
 

 

ITB J. Sci. Vol. 42 A, No. 1, 2010, 11-22                                          11 

 

Received April 28th, 2009, Revised December 13th, 2009, Accepted for publication December 21st, 2009. 

Partial Internal Control Recovery on 1-D                        

Klein-Gordon Systems 

Iwan Pranoto 

Faculty of Mathematics and Natural Sciences, 

Institut Teknologi Bandung, Jl. Ganesha No. 10 Bandung 40132 

 

 

Abstract. In this exposition, a technique to recover internal control on a 

distributed parameter system is reported. The system is described by 1-D Klein-

Gordon partial differential equation with a time-varying parameter. We would 

like to recover the internal control applied to the system if we know some limited 

information about the output. We use a method called sentinel method to recover 

the internal control. It involves some construction of a linear functional, and we 

show that this construction relates closely to the exact controllability problem. 
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1 Introduction 

Let Ω stand for the open unit interval  0,1  . The symbol N  denotes the 

distributed parameter system governed by a non-autonomous 1-D Klein-Gordon 

equation  

      - in 0,
tt xx

L y y y t y u T      (1) 

This system covers the string or wave equation and the well-known Klein-

Gordon equation, because if we set 0  , we will obtain the standard wave 

equation. If we set 1  , we obtain the standard Klein-Gordon equation. 

We assume the original system N has a homogenous boundary condition: 

    0, 1, 0y t y t   

The symbol u  denotes the internal control. We call it internal control, since it 

affects the system through some internal part of the domain  . This internal 

part, where the support of u  lies, is denoted by  . The subset   is a relatively 

open subset of  . Thus, supp    0,u T  . 

We assume the control space is the Hilbert space 
2
( (0, ))L T U . Thus, u  

lives in U . To make the notation simpler, we extend every internal control in 
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2
( (0, ))L T U to all of  0,T , by assigning  , 0u x t  for 

   , 0,x t T  , and we denote the extended function as u as well. Moreover, 

we assume that the control u lies in an open  -ball  ,  B c  centered at some 

known cU , for some 0  . Thus,  

  , { | }u B c c       U  

where  denotes the 
2

L -norm. 

The initial conditions are  

        0  1,0   and ,0  ty x y x y x y x   

We assume that  0 1,y y belongs to an open  -ball   0 1, ,B b b  in the Hilbert 

space 
1 2

0
( ) (0,1)V H L   , for some  0 1,b b V . 

We are able to observe the dynamics of the system N through the output 

function  

     1, |x xz t x ty    where  0,t T . (2) 

Thus, one may observe the system only through the derivative of the 

displacement  on only one extreme of the interval, that is at 1x  . It is shown 

that this limited information about the system suffices to partially recover the 

control u , provided some conditions are satisfied. 

Because we work with linear systems, the system depends linearly on the initial 

condition and the control. This implies that the value of  does not matter on 

the existence of the solution, as long as it is positive. This makes sure the 

variables 0 1, ,   lie in  1,1 . 

The problem to recover control from some information on the output was 

invented by Lions [1,2]. He studied conservative equations like wave and plate 

equations. If some conditions are satisfied, one can recover the control, or at 

least recover some information about the control u . This process, by observing 

z and obtaining some information of the internal control u , is called partial 

internal control recovery. In our previous paper Pranoto [3], we extend the 

above results to include time-variant Klein-Gordon system, where the 

dimension is higher than 2. It is also shown that the above problem is closely 

related to the exact controllability problem. In this paper, we complete the 

results to include the 1-D case. Therefore, now it is true that for any dimension, 
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one may recover the internal control of the Klein-Gordon system, provided 

some conditions are satisfied. The brief summary of the results have been 

outlined in Pranoto [4]. 

It is a well known fact that the exact controllability problem of Distributed 

Parameter System is closely related to the uniqueness property. One such 

property, for example, is the fact that if the normal derivative of the solution of 

wave equation with homogenous Dirichlet condition vanishes on the boundary, 

then the solution is trivial. The exact controllability in this work needs a 

stronger uniqueness property. We need some inequality, that we call 

observability inequality. The name observability may become clear later. 

