

Locating-Chromatic Number of Amalgamation of Stars

Asmiati^{*}, H. Assiyatun & E.T. Baskoro

Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesa 10 Bandung. Email: asmiati308@students.itb.ac.id

Abstract. Let G be a connected graph and c a proper coloring of G. For i=1,2,...,k define the color class C_i as the set of vertices receiving color i. The color code $c_{\Pi}(v)$ of a vertex v in G is the ordered k-tuple $(d(v,C_1),...,d(v,C_k))$ where $d(v,C_i)$ is the distance of v to C_i . If all distinct vertices of G have distinct color codes, then c is called a locating-coloring of G. The locating-chromatic number of graph G, denoted by $\chi_L(G)$ is the smallest k such that G has a locating coloring with k colors. In this paper we discuss the locating-chromatic number of amalgamation of stars $S_{k,m}$. $S_{k,m}$ is obtained from k copies of star $K_{1,m}$ by identifying a leaf from each star. We

also determine a sufficient condition for a connected subgraph $H \subseteq S_{k,m}$ satisfying $\chi_L(H) \leq \chi_L(S_{k,m})$.

Keywords: amalgamation of stars; color code; locating-chromatic number.

1 Introduction

Let *G* be a finite, simple, and connected graph. Let *c* be a proper coloring of a connected graph *G* using the colors 1,2,...,*k* for some positive integer *k*, where $c(u) \neq c(v)$ for adjacent vertices *u* and *v* in *G*. Thus, the coloring *c* can be considered as a partition \prod of V(G) into color classes (independent sets) $C_1, C_2, ..., C_k$, where the vertices of C_i are colored by *i* for $1 \le i \le k$. The *color code* $c_{\prod}(v)$ of a vertex *v* in *G* is the ordered *k*-tuple $(d(v, C_1), ..., d(v, C_k))$ where $d(v, C_i) = \min\{d(v, x) \mid x \in C_i\}$ for $1 \le i \le k$. If all distinct vertices of *G* have distinct color codes, then *c* is called a *locating-coloring* of *G*. A *minimum locating-coloring* uses a minimum number of colors and this number is called the *locating-chromatic number* of graph *G*, denoted by $\chi_L(G)$.

^{*}Permanent address: Mathematics Departement, Faculty of Mathematics and Natural Sciences, Universitas Lampung, Jl. Brojonegoro no.1 Bandar Lampung, Lampung.

Received January 11th, 2010, Revised July 14th, 2010, Accepted for publication July 28th, 2010.

The following definition of an amalgamation of graphs is taken from [3]. For i = 1, 2, ..., k, let G_i be a graph with a fixed vertex v_{oi} . The *amalgamation* Amal (G_i, v_{oi}) is a graph formed by taking all the G_i 's and identifying their fixed vertices. In this paper, we consider the amalgamation of stars. More precisely, for i = 1, 2, ..., k, let $G_i = K_{1,n_i}, n_i \ge 1$ where v_{oi} be any leaf (a vertex of

degree 1) of K_{1,n_i} . We denote the amalgamation of k stars K_{1,n_i} by

 $S_{k,(n_1,n_2,...,n_k)}, k \ge 2$. We call the identified vertex as the *center* (denoted by x), the vertices of distance 1 from the center as the *intermediate vertices* (denoted by l_i ; i = 1, 2, ..., k), and the *j*-th leaf of the intermediate vertex l_i by l_{ij} (j = 1, 2, ..., m-1). In particular, when $n_i = m$, $m \ge 1$ for all *i*, we denote the amalgamation of *k* isomorphic stars $K_{1,m}$ by $S_{k,m}$.

The locating-chromatic number was firstly studied by Chartrand *et al.* [1]. They determined the locating-chromatic numbers of some well-known classes such as paths, cycles, complete multipartit graphs and double stars. Apart of paths and double stars, the locating-chromatic number of other trees are also considered by Chartrand *et al.* [2]. They constructed a tree of order $n \ge 5$ with the locating- chromatic number k, where $k \in \{3, 4, ..., n-2, n\}$. They also showed that no tree on n vertices with locating-chromatic number n-1.

Based on the previous results, locating-chromatic number of amalgamation of stars have not been studied. Motivated by this, in this paper we determine the locating-chromatic number of amalgamation of stars.

