=m+a+l. Thus g, (S, ,)=m+a if H(a-1) <k <H(a).

Next, we determine the upper bound of x (S,,) for H(a-1)<k<H(a),
a>1. Without loss of generality, let c(x)=1 and color the intermediate
vertices I, by 2,3,..,m+a in such a way that the number of the intermediate

. . m+a-1
vertices receiving the same color t does not exceed mo1 ) forany t. We
are able to do so because H(a—1) <k <H(a). Therefore, if c(l,)=c(l,),
i=n then we can manage {c(l;)|j=12,...m-={c(l;)|j=12...,m-1}.
By Lemma 2.1, c is a locating-coloring on S

H(@-)<k<H(a).O

So x (S,)<m+a for

k,m*
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The following figures show minimum locating-coloringson S, and S, .
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Figure 2 A minimum locating-coloring of S, .

Next, we discuss the monotonicity property of locating-chromatic number
for the amalgamation of stars.

Theorem 2.2 If 2<k<m-1, then y (G)< x (S,,) for every GcS,
and G=K, .

Proof. Let ¢ be a minimum locating-coloring of S, obtained from Theorem
2.1. Let G be any connected subgraph of S, . Define a coloring ¢c'on G by
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preserving colors used in S, =~ for the corresponding vertices, namely

c'(v)) =c(v) if v is the corresponding vertex of v' in S, . We show that ¢’ is
a locating-coloring of G.

If there exist I, I, such that {c'(l;)| j=12,....,r}={c'(l;)| j=12,...,r}, with
1<r<m-1, then color codes of I, and |, forevery j=1,23,...,m is unique
because c'(l)=c'(l,) for every I =1 . If c'(l)=c'(l;)=c'(x), then the first
component of ¢ (I;) has value 1, whereas for c_(l,) it has value 2. So color
code of | and I are different. Next, if c'(x) =c'(l,;), G # P, then their color

codes are different because c'(l,) =c'(l,) forevery I, =1, . For the case G =P,
v, eV (R;) for each i is colored by 1, 2, and 3 respectively. Because the color
codes for every veV(G) is unique, then ¢’ is a locating-coloring of G. So
1. G)< 1. (S, forevery Gc S, , G=K,,. O

k,m ?

Let Sy n o,
subgraphs of S, = so that satisfy monotonicity property.

y S Sy Define A={i|n,=1}. Fork>m, we must restrict

Theorem 2.3 If k>m and |A< 7, (S,,,) -1 then 7 (S n..n)) <X (Sim)-

Proof. Let k>m and from Theorem 2.1, we have that y, (S,,)=m+a for
H(@-)<K<H(a),a>1.Let G= Skt

Sim With 1<n, <m.If 2<n <m foreach i, then color vertices of G follow
the proof of Theorem 2.1. Clearly, the coloring of G is a locating-coloring.
Otherwise, we have n, =1 for some i,andso |A[>1. If |A<y (S,,)—1, then
the center x is given color 1, I, € A for each i is colored by 2,3,..., ¥, (S, ),
respectively and the colors for the other vertices follow the proof of Theorem
2.1. Observe that the color codes of I. for each |, € A has value 1 in the 1th-

ordinate, 0 in the ith-ordinate, and 2 otherwise, these color codes are unique.
For the remaining of the vertices, the color codes are also unique as proven in
Theorem 2.1. As the result, the coloring of G is a locating-coloring. So

ZL (Sk,(nl,nz,...,nk)) < ZL (Sk,m) .0

, be any subgraph obtained from
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