The exact controllability of distributed parameter systems usually is studied for 

linear systems. However, some researchers succeed to generalize the 

approaches and apply them to semilinear cases, such as in Zuazua [5,6]. 

Methods for approximating the exact control are proposed. For example, one 

should consult Zuazua [7,8]. 

The problem to recover internal control discussed here has many applications. 

For example, if one interprets the internal control as the source of pollution in 

ecological environment, this method means that we can detect the location of 

the pollution source and its intensity by observing merely on some part of the 

boundary. This is one motivation for studying this problem. See for example 

Acheli et al [9]. While this paper focuses on the partial recovering of the 

internal control in an infinite-dimensional system, Fliess et al [10] estimate the 

state variable of non-linear systems. 

2 Boundary Sentinel 

We assume that u  lies in the open  -ball centered at some c . Therefore, one 

can represent  

 u c c   

for some  1,1    and    2
0, 0,c B L T  . Similarly, one writes the 

initial data as  

 0 0 0 0y b b   and 1 1 1 1y b b   

where  0 1
, 1,1     and     1 0, 0,0 ,b b B V  . 

We define a new systemM :  



14 Iwan Pranoto 

  ( ) 0 in 0,L w T   (3) 

    (0, ) 0 and w 1,w t t t   (4) 

where  2
0,L T  . The above boundary value problem has the following 

terminal conditions  

  ( , ) 0 and , 0 for 
t

w x T w x T x    

Therefore, the system M  is a problem with homogeneous final conditions, but 

it has a non-homogeneous boundary condition. 

We next consider a functional  

   0 1 0 1

0

( , , ) ; , ,

T

t tz dt       S  

where  0 1
; , ,tz     is the output of  N , with initial conditions  

 0 0 0 0y b b   and 1 1 1 1y b b  . 

and control  

 u c c  . 

Thus,  0 1
, ; , ,x ty    evaluated at 1x  Since we want to recover u , we have 

to make the functional we are going to observe depend only on the internal 

control u . Thus, the functional Smust be insensitive to the variation of the 

initial data. We therefore must impose the following conditions  

    0 1
0,0,0 0,0,0 0    S S . 

Thus, by the definition of z in (2), we have the following two identities 

 
   

   

0

1

0

0

1, ;0,0,0 0

1, ;0,0,0 0

T

x

T

x

t y t dt

t y t dt









  

  




   (5) 

One may check that 
0
y  satisfies the following problem: 
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 
0

0 in L y

    

0
0 on 0 and 1y x x


    , 

   
0 00,0  and ,0 0ty x b y x     . 

So, if we multiply (3) by 0 y  and then integrate it over  0,T , we find  

     
  0 00,

0
T

L w y L y w dxdt
 


     (6) 

        
0

0
0

  = 1, 1, ;0,0,0 ,0 , ,0 ,0
T

x t
w t y t dt w x b w x


     (6) 

    0
 ,0 , ,0 ,0

t
w x b w x     (7) 

   0
 ,0 ,

t
w x b    (8) 

for every 
0

b . We use the Green's formula and the boundary condition of the 

system M  to obtain the above identity. The first term in (6) vanishes, because 

of the condition (5). Next, the term   0
,0 ,

t
w x b  in (7) is the pairing between 

1

0
H  and its dual 

1
H


, and the other term is the usual 

2
L inner product. 

By the non-degeneracy of the form ,  , the fact that (8) is zero for every 0b  

implies 

  ,0 0
t

w x    (9) 

Similarly, if we multiply (3) by 
1
y


 and integrate over   0,T  , we obtain  

   ,0 0w x    (10) 

This means, in order to make S independent on the value of 0 and 1 , the 

boundary control   must steer the system M from the equilibrium initial state 

to the equilibrium state again at time T . Such boundary control   satisfying 

(9) and (10) is called boundary sentinel. It is clear that such   exists, since at 

least 0  drives equilibrium state to itself, i.e. without moving at all. 