Beside that, we also discuss the monotonicity property of the locatingchromatic number for the class of amalgamation of stars. Clearly, the locatingchromatic number of a star $K_{1,n}$ is n+1, for any n (since all vertices must have

different color codes). Since any connected subgraph H of $K_{1,n}$ is also a star

with small size, then we clearly have $\chi_L(H) \leq \chi_L(K_{1,n})$. However in general for any connected subgraph $H \subseteq G$, the locating-chromatic number of H may not be necessarily smaller or equal to the locating-chromatic number of G.

In this paper, we also investigate the monotonicity property of the locatingchromatic number for amalgamation of stars, $S_{k,m}$. We derive a sufficient condition for a connected subgraph $H \subseteq S_{k,m}$ satisfying $\chi_L(H) \le \chi_L(S_{k,m})$.

3

The following results were proved by Chartrand et al. in [1]. The set of neighbours of a vertex v in G is denoted by N(v).

Theorem 1.1. Let c be a locating-coloring in a connected graph G. If u and v are distinct vertices of G such that d(u,w) = d(v,w) for all $w \in V(G) - \{u,v\}$, then $c(u) \neq c(v)$. In particular, if u and v are non adjacent vertices of G such that N(u) = N(v), then $c(u) \neq c(v)$.

Corollary 1.1. If G is a connected graph containing a vertex adjacent to k leaves of G, then $\chi_L(G) \ge k+1$.

2 Main Results

We first prove some lemmas regarding the properties of locating-chromatic number of amalgamation of stars. From now on $S_{k,m}$ denotes the amalgamation of k isomorphic stars $K_{1,m}$.

Lemma 2.1. For $k \ge 2, m \ge 2$, let c be a proper coloring of $S_{k,m}$, using at least m colors. The coloring c is a locating-coloring if and only if $c(l_i) = c(l_n), i \ne n$ implies $\{c(l_{ij}) | j = 1, 2, ..., m-1\}$ and $\{c(l_{nj}) | j = 1, 2, ..., m-1\}$ are distinct.

Proof. Let $P = \{c(l_{ij}) \mid j = 1, 2, ..., m-1\}$ and $Q = \{c(l_{nj}) \mid j = 1, 2, ..., m-1\}$. Let c be a locating-coloring of $S_{k,m}$, $k \ge 2, m \ge 2$ using at least m colors and $c(l_i) = c(l_n)$, for some $i \ne n$. Suppose that P = Q. Because $d(l_i, u) = d(l_n, u)$ for every $u \in V \setminus \{\{l_{ij} \mid j = 1, 2, ..., m-1\} \cup \{l_{nj} \mid j = 1, 2, ..., m-1\}\}$ then the color codes of l_i and l_n will be the same. So c is not a locating-coloring, a contradiction. Therefore $P \ne Q$.

Let \prod be a partition of V(G) into color classes with $|\prod| \ge m$. Consider $c(l_i) = c(l_n), i \ne n$. Since $P \ne Q$, there are color x and color y such that $(x \in P, x \notin Q)$ and $(y \in P, y \notin Q)$. We will show that color codes for every $v \in V(S_{k,m})$ is unique.

• Clearly, $c_{\Pi}(l_i) \neq c_{\Pi}(l_n)$ because their color codes differ in the *x*th-ordinate and *y*th-ordinate.

• If $c(l_{ij}) = c(l_{ns})$, for some $l_i \neq l_n$, we will show that $c_{\Pi}(l_{ij}) \neq c_{\Pi}(l_{ns})$. We divide into two cases.

Case 1. If $c(l_i) = c(l_n)$ then by the premise of this theorem, $P \neq Q$. So $c_{\prod}(l_{ij}) \neq c_{\prod}(l_{ns})$.

Case 2. Let $c(l_i) = r_1$ and $c(l_n) = r_2$, with $r_1 \neq r_2$. Then $c_{\prod}(l_{ij}) \neq c_{\prod}(l_{ns})$ because their color codes are different at least in the r_1 th-ordinate and r_2 th-ordinate.