However, such   is not useful, because the functional Swill be zero all the 

time. Thus, using the trivial sentinel, we will not be able to observe the dynamic 

of the system. Hence, we must find a sentinel   which is not trivial. 
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The proposition below shows that there exists a non-trivial boundary sentinel. 

Moreover, from the constructive proof of the proposition, one could imply that 

there are infinitely many boundary sentinels. 

Proposition 1. If  satisfies the following conditions: 

 A1: There is an  0,1 , such that     2
1t    for every t ; 

 A2:  Var    , where  Var  denotes the variation of the function  on 

 0, , 

then for any  2
0,e L T  , there exist 

*
0T   and  2 *

,f L T T , such that the 

concatenate e f  is a boundary sentinel. 

 

The proof of the above proposition relies primarily on the validity of some 

inequality, called observer inequality. We are interested if there are positive 

constants , ,T TT k K such that the following uniqueness (and regularity) 

inequality  

       1 2 1 2

0 0

22 2

0 1 0 1
0

, 1, ,
T

T x TH L H L
k v v v t dt K v v

 
     (11) 

is true for all   1 2

0 1 0
,v v H L  . Here, v  is the solution of the dual system: 

    0  in  0,L v T   

    0, 1, 0v t v t   for all t  

        0 1
,0 ,     ,0

t
v x v x v x v x  . 

The above inequality is analogous to the Kalman's rank observability condition 

utilized widely in the finite dimensional linear system theory. More precisely, 

let us consider a linear system  

        
n

x Ax Bu x    

with initial condition   00x x  . The above system has a dual system  

        T nv A v v    

together with an output map 

 
T

z B v . 
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If one multiplies x with v  and partially integrate it over  0,T , a similar 

inequality may be obtained. However, this inequality reduces to the well known 

dual observability condition  

     2 1
T

n
T T T T T T T

rank A B A B A B A n


 , 

because all topologies in finite dimensional vector spaces are equivalent. Of 

course, the above rank condition is exactly the same with the Kalman's rank 

controllability condition. The above condition is called the observability 

condition. This duality property is widely known in the finite dimensional linear 

case (see, for example, Olsder [11] and Wonham [12]). Therefore, we can say 

that the above inequality is the infinite dimensional version of the Kalman's 

rank observability condition. 

Proposition 2. If  satisfies the following conditions: 

 A1: There is an  0,1 , such that     2
1t    for every t ; 

 A2:  Var    , where  Var  denotes the variation of the function   on 

 0, , 

then there exist 0T  and , 0T Tk K  such that 

        1 2 1 2

0 0

2 2

0 1 0 1
0

2

1, , ,
T

T x TH L H Lxk v v v x t dt K v v
      (12) 

for every      1 2

0 1 0
,v v H L   . 

 

The proposition above is proved in Pranoto [13] using multiplier technique. 

This technique is initiated by Komornik [14]. Another important technique that 

can be used to justify the inequality is micro-local analysis. This technique is 

utilized by Bardos et al in [15]. Their main contribution is to give sharp 

conditions on the exact controllability of the conservative wave equations. 

Using the inequality (11) and the Hilbert Uniqueness Method (HUM) initiated 

by Lions [16], one can prove the exact controllability of the system. This is 

stated in Proposition 3 below. One could also consult Pranoto [17] for proving 

the exact controllability of time-variant systems utilizing the inequality above. 

This method reduces the problem of the existence of an exact control to a 

question whether the inequality (12) is true or not. 

Proposition 3. If the assumptions A1 and A2 in the above proposition are 
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satisfied, then the following system M  

    0 in 0,L w T  ,  (13) 

      0, 0 and 1,w t w t t  , (14) 

        0 1
,0  and ,0

t
w x w x w x w x   

is exact controllable, i.e. there exists a 0T   such that for any initial data 

  1 2

0 1
,w w H L


   there is a boundary control  2 0,L T  such that 

   , , 0
t

w x T w x T  .   

 

The above proposition means that if the conditions (A1-A2) are satisfied, then 

for any initial state one can find a control steering it to the equilibrium state in 

time T .  So, now we are ready to prove Proposition 1. 

Proof of Proposition 1. If we plug e  into the system M above, then it will drive 

the initial data  0,0  to     , ,
t

w x T w x T  . By Proposition 3, there exists a 

*
0T  , such that for any initial data, we could find a control f driving the 

initial data to (0,0).  In particular, we could find a control ef driving the initial 

data     , ,
t

w x T w x T   to (0,0). Thus, it is clear that the control  

     
  *

( , )    if  0
, ,

,  if  
e

e

e x t t T
x t e f x t

f x t T t T T


 
  

   





 

steers the zero initial data to itself. So, the function   is a boundary sentinel. If 

e  is not zero, then in general 
ef is not zero as well. Thus, the concatenate 

 * ee f  in general is not trivial.  

 
 

Proof Outline of Proposition 3. First, let v  be the solution of the dual system 

    0  in  0,L v T   

   0, 1, =0v t v t  for all t  

       0 1
,0      ,0

t
v x v x v x v x  . 
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Next, let p be the output function of this dual system, defined by 

   1,xp t v t . Therefore, for any initial state  0 1,v v V , one can obtain a 

function  p p t . Next, using this p  as the input of the system, one solves 

the following backward problem 

   0  in  0,L w T   

     0, 0  and  1,w t w t p t   

    ,  , 0
t

w T w T     

for calculating the initial conditions   , 0w  and   ,0
t

w  . This means that one 

can construct a linear functional  

 :V V    

      0 1
: ,  ,0 ,  ,0

t
v v w w    

Now, the exact controllability of course is proved if it can be shown that the 

above functional is surjective. This is precisely the case, because of the 

inequality (12). In particular, the left hand inequality of (12) is the main reason 

on the surjectivity of  . The right hand inequality proves the square 

integrability of the output.  

 

3 Recovering the Internal Control    

The proof of Proposition 1 implicitly states that one can construct infinitely 

many boundary sentinels. So, now one may ask how to recover the internal 

control u using the boundary sentinels. 

Now, assume one has a boundary sentinel  . Thus, one can construct a linear 

functional 

      0 1 0 1

0

, , ; , ,

T

t z t dt       S . 

Since  is a sentinel, the functional S  is independent of 0 1,  . This implies 

that for sufficiently small , one may approximate the value of  0 1, ,  S by 
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      0 1, , 0,0,0 0,0,0    S S S  (15) 

Now, if we multiply (3) by y and integrate it over  0,T , we obtain the 

following fact 

    
 0,T

L w y L y w dxdt
 


    =     

0
1, 1,

T

x
w t y t dt


  

 =     
0

T

t z t dt


   

  =  0,0,0 S .  (16) 

On the other hand, since y

  satisfies the following problem  

 
    in 0,L y c T


  

; 

 
0 on 0 and 1y x x


   

; 

 
   ,0 ,0 0ty yx x

 
  

, 

we obtain  

     
   0, 0,

 
T T

L w y L y w dxdt wc dxdt
 

 
       . (17) 

Thus, the relations (15), (16), (17) provide the main relation between S  and c : 

    
 0 1
0,

, , 0,0,0  
T

wc dxdt


   


   S S . (18) 

The values  0 1, ,  S and  0,0,0S are known from observations. This 

implies that the left hand side of the above relation is known. Therefore, the 

relation above means that one can learn about the internal control u c c   

from the value 
 0,

 
T

wc dxdt



 . More specifically, the effect of the 

perturbation c can be studied from the values    0 1, , 0,0,0   S S . Of 

course, the relation (18) cannot be used to completely recover the exact c  

which is the perturbation of u , if one uses only one w . However, the relation 

(18) can provide some information about c if one can generate a sufficient 

number of w ’s that may form a kind of basis of the space   2
0,L T . 

Thus, analogous to Fourier transformation that converts the information of the 
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signal to the set of Fourier coefficients, here (18) provides some partial 

information about c .      

4 Future Works 

Some future work that we are interested to pursue is to design a systematic 

method for constructing an almost complete set of boundary sentinels. This 

method will be very useful for making the sentinel method above efficient and 

effective for recovering the internal control. 
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