- If c(l_i) = c(l_{nj}), l_i ≠ l_n, then c_Π(l_i) contains at least two components of value 1, whereas c_Π(l_{nj}) contains exactly one component of value 1. Thus c_Π(l_i) ≠ c_Π(l_{nj}).
- If $c(x) = c(l_{ij})$, then color code of $c_{\Pi}(x)$ contains at least two components of value 1, whereas $c_{\Pi}(l_{ij})$ contains exactly one component of value 1. Thus $c_{\Pi}(x) \neq c_{\Pi}(l_{ij})$.

From all above cases, we see that the color code for each vertex in $S_{k,m}$ is unique, thus c is a locating-coloring. \Box

Lemma 2.2. Let c be a locating coloring of $S_{k,m}$ using m+a colors and $H(a) = (m+a-1)\binom{m+a-1}{m-1}$, $a \ge 0$. Then $k \le H(a)$.

Proof. Let *c* be a locating-coloring of $S_{k,m}$ using m+a colors. For fixed *i*, let $c(l_i)$ be a color of intermediate vertex l_i , then the number color combinations can be used by $\{l_{ij} \mid j = 1, 2, ..., m-1\}$ is $\binom{m+a-1}{m-1}$. Because one color is used for coloring the center *x*, there are (m+a-1) colors for l_i , for every i=1,2,...,k. By Lemma 2.1, the maximum number of *k* is $(m+a-1)\binom{m+a-1}{m-1} = H(a)$. So $k \le H(a)$. \Box

The main result of this paper concerns about locating-chromatic number of $S_{k,m}$.

Theorem 2.1. For $a \ge 0, k \ge 2, m \ge 2$, let $H(a) = (m + a - 1) \binom{m + a - 1}{m - 1}$. Then,

$$\chi_L(S_{k,m}) = \begin{cases} m & for \\ m+a & for \end{cases} \quad \begin{array}{l} 2 \le k \le H(0), \ m \ge 3, \\ m+a & for \\ \end{array} \quad H(a-1) < k \le H(a), \ a \ge 1. \end{cases}$$

Proof. First, we determine the trivial lower bound. By Corollary 1.1, each vertex l_i is adjacent to (m-1) leaves, for i = 1, 2, ..., k. Thus, $\chi_L(S_{k,m}) \ge m$.

Next, we determine the upper bound of $\chi_L(S_{k,m})$ for $2 \le k \le H(0) = m-1$. Let c be a coloring of $V(S_{k,m})$ using m colors. Without loss of generality, we can assign c(x) = 1 and $c(l_i) = i+1$ for i = 1, 2, ..., k. To make sure that the leaves will have distinct color code, we assign $\{l_{ij} | j = 1, 2, ..., m-1\}$ by $\{1, 2, ..., m\} \setminus \{i+1\}$ for any i. Then, by Lemma 2.1, we have that c is a locating-coloring. Thus $\chi_L(S_{k,m}) \le m$.

Next, we shall improve the lower bound for the case of k such that $H(a-1) < k \le H(a), a \ge 1$. Since k > H(a-1) then by Lemma 2.2, $\chi_L(S_{k,m}) \ge m+a$. On the other hand if k > H(a) then by Lemma 2.2, $\chi_L(S_{k,m}) \ge m+a+1$. Thus $\chi_L(S_{k,m}) \ge m+a$ if $H(a-1) < k \le H(a)$.

Next, we determine the upper bound of $\chi_L(S_{k,m})$ for $H(a-1) < k \le H(a)$, $a \ge 1$. Without loss of generality, let c(x) = 1 and color the intermediate vertices l_i by 2,3,...,m+a in such a way that the number of the intermediate vertices receiving the same color t does not exceed $\binom{m+a-1}{m-1}$, for any t. We are able to do so because $H(a-1) < k \le H(a)$. Therefore, if $c(l_i) = c(l_n)$, $i \ne n$ then we can manage $\{c(l_{ij}) \mid j = 1, 2, ..., m-1\} \ne \{c(l_{nj}) \mid j = 1, 2, ..., m-1\}$. By Lemma 2.1, c is a locating-coloring on $S_{k,m}$. So $\chi_L(S_{k,m}) \le m+a$ for $H(a-1) < k \le H(a)$. \Box

The following figures show minimum locating-colorings on $S_{\rm 4,6}$ and $S_{\rm 9,3}\,$.

Figure 1 A minimum locating-coloring of $S_{4,6}$.

Figure 2 A minimum locating-coloring of $S_{9,3}$.

Next, we discuss the monotonicity property of locating-chromatic number for the amalgamation of stars.

Theorem 2.2 If $2 \le k \le m-1$, then $\chi_L(G) \le \chi_L(S_{k,m})$ for every $G \subseteq S_{k,m}$ and $G \ne K_{1,m}$.

Proof. Let c be a minimum locating-coloring of $S_{k,m}$ obtained from Theorem 2.1. Let G be any connected subgraph of $S_{k,m}$. Define a coloring c' on G by

preserving colors used in $S_{k,m}$ for the corresponding vertices, namely c'(v') = c(v) if v is the corresponding vertex of v' in $S_{k,m}$. We show that c' is a locating-coloring of G.

If there exist l_i , l_n such that $\{c'(l_{ij}) | j=1,2,...,r\} = \{c'(l_{nj}) | j=1,2,...,r\}$, with $1 \le r \le m-1$, then color codes of l_{ij} and l_{nj} for every j=1,2,3,...,m is unique because $c'(l_i) \ne c'(l_n)$ for every $l_i \ne l_n$. If $c'(l_i) = c'(l_{nj}) \ne c'(x)$, then the first component of $c'_{\pi}(l_i)$ has value 1, whereas for $c'_{\pi}(l_{nj})$ it has value 2. So color code of l_i and l_{nj} are different. Next, if $c'(x) = c'(l_{nj})$, $G \ne P_3$ then their color codes are different because $c'(l_i) \ne c'(l_n)$ for every $l_i \ne l_n$. For the case $G = P_3$, $v_i \in V(P_3)$ for each *i* is colored by 1, 2, and 3 respectively. Because the color codes for every $v \in V(G)$ is unique, then c' is a locating-coloring of *G*. So $\chi_L(G) \le \chi_L(S_{k,m})$ for every $G \subseteq S_{k,m}$, $G \ne K_{1,m}$.

Let $S_{k,(n_1,n_2,\dots,n_k)} \subseteq S_{k,m}$. Define $A = \{i \mid n_i = 1\}$. For $k \ge m$, we must restrict subgraphs of $S_{k,m}$ so that satisfy monotonicity property.

Theorem 2.3 If $k \ge m$ and $|A| \le \chi_L(S_{k,m}) - 1$ then $\chi_L(S_{k,(n_1,n_2,...,n_k)}) \le \chi_L(S_{k,m})$.

Proof. Let $k \ge m$ and from Theorem 2.1, we have that $\chi_L(S_{k,m}) = m + a$ for $H(a-1) < K \le H(a), a \ge 1$. Let $G = S_{k,(n_1,n_2,...,n_k)}$ be any subgraph obtained from $S_{k,m}$ with $1 \le n_i \le m$. If $2 \le n_i \le m$ for each i, then color vertices of G follow the proof of Theorem 2.1. Clearly, the coloring of G is a locating-coloring. Otherwise, we have $n_i = 1$ for some i, and so $|A|\ge 1$. If $|A| \le \chi_L(S_{k,m}) - 1$, then the center x is given color 1, $l_i \in A$ for each i is colored by $2, 3, ..., \chi_L(S_{k,m})$, respectively and the colors for the other vertices follow the proof of Theorem 2.1. Observe that the color codes of l_i for each $l_i \in A$ has value 1 in the 1th-ordinate, 0 in the i th-ordinate, and 2 otherwise, these color codes are unique. For the remaining of the vertices, the color codes are also unique as proven in Theorem 2.1. As the result, the coloring of G is a locating-coloring. So $\chi_L(S_{k,(n,n_1,\dots,n_k)}) \le \chi_L(S_{k,m})$.

References

- [1] Chartrand, G., Erwin, D., Henning, M.A., Slater, P.J. & Zang. P., *The locating-chromatic number of a graph*, Bull. Inst. Combin. Appl., **36**, pp. 89-101, 2002.
- [2] Chartrand, G., Erwin, D., Henning, M.A., Slater & P.J., Zang. P., *Graph* of order *n* with locating-chromatic number *n*−1, Discrete Mathematics, **269**, pp. 65-79, 2003.
- [3] Carlson, K., Generalized books and C_m-snakes are prime graphs, Ars Combin., 80, pp. 215-221, 2